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Abstract. It is a long-standing open question whether every Polish group that is not locally
compact admits a Borel action on a standard Borel space whose associated orbit equiva-
lence relation is not essentially countable. We answer this question positively for the class
of all Polish groups that embed in the isometry group of a locally compact metric space.
This class contains all non-archimedean Polish groups, for which we provide an alternative
proof based on a new criterion for non-essential countability. Finally, we provide the
following variant of a theorem of Solecki: every infinite-dimensional Banach space has a
continuous action whose orbit equivalence relation is Borel but not essentially countable.
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1. Introduction
Motivated by foundational questions about the intrinsic complexity of various mathemati-
cal classification problems, one of the prominent ongoing projects in descriptive set theory
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seeks to organize the collection of all definable equivalence relations with respect to Borel
reductions.

Definition 1.1. Let E and F be analytic equivalence relations on standard Borel spaces X

and Y respectively. We say that E Borel reduces to F , in symbols E ≤B F , if there is a
Borel map f : X → Y so that

xEx′ ⇐⇒ f (x)Ff (x′).

The simplest equivalence relations in the Borel reduction complexity hierarchy are the
ones that can be classified up to the equality relation =Y on some Polish space Y : an
equivalence relation E on X is concretely classifiable (or smooth) if there is a Polish space
Y so that E ≤B=Y . Another important class of equivalence relations of relatively low
complexity is the class of essentially countable equivalence relations. A Borel equivalence
relation E on X is countable if every E-class is countable. We say that E on X is essentially
countable if E ≤B F , for some countable Borel equivalence relation F .

In many interesting cases the equivalence relation under consideration is induced by a
Borel action of a Polish group on a standard Borel space. In fact, by the Feldman–Moore
theorem [FM77] every countable Borel equivalence relation is the orbit equivalence
relation of a countable (discrete) group. Let G be a Polish group. A Borel G-space is a
standard Borel space X together with a Borel action of G on X. If X is additionally Polish
and the action continuous, then we call the Borel G-space X a Polish G-space. If X is
a Borel G-space then by [BK96, Theorem 5.2.1] we can always replace X with a Polish
space that is Borel isomorphic to it so that the new space is a Polish G-space. If x ∈ X, we
denote by [x] the G-orbit of x. To each Borel G-space X we associate the orbit equivalence
relation EG

X defined by setting xEG
Xx′ if and only if [x] = [x′].

Often, dynamical properties of a G-space X are reflected in the complexity of the
associated orbit equivalence relation EG

X . As a consequence, topological restrictions on
G impose restrictions on the complexity of EG

X . For example, every orbit equivalence
relation induced by a Borel action of a compact Polish group is concretely classifiable
since the assignment x �→ [x] is a Borel reduction from EG

X to the Polish space of all
compact subsets of X. In [So00], Solecki provides a converse to this fact: if G is not
compact there is a Borel G-space whose orbit equivalence relation is not concretely
classifiable.

Similarly to the compact case, it is a theorem of Kechris [Ke92] that every orbit
equivalence relation induced by any locally compact Polish group G is essentially
countable. The question of whether this theorem too admits a converse was raised in
[Ke92]; see also [Ke20, Problem 3.15].

Problem 1.2. Let G be a Polish group with the property that every equivalence relation
induced by a Borel action of G on standard Borel space is essentially countable. Is G

locally compact?

In [Hj00], Hjorth referred to this problem as ‘stubbornly open’, and it so remains up
to this day. However, an affirmative answer has been obtained so far for certain classes of
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Polish groups:
(i) [Tho06] all Polish groups that do not admit a complete left-invariant metric;
(ii) [So00] all separable Banach spaces, viewed as groups under addition;
(iii) [Ma16] all abelian isometry groups of separable locally compact metric spaces.

In this paper we establish further progress regarding Problem 1.2, in several directions.
First we provide the following generalization of (iii) above.

THEOREM 1.3. Let G be the group of isometries of a separable locally compact metric
space. If all orbit equivalence relations induced by Borel actions of G on standard Borel
spaces are essentially countable, then G is locally compact.

It has been shown in [GK03, Theorem 6.3] that every closed subgroup of the group
of isometries of a separable locally compact metric space is, up to topological group
isomorphism, also the isometry group of a separable locally compact metric space. So this
result also applies to closed subgroups of the group of isometries of a separable locally
compact metric space. In particular, the class of groups described in the statement of
Theorem 1.3 contains all non-archimedean Polish groups, that is, all groups of the form
Aut(N ), where N is a countable structure.

In fact we show (in Theorem 2.3) that Theorem 1.3 holds for all spatial closed subgroups
of the automorphism group of a standard, non-atomic probability space, a class of groups
that contains all isometry groups of separable locally compact metric spaces.

In [So00], Solecki shows that every infinite-dimensional separable Banach space admits
a Borel action on a standard Borel space whose associated orbit equivalence relation
is analytic non-Borel. Since every essentially countable equivalence relation is Borel,
one may conclude with point (ii) above. Our next result shows that the non-essentially
countable dynamics of such a Banach space can be witnessed by an orbit equivalence
relation which, additionally, is Borel.

THEOREM 1.4. Let Z be an infinite-dimensional separable Banach space viewed as a
group under addition. Then there exists a Polish Z-space X whose associated orbit
equivalence relation is Borel and not essentially countable.

While the proof of Theorem 1.3 involves techniques from measurable dynamics, the
proof of Theorem 1.4 relies only on Hjorth’s notion of storminess [Hj05] and it is
purely topological. It is natural to ask whether a purely topological argument exists for
Theorem 1.3. In §5 we provide such an argument for the subclass of all non-archimedean
Polish groups. In fact this argument uses a new criterion for showing that an orbit
equivalence relation is not essentially countable, developed in §4. As in the case of
Hjorth’s notion of storminess, this criterion involves only the topological aspects of
the action. Moreover, its proof is elementary and it is based on a lemma used in the
theory of turbulence [Hj00] as well as in [LP18]. We apply this criterion to a Bernoulli
shift type of action that can be associated to every non-archimedean Polish group. We
show how these Bernoulli shift actions reflect many other topological properties of such
groups.
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2. Proof of Theorem 1.3
(A) We will show that every non-locally compact closed subgroup of the isometry group of
a separable locally compact metric space admits a Borel action on a standard Borel space
whose associated equivalence relation is not essentially countable.

The proof will make essential use of the following two results. The first gives a sufficient
condition for a non-locally compact Polish group to have a Borel action on a standard Borel
space with associated equivalence relation not essentially countable. It is a special case of
[FR85, Theorem A] (see also [Ke92, Theorem 1.6]).

THEOREM 2.1. [FR85, Theorem A] Let G be a non-locally compact Polish group which
has a free Borel action on a standard Borel space X which admits an invariant probability
Borel measure. Then EG

X is not essentially countable.

Recall that an action of a group G on a set X is free if for every g 	= 1 and every x,
g · x 	= x. Also for any action of G on X we denote by F(X) its free part defined by

x ∈ F(X) ⇐⇒ for all g 	= 1(g · x 	= x).

This is a G-invariant subset of X on which G acts freely.
The second result is a structure theorem for isometry groups of separable locally

compact metric spaces. Below S∞ is the Polish group of all permutations of N. For
any group G, S∞ acts on the product group GN by σ · (gn) = (gσ−1(n)), and we denote
by S∞ � GN the semidirect product with multiplication given by (σ , (gn))(τ , (hn)) =
(στ , (gn)(σ · (hn)).

THEOREM 2.2. [GK03, Ch. 6] Up to topological group isomorphism, the isometry groups
of separable locally compact metric spaces are exactly the closed subgroups of groups of
the form

∏
n

(S∞ � KN

n ),

where each Kn is a Polish locally compact group.

(B) Now let (X, μ) be standard non-atomic probability space and denote by Aut(X, μ)

the Polish group of all automorphisms of (X, μ) with the weak topology. If G is a closed
subgroup of Aut(X, μ), then the identity gives a Boolean action of G on (X, μ). We say
that G is spatial if this action has a spatial realization, that is, it comes from a Borel
action of G on X which preserves μ. Note that not every closed subgroup of Aut(X, μ),
including Aut(X, μ) itself, is spatial. For more information about Boolean actions and
spatial realizations, see [GTW05, GW05].

We now have the following result.

THEOREM 2.3. Let (X, μ) be standard non-atomic probability space and G a spatial
closed subgroup of Aut(X, μ) and denote by g · x the corresponding action of G on X.
Consider the diagonal action of G on XN given by g · (xn) = (g · xn), which preserves the
product measure μN. Then there is a G-invariant Borel set Y ⊆ XN with μN(Y ) = 1 such
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that G acts freely on Y . In particular, if G is non-locally compact, EG
Y is not essentially

countable.

Proof. By [BK96, Theorem 5.2.1], we can assume that X is Polish and the action of G on
X is continuous. For g ∈ G\{1}, let

Ag = {x ∈ X : g · x 	= x},
so that μ(Ag) > 0. If x ∈ Ag , there is an open neighborhood Nx

g of g with 1 /∈ Nx
g and an

open neighborhood V x
g of x such that

Nx
g · V x

g ∩ V x
g = ∅.

So

Ag ⊆
⋃

{V x
g : x ∈ Ag},

and thus there is a sequence x0, x1, . . . ∈ Ag such that

Ag ⊆ V x0
g ∪ V x1

g ∪ · · · .

Therefore there is an n such that μ(V
xn
g ) > 0.

So we have shown that if g 	= 1, then there is an open neighborhood Ng of g with 1 /∈
Ng and an open set Vg such that μ(Vg) > 0 and Ng · Vg ∩ Vg = ∅. So G\{1} = ⋃

g 	=1 Ng

and therefore there is a sequence g0, g1, . . . with gn 	= 1, for all n, and G\{1} = Ng0 ∪
Ng1 · · · .

Consider now the action of G on (XN, μN) and its free part F(XN), which is a
co-analytic, therefore measurable set. We will check that it has μN-measure 1. Denote
by Z its complement,

Z = {z ∈ XN : there exists g 	= 1(g · z = z)}.
We want to show that μN(Z) = 0. Since Z = ⋃

k Zk , where

Zk = {z ∈ XN : there exists g ∈ Ngk
(g · z = z)},

it is enough to show that μN(Zk) = 0, for all k. But if g ∈ Ngk
and g · z = z, then zn /∈

Vgk
, for all n,that is,

Zk ⊆ (X\Vgk
)N,

and, since μ(X\Vgk
) < 1, μN(Zk) = 0.

Finally we will find a Borel G-invariant set Y ⊆ F(XN) with μN(Y ) = 1. For each
A ⊆ XN, let A∗ = G · A be its G-saturation. Define then inductively Yn ⊆ F(XN) as
follows: Y0 is a Borel subset of F(XN) with μN(Y0) = 1; Yn+1 is a Borel subset of F(XN)

containing Y ∗
n ; this exists by the separation theorem for analytic sets. Then Y = ⋃

n Yn

works.

(C) To complete the proof of Theorem 1.3, it is thus enough to show that every
isometry group of a separable locally compact metric space is (up to topological group
isomorphism) a spatial closed subgroup of Aut(X, μ). This follows from the next two
results.
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PROPOSITION 2.4. For each sequence (Kn) of Polish locally compact groups, the
group

∏
n(S∞ � KN

n ) is (up to topological group isomorphism) a closed subgroup of
Aut(X, μ).

Proof. Let H be the infinite-dimensional separable (complex) Hilbert space and U(H)

its unitary group (with the strong topology). By [Ke10, Appendix E], U(H) is a closed
subgroup of Aut(X, μ), so it is enough to show that the group

∏
n(S∞ � KN

n ) is a closed
subgroup of U(H).

First note that if K is a Polish locally compact group with Haar measure η, then by
identifying each element of K with the associated left-translation action on L2(K , η) (the
regular representation), we see that K is a closed subgroup of U(H).

Next observe that U(H)N is also a closed subgroup of U(H). To see this, write H =⊕
n Hn, where each Hn is a copy of H , and note that U(H)N can be identified with the

closed subgroup of U(H) consisting of all T ∈ U(H) that satisfy T (Hn) = Hn, for all
n ∈ N.

Finally, we show that S∞ � U(H)N is a closed subgroup of U(H). Represent H again
as H = ⊕

n Hn as above. Then identify any g ∈ S∞ with Tg ∈ U(H), where Tg sends Hn

to Hg(n) by the identity. Call Ŝ∞ this copy of S∞ within the group U(H). Then S∞ �

U(H)N can be identified with the internal product Ŝ∞U(H)N, which is a closed subgroup
of U(H).

THEOREM 2.5. [KS11] Every probability measure preserving Boolean action of the
isometry group of a separable locally compact metric space has a spatial realization.

(D) The referee has suggested an alternative, more direct proof of Theorem 1.3 that
avoids the use of the result in [KS11] (whose proof depends on the solution to Hilbert’s
fifth problem). We next sketch this argument. Note that if (Gn) is a sequence of Polish
groups and Gn admits a free Borel action on a standard Borel space Xn that preserves
a probability measure μn, then the product action of

∏
n Gn on

∏
n Xn is free and

preserves
∏

n μn. So by Theorem 2.1 and the argument in the proof of Theorem 2.3, it
is enough to show that any group of the form S∞ � KN, where K is a Polish locally
compact group, admits a Borel action on a standard Borel space with invariant Borel
probability measure for which the free part of the action has measure 1. For that use the
result of Golodets and Sinel’shchikov [GS90] (see also [AEG94, §1]) that K has a free
Borel action on a standard Borel space X which admits an invariant probability Borel
measure μ. Let λ be the Lebesgue measure on [0, 1] and define the action of S∞ � KN

on XN × [0, 1]N by

(σ , (gn)) · ((xn), (yn)) = ((gn · xσ−1(n)), (yσ−1(n))).

This is a Borel action that preserves the product measure μN × λN and its free part has
measure 1.

(E) Finally we note that at the end of the paper we will give another proof of Theorem 1.3
for non-archimedean Polish groups, using Bernoulli shifts and Theorem 2.1.
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3. Proof of Theorem 1.4
(A) Let Z be a separable Banach space viewed as a Polish group under addition. We will
use additive notation and we will set d to be the metric induced by the norm on Z:

d(z, z′) = ‖z − z′‖.

Let Lip(Z) be the space of all 1-Lipschitz maps from Z to R. We endow Lip(Z) with
the pointwise convergence topology and view it as a Polish Z-space by setting (ζ , f ) �→
ζ · f with (ζ · f )(z) = f (ζ + z) for every f ∈ Lip(Z) and every ζ , z ∈ Z. For every
z1, . . . , zk ∈ Z, every ε > 0, and every f ∈ Lip(Z) we will denote by Uz1,...,zk ,ε,f the
basic open subset U of Lip(Z) defined by

U = {f ′ ∈ Lip(Z) | |f (z1) − f ′(z1)| < ε, . . . , |f (zk) − f ′(zk)| < ε}.
In order to prove Theorem 1.4 it suffices, by [Hj05, Theorem 1.3], to find a non-empty,

Z-invariant, Gδ subset X of Lip(Z) so that the Z-space X is stormy. Recall that a Polish
G-space X is said to be stormy [Hj05], if for every non-empty and open V ⊆ G and every
x ∈ X we have that the map g �→ g · x from V to V x is not an open function.

LEMMA 3.1. Let G be a Polish group acting continuously and freely on a Polish space X.
Then the action is stormy if for every x ∈ X and every open V ⊆ G with 1 ∈ V there is an
open W ⊆ V , W 	= ∅, so that for all open U ⊆ X with x ∈ U there is g ∈ V so that:
(1) gx ∈ U ;
(2) g 	∈ W .

Proof. By translating the arbitrary open set V from the definition to the identity using the
right translation it is easy to see that storminess is implied by the condition above, after
one replaces (2) with
(2′) gx 	∈ Wx.
But (2) is equivalent to (2′), given that the action is free.

LEMMA 3.2. There is a Z-invariant, dense and Gδ subset X0 of Lip(Z) so that Z acts
freely on X0.

Proof. Let ζ be any element of Z with ζ 	= 0 and consider the set

Xζ = {f ∈ Lip(Z) | there exists z ∈ Z |f (ζ + z) − f (z)| > ‖ζ‖/2}.
It is clear that Xζ is open in Lip(Z). To see that Xζ is also dense in Lip(Z) let U :=
Uz1,...,zk ,ε,f be a basic open subset of Lip(Z) and let r > 0 be any number with ‖z1‖ <

r , . . . , ‖zk‖ < r . Also let [a, b] ⊆ R be any interval of length at most 2r containing the
values f (z1), . . . , f (zk). Set z to be any positive multiple of ζ with ‖z‖ > 3r + 2‖ζ‖.
The assignment

z1 �→ f (z1), . . . , zk �→ f (zk), z �→ b, (z + ζ ) �→ b + 3/4‖ζ‖
is clearly a 1-Lipschitz map from {z1, . . . , zk , z, z + ζ } to R and therefore, by the classical
theorem of McShane [McS34], it extends to some f ′ ∈ Lip(Z). Notice that any such f ′
automatically lies in Xζ ∩ U .
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By a simple use of the triangle inequality it now follows that
⋂

ζ∈D Xζ is the desired
set, where D is any countable dense subset of Z\{0}.
LEMMA 3.3. There is a Z-invariant, dense and Gδ subset X1 of Lip(Z) so that for
every open V ⊆ Z which contains the identity and every x ∈ X1 the condition stated in
Lemma 3.1 is satisfied.

Proof. It suffices to check the condition in Lemma 3.1 for V ranging over some basis of
open neighborhoods of 0 in Z. So let V = B(0, r) be an open ball of radius r > 0 around
0 in Z. Choose W to be the open ball B(0, r/2) of radius r/2 around 0 in Z. Also let
z1, . . . , zk be any finite list of points from Z and let ε > 0. Consider the set Sr ,z1,...,zk ,ε

consisting of all f ∈ Lip(Z) for which there is a ζ ∈ V \W with ζ · f ∈ Uz1,...,zk ,ε,f . In
other words, Sr ,z1,...,zk ,ε is simply the set

{f ∈ Lip(Z) | there exists ζ ∈ V \W such that |f (ζ + zi) − f (zi)| < ε for all i}.
CLAIM. Sr ,z1,...,zk ,ε is open and dense in Lip(Z).

Proof of Claim. The set Sr ,z1,...,zk ,ε is clearly open. To see that it is also dense, let
Uy1,...,yl ,δ,f be any basic open subset of Lip(Z). We will show that

Uy1,...,yl ,δ,f ∩ Sr ,z1,...,zk ,ε 	= ∅.

By shrinking both sets, if necessary, we can assume without loss of generality that
k = l, z1 = y1, . . . , zk = yl , ε = δ. Notice that it suffices to find some ζ ∈ V \W so that
for all i, j ≤ k we have that d(ζ + zi , zj ) ≥ d(zi , zj ) since, if this is the case, the
assignment

z1 �→ f (z1), . . . , zk �→ f (zk), (ζ + z1) �→ f (z1), . . . , (ζ + zk) �→ f (zk)

is 1-Lipschitz and it therefore extends by [McS34] to some f ′ ∈ Lip(Z). Any such
extension witnesses that the intersection above is indeed non-empty.

It is easy to see that the property which remains to be checked follows from the fact
that for every finite A ⊆ Z there is a ζ ∈ V \W with d(ζ , a) ≥ d(0, a) for all a ∈ A.
So let a1, . . . , an be an enumeration of A and for each i ≤ n let a∗

i be a norming functional
for ai , that is, an element of the dual of Z with ‖a∗

i ‖ = 1 and a∗
i (ai) = ‖ai‖. Also

let Pi = {η ∈ Z | a∗
i (η) = 0}. Since ‖a∗

i ‖ = 1, for every η ∈ Pi we have that d(η, ai) ≥
a∗
i (ai − η) = a∗

i (ai) = d(0, ai). Since P = ⋂
i≤n Pi is a subspace of finite codimension

and Z is infinite-dimensional, P is unbounded. Taking any ζ ∈ P with ‖ζ‖ = 3/4r

finishes the proof. Claim

To finish the proof of the lemma we can simply take X1 to be the intersection of a
countable collection of sets of the form Sr ,z1,...,zk ,ε, where {z1, . . . , zk} varies over all
finite subsets of some fixed countable dense subset of Z, and ε, r vary over a sequence of
positive reals converging to 0.

We can now finish the proof of Theorem 1.4.
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Proof of Theorem 1.4. Let X = X0 ∩ X1 where X0 and X1 are the sets described in
Lemma 3.2 and Lemma 3.3, respectively. By Lemma 3.1 the action of Z on X is stormy
and therefore, by [Hj05] the orbit equivalence relation EZ

X is not essentially countable.
Finally, the EZ

X is Borel since the action of Z on X is free.

We record the following question, whose positive answer would generalize Theorem 1.4
to the class of all non-locally compact abelian Polish groups.

Question 3.4. Let G be a non-locally compact abelian Polish group. Does G admit a
two-sided invariant metric d with the property that, for every open V ⊆ G with 1G ∈ V ,
there is an open W ⊆ V with 1G ∈ W so that for every finite A ⊆ G there is g ∈ V \W
with d(g, a) ≥ d(1G, a), for every a ∈ A?

(B) The referee has suggested an alternative proof of Theorem 1.4 which relies on
Theorem 2.1. We sketch this argument here. Let D = {dn | n ∈ N} be a countable dense
subset of the Banach space Z and let D∗ = {d∗

n | n ∈ N} ⊆ Z∗ be the collection of
the associated norming functionals. Notice that the continuous group homomorphism
(Z, +) → (RN, +), given by z �→ (d∗

n(z))n, is injective, since D is dense in Z. But RN is a
subgroup of the compact group K = (T 2)N, where T 2 = S1 × S1 is the two-dimensional
torus. It follows that RN, and therefore Z, admit a free and probability measure preserving
action by left translation on K—the latter is endowed with its normalized Haar measure.
By Theorem 2.1 we may now conclude Theorem 1.4.

4. A game-theoretic criterion for non-essential countability
Let X be a Polish G-space and let x, y ∈ X. Also let V be an open neighborhood of 1 in
G. We say that y admits a V -approximation from x if there is g∗ ∈ G and a sequence (gn)

in V so that (gng∗x) converges to y when n → ∞. We denote this by

x �V y.

The following criterion is the main result of this section.

THEOREM 4.1. Let G be a Polish group and let X be a Polish G-space. Assume that for
every open neighborhood of the identity V of G, for every G-invariant comeager subset C

of X and for every non-meager subset O of X, there are c ∈ C and o ∈ O so that c �V o

but [c] 	= [o]. Then EG
X is not essentially countable.

Notice that if G is locally compact then one can always find a small enough V as above
so that x �V y implies [x] = [y]. Moreover, it is well known that countable equivalence
relations are induced by actions of countable discrete (and so locally compact) groups.
Thus, Theorem 4.1 is an immediate consequence of the following result.

THEOREM 4.2. Suppose that G, H are Polish groups, X is a Polish G-space, and Y is a
Polish H -space. Let f : X → Y be a Baire measurable (EX, EY )-homomorphism. Then
for every open neighborhood of the identity W in H there exist an open neighborhood of
the identity V in G, a G-invariant comeager C ⊆ X, and a non-meager O ⊆ X such that
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c �V o implies f (c) �W f (o) for c ∈ C, o ∈ O. If W = H , one can put V = G, and O

can be chosen to be comeager.

In order to prove Theorem 4.2, we define a variant of a game introduced in [LP18],
which we denote by ApprG,V (x, y). For a Polish G-space X, an open neighborhood of the
identity V in G, and x, y ∈ X, Odd and Eve play as follows:
(1) in the first turn, Odd plays an open neighborhood U1 of y, and Eve responds with an

element g∗ ∈ G;
(2) in the nth turn, n > 1, Odd plays an open neighborhood Un of y, and Eve responds

with an element gn−1 ∈ V .
The players proceed in this way, producing an element g∗ ∈ G, a sequence {gn} of

elements of V , and a sequence {Un} of open neighborhoods of y in X. Eve wins the game
if g∗x ∈ U1, and gn−1g∗x ∈ Un for n > 1. Clearly, Eve has a winning strategy in the game
ApprG,V (x, y) if and only if x �V y.

It is straightforward to observe the following fact.

LEMMA 4.3. If Eve has a winning strategy in the game ApprG,V (x, y), then she also has
a winning strategy in the same game but with the additional winning conditions that each
gn, n > 0, belongs to some given comeager subset V ∗ of V , and each gn−1g∗x, n > 1,
belongs to some given comeager subset C of X, provided that the set of g ∈ G such that
gx ∈ C is comeager.

In [LP18], the following well known fact is stated and proved (Lemma 2.5).

LEMMA 4.4. Suppose that G, H are Polish groups, X is a Polish G-space, and Y is a
Polish H -space. Let f : X → Y be a Baire measurable (EX, EY )-homomorphism. Then
there exists a dense Gδ subset C ⊆ X such that:
• the restriction of f to C is continuous;
• for any x ∈ C, {g ∈ G : gx ∈ C} is a comeager subset of G;
• for any open neighborhood W of the identity in H , and x1 ∈ C. there exist an open

neighborhood U of x1 and an open neighborhood V of the identity in G such that for
any x ∈ U ∩ C and for a comeager set of g ∈ V , we have that gx ∈ C, and f (gx) ∈
Wf (x).

Proof of Theorem 4.2. Fix neighborhood bases {Vn}, {Wn} at the identity in G, H ,
respectively. Without loss of generality, we can assume that W = Wn0 for some n0.
Define C as the intersection of a set obtained from Lemma 4.4, and the comeager set
{x ∈ X : for all ∗g ∈ G gx ∈ C}. It is clearly G-invariant. To define O, let N be the
function assigning to a given c ∈ C the smallest n such that V = Vn is as given by
Lemma 4.4 for c and W , and ∞ if there is no such n. In the proof of [LP18, Lemma 2.5],
it is showed that N is analytic and takes finite values on a comeager subset of X. Thus,
N takes a constant value n1 ∈ N on some non-meager O ′ ⊆ X. Put O = O ′ ∩ C, and
V = Vn1 .

Suppose now that Odd and Eve play the game ApprH ,W(f (c), f (o)), where c ∈ C,
o ∈ O, and c �V o. After Odd plays U1 ⊆ Y in the first turn, let Eve play g∗ ∈ G in the
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first turn of the game ApprG,V (c, o), assuming that Odd chose U ∩ U ′
1 � o, where U ⊆ X

is given by Lemma 4.4, and U ′
1 ⊆ X is chosen so that f [U ′

1 ∩ C] ⊆ U1 (which is possible
because f is continuous on C). Clearly, she can choose g∗ so that g∗x ∈ U ∩ U ′

1 ∩ C.
In the next turns, for Un ⊆ Y played by Odd in ApprH ,W(f (c), f (o)), we let Odd play
U ∩ U ′

n in ApprG,V (c, o), where each U ′
n ⊆ X is such that f [U ′

n ∩ C] ⊆ Un. Then, using
Lemma 4.3, Eve plays gn−1 ∈ V according to her winning strategy, and so that gn−1g∗c ∈
X0, and, in the game ApprH ,W(f (c), f (o)), Eve can choose h∗ ∈ H , hn−1 ∈ W such that
hn−1h∗f (c) = f (gn−1g∗c) ∈ Un. This procedure shows that Eve has a winning strategy
in the game ApprH ,W(f (c), f (o)), that is, f (c) �W f (o).

The last statement is obvious.

5. A Bernoulli shift action for non-archimedean Polish groups
Let G be a non-archimedean Polish group, that is, a Polish group admitting a neighborhood
basis at the identity of open subgroups. Then there are a countable language L and an
L-structure N with universe N so that

G = Aut(N ) ⊆ Sym(N),

and the basis can be taken to be the pointwise stabilizers of finite subsets of N. Let
us refer to such an action G � N as a fundamental action. Topological properties of
G correlate to properties of these actions. For example, G is compact if and only if
all orbits of this action are finite; G is locally compact if and only if there is an open
subgroup V of G so that every orbit in the inherited action V � N is finite; and G

is CLI, that is, it admits a complete and left invariant metric if and only if for every
sequence (gk) in G, which is Cauchy with respect to some left invariant metric, we
have that every n ∈ N can be attained as the limit (gk · m →k→∞ n) for some m ∈ N

(see [Gao98]).
In this section we show that many topological properties of G similarly translate to

generic dynamical properties of another Polish G-space which we call the Bernoulli shift
for G. These generic dynamics have immediate consequences for the complexity of the
associated orbit equivalence relation. The Bernoulli shift for G is the action of G on
the space RN of all maps x = (x(0), x(1), . . .) from N to R, obtained by permuting the
coordinates, that is, (g · x)(n) := x(g−1(n)). If for any two sets X and Y we let [X]Y

denote the set of injections from Y to X, we observe that [R]N is a G-invariant, dense Gδ

subset of RN.
For our first application, recall (see, for example, [Gao08, Ch. 6]) that a G-space

is generically ergodic if every G-invariant Borel set is meager or comeager. Generic
ergodicity is equivalent to the existence of a dense orbit. If, moreover, every orbit is meager
then the corresponding orbit equivalence relation must be non-smooth. In Application 1,
we see that the weaker non-compactness property of a fundamental action G � N (the
existence of an infinite orbit) is upgraded to a stronger non-compactness property (generic
ergodicity) in the case of the Bernoulli shift.

APPLICATION 1. G is not compact if and only if the G-space RN has a G-invariant
subspace that is generically ergodic with meager orbits.
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Proof. The right-to-left direction follows immediately from the aforementioned results
that generic ergodicity together with meager orbits imply non-smoothness, recalling the
fact mentioned in the introduction that every action of a compact group has a smooth orbit
equivalence relation. To prove the converse, recall Neumann’s lemma that for any finite
A ⊆ N of points with infinite orbits, there exists g ∈ G such that A ∩ g[A] = ∅. If G is not
compact, there exists an infinite orbit O in N. Let Y = {z ∈ RN | z(a) = 0 for every a ∈
N\O}. Then Y is uncountable and G-invariant. Now fix any â ∈ O. Then for every r ∈ R,
the set {z ∈ Y | z(â) = r} is closed, nowhere dense, and every orbit of the action G � Y

is contained in a countable union of such sets. Finally, using Neumann’s lemma, one easily
constructs an element of Y with dense orbit.

Remark 5.1. While we specified a subspace with meager orbits and constructed a point
in it with dense orbit, it is an application of Lemma 5.2 below that in fact, when G is not
compact, the orbit closure G · z of the generic z ∈ RN has the stated properties.

For the next application we first recall some definitions and a theorem from [LP18].
Let H be any Polish group. A left-Cauchy sequence is any sequence (hn) in H which
is Cauchy with respect to some topologically compatible left-invariant metric on H . It is
right-Cauchy if (h−1

n ) is left-Cauchy. If X is a Polish H -space and x, y are elements of
X, then we say that x right Becker-embeds into y if there is a right-Cauchy sequence (hn)

in H with hny → x. The main theorem from [LP18] states that if for every comeager
subset C of X there are x, y ∈ C so that [x] 	= [y] and x right Becker-embeds into y,
then EH

X is not Borel reducible to any orbit equivalence relation that is induced by the
continuous action of a CLI Polish group. In Application 2, we show that the dynamical
property from [Gao98] which characterizes when G is CLI in terms of the action
G � N, upgrades in the Bernoulli shift of G to the generic dynamical behavior from
[LP18] which we just described. As a corollary, we get that every non-archimedean
Polish group which is not CLI admits a continuous action on a Polish space whose
associated orbit equivalence relation is not classifiable by actions of CLI groups. Notice
that this corollary also follows from [Tho06], since CLI orbit equivalence relations are
pinned.

APPLICATION 2. G is not CLI if and only if the G-space RN satisfies the criterion from
[LP18].

Proof. The implication from right to left is clear. To prove the converse, denote by d be
the left-invariant metric on [N]N defined by

d(x, y) = max{2−n : x(n) 	= y(n)}
for x 	= y. As G is non-CLI, and so d is not complete on G (see [Gao08, Lemma 2.1]),
we can fix a non-convergent Cauchy sequence {hn} with respect to d . Because {hn} clearly
converges in [N]N (the definition of d warranties that, for every m, the value hn(m) is fixed
starting from some n on) and G is closed in Sym(N) ⊆ [N]N, {hn} actually converges to
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some h ∈ [N]N\Sym(N), that is, h[N] � N. Let φ : [R]N → [R]N be defined by

φ(x)(n) = x(h(n)),

n ∈ N. Clearly, φ is an open surjection.
Fix a comeager C ⊆ [R]N. Then φ[C] is also comeager, and so there exists c ∈ C such

that o = φ(c) ∈ C. As o[N] � c[N], [c] 	= [o], but h−1
n c → o. Using the fact that {h−1

n } is
a right-Cauchy sequence in X, that is, it is Cauchy for the right-invariant metric d ′ defined
by d ′(x, y) = d(x−1, y−1), it is straightforward to verify that o right Becker-embeds
into o.

In Application 3, we similarly show that the failure of local compactness of G (that
is, the existence of infinite orbits for all inherited actions V � N by open subgroups) is
amplified to the property of Theorem 4.1 in the Bernoulli shift.

APPLICATION 3. G is not locally compact if and only if the G-space RN satisfies the
criterion from Theorem 4.1.

We start with a strengthening of Neumann’s lemma.

LEMMA 5.2. Let G � N be a fundamental action and N = A � B a partition where B

consists of those elements with infinite G-orbits and A the elements with finite orbits. Then
there exists a sequence {gn} ⊆ G such that:
(1) F ∩ gn[F ] = ∅ for every finite F ⊆ B, and almost all n;
(2) gn(a) = a for every a ∈ A, and almost all n.

Proof. Fix finite F ⊆ B, D ⊆ A. Put F0 = F , and, using Neumann’s lemma, fix some
h0 ∈ G such that F0 ∩ h0[F0] = ∅. Put F1 = F0 ∪ h−1

0 [F0], and fix h1 ∈ G such that
F1 ∩ h1[F1] = ∅. In this way, construct Fn ⊆ B, hn ∈ G, n ∈ N. As each element of
D is in a finite orbit, there must be m < n such that h−1

m � D = h−1
n � D. But then

hnh
−1
m � D is the identity, and, since h−1

m [F ] ⊆ Fn, we have that F ∩ hnh
−1
m [F ] = ∅. Put

gF ,D = hnh
−1
m .

Now, write A and B as increasing unions of finite sets
⋃

An and
⋃

n Bn, respectively,
and construct gn = gBn,An as above. Clearly, {gn} is as required.

Proof of Application 3. The implication from right to left is immediate by Theorem 4.1
and [Ke92]. For the left-to-right implication, suppose that G is not locally compact and
fix an open neighborhood of the identity, V . As G is non-archimedean, V contains an
open subgroup and so we may assume, without loss of generality, that V is a subgroup
itself.

Since G is not locally compact, V is not compact, and so some element in the
fundamental action G � N has an infinite orbit in the induced action V � N. Partition
N = A � B as in Lemma 5.2 according to the action of V , and note that the above says
that B 	= ∅, and so in fact, B must be infinite.

Let {bk}k∈N be an enumeration of B and let φ : [R]N → [R]N be the map that fixes the
coordinates coming from A and acts as a left shift on the coordinates from B, according to
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the fixed enumeration. In other words, φ is defined by

φ(x)(bk) = x(bk+1) when bk ∈ B,

φ(x)(a) = x(a) when a ∈ A.

Note the following about the map φ: first, that it is a continuous and open surjection
of [R]N onto itself; and second, since points in [R]N are injections N → R (that is,
non-repetitive sequences), the G-orbits [z] and [φ(z)] are not equal for any z ∈ [R]N.

Now apply Lemma 5.2 to the action V � N to obtain a sequence {gn}n∈N from V with
properties (1) and (2) as in the lemma. Let C′ consist of those points x ∈ [R]N so that
for any N ∈ N, bk1 , . . . , bkm ∈ B, and open, rational intervals I1, . . . , Im ⊆ R, there is
an n � N with gn(x)(bkj

) ∈ Ij for all 1 � j � m. Then by the properties of the sequence
{gn}, C′ is comeager in [R]N and for every x ∈ C′ and y ∈ [R]N satisfying x(a) = y(a)

for all a ∈ A, there is a subsequence {gnl
}l∈N with gnl

x → y. In particular, this holds for
any pair z and φ(z) where z ∈ C′.

To finish verifying the conditions of Theorem 4.1, let C be any comeager invariant
subset of [R]N and let O be non-meager. Then choose any c ∈ (C ∩ C′ ∩ φ−1[O]) and let
o = φ(c). Then c ∈ C, o ∈ O, and by the argument in the preceding paragraphs, c �V o

while [c] 	= [o].

As a consequence of Application 3, every non-archimedean Polish group that is not
locally compact admits a continuous action on its Bernoulli shift with an orbit equivalence
relation that is not essentially countable. The Bernoulli shift for G can be also used to
provide an alternative measure-theoretic proof of this fact, based on [Ke92, Theorem 1.6].
To see this, let μ be the product measure on RN of any non-atomic probability measure on
R and notice that it concentrates on [R]N, where G acts freely.
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