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Abstract

Suppose that f(z) is a function of one complex variable satisfying

/ (*) - a(z)/(z>) + b(z),
where p is an integer larger than 1 and a(z) and b{z) are rational functions. We consider/evaluated
at the algebraic point a and develop a transcendence measure for/(a) under suitable conditions o n /
and a.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 F 35.

1. Introduction

Let T: C -> C be the transformation defined by Tz = zp, where p is an integer
greater than 1. Suppose that f(z) is a non-rational function of one complex
variable which is regular at the origin and which satisfies the functional equation

(1) /(z) = a(z)f(Tz) + b(z),

where a(z) and b{z) are rational functions. Further suppose that the coefficients
of /(z) in its Taylor series expansion at 0 are algebraic numbers. (Examples of
such functions include/(z) = 11^-0 0 ~ T% and/(z) = 2£_0 T

kz. When Tz =
z2, the latter of these is the so-called Fredholm series.)

By a result of Mahler (1929), if a is an algebraic number, 0 < \a\ < 1, for
which /(a) is defined, and if Tka is neither a pole of b(z) nor a zero of a(z) for
any k (k = 0, 1, 2, . . . ), then f(a) is a transcendental number. Thus for any
non-zero polynomial Q{x) with integer coefficients, we have that Q(f(a)) ^ 0.
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In this paper we quantify the above result. Specifically, we show that

| 0 ( / ( « ) ) | > exp(-G/2(</2 + log H)),

where d — degree of Q, H = height of Q, and C is an effectively computable
constant which does not depend on Q.

We remark that Mahler's original result is more general than indicated above,
and that a number of further generalizations, some quite recent, have been
effected by Mahler, K. K. Kubota, and Loxton and van der Poorten. These are
detailed in the survey article of Loxton and van der Poorten (1977). Also, in the
early work of Mahler,/(z) is assumed to be transcendental; however Loxton and
van der Poorten (1976) have shown that solutions to (1) are either rational or
transcendental.

The remainder of the paper is set out as follows. Section 2 fixes the notation
we use. In Section 3, we state and prove our main result, except for giving the
proof of one crucial lemma (Lemma 2). This exception is the substance of
Section 4. Finally, we offer some brief concluding remarks in Section 5.

2. Notation

Hereafter we abide by the following conventions. For Q a polynomial (in any
number of variables) with complex coefficients, we define the height of Q,
written H(Q), to be the maximum taken over the absolute values of the
coefficients of Q. We denote the degree of Q in the variable z by deg2 Q, and
similarly for other variables.

If a is an algebraic number, then the house of a, designated by \a\, is the
maximum taken over the absolute values of all conjugates of a. A denominator
for a is a positive integer D such that Da is an algebraic integer. The minimal
such D is the denominator of a, which we abbreviate as den a. The height and
degree of a are (respectively) the height and degree of the minimal polynomial
of a, and H(a) and deg a have the obvious meanings. If a # 0, then \a\ is
bounded away from 0 by various functions of \a\, den a, H(a), and deg a. (See
Waldschmidt (1974), Chapter 1.) We refer to any such bound as a Liouville
estimate.

For a function g(z) of the complex variable z which is analytic at the origin,
we write ord g for the order of g(z) at 0, that is the index of the first
non-vanishing power of z appearing in the Taylor series expansion for g at 0.

Lastly C, C", Co, Cv . . . represent positive constants which are computable
in terms of p,f(z), a(z), b(z) and a. In particular, such constants are independent
of the parameters n and k, the polynomial Q, and the algebraic number £ which
subsequently appear.
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3. The main result

Our main result is

THEOREM 1. Let a(z) and b(z) be rational functions and let T be the transforma-
tion mapping z onto zp, where p is an integer greater than 1. Suppose that f{z) is a
non-rational solution to the functional equation (1) which is analytic at the origin
and which has only algebraic coefficients in its power series expansion at 0. Assume
that a is an algebraic number for which 0 < \a\ < 1, /(a) is defined, and Tka is
neither a pole of b(z) nor a zero of a{z) for any k (k = 0, 1, 2, . . . ). Finally, let
Q(x) be a non-zero polynomial with integer coefficients and of degree d and height
H. Then

\Q(f(a))\ > exp(-Cd2(d2 + log H)),

where C is an effectively computable constant not depending on Q.

We actually prove Theorem 1 in the following equivalent form. (See Lang
(1966), Chapter 6 for the details of deriving Theorem 1 from Theorem 2.)

THEOREM 2. Let a(z), b(z), T, f(z), and a be as in Theorem 1. If £ is an
algebraic number of degree d and height H, then

\£ - f{a)\ > exp(-C'd2(d2 + log H)),

where C is an effectively computable constant not depending on £.

The fact that/(z) satisfies (1) has several elementary consequences which we
require for the proof of Theorem 2. A simple linear algebra argument (given in
Kubota (1977), p. 32) permits us to assume that a{z) and b(z) have algebraic
coefficients (provided that the coefficients of/are algebraic).

We iterate the functional equation (k — 1) times to get

(2) f(z) = 2* a«\z)b{ T'z) + a^(z)f( Tkz),
i-0

where aw(z) = a(z)a{Tz) • • • a(T'~xz). We write the power series expansion for
/(z) at 0 as

(3) f{z) = 2 V ,
the sum ranging from ju = 0 to n = oo. Although (3) may not hold throughout
the unit circle, we see that (2) provides an analytic continuation of /(z) to
\z\ < 1. In particular, we note that/(a) fails to be defined for at most finitely
many values of a lying in any circle of radius less than 1.
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Suppose, for the moment, that a(z) is regular at 0. By (1) and the fact that/(z)
is regular at 0, b(z) must also be regular at 0. We may therefore expand aS\z)
and b(T'z) in (2) as power series at 0. Since f(Tkz) has, except for c0, only terms
with index at least pk, equation (2) determines the ĉ  (0 < JU < pk) as elements
of the field generated by c0 and the coefficients of a(z) and b(z). Moreover, it
follows easily that the cM satisfy the growth conditions

(4) | ĉ  | < Q + ' , Q+'cM is an algebraic integer.

If now a(z) has a pole of order 5 at 0, define the function g(z) by

z'g(z) + R(z) = /(z), R(z) = 2 V ' -

Then g(z) is regular at 0 and satisfies the functional equation.

g(z) = z<*-'>Mz)g(7z) + z-*(a(z)R(Tz) + b(z) - R(z)).
Hence the above analysis is valid for g(z), so that (4) and the assertion that the
cM all lie in a fixed number field still obtain.

Throughout the remainder of the paper, we assume the hypotheses of Theo-
rem 1. We now construct an auxiliary polynomial which depends on the
parameter n.

LEMMA 1. Let n(> C,) be an integer. Then there is a polynomial in w and z with
integer coefficients, call it P(w, z), having the properties:

1 < deg^ P < n, degz P < n,

(5) H(P) < exp(C2«
2),

ordi>( / (z) ,z)>n7C, .

PROOF. We rely on the following version of the familiar Siegel's lemma of
transcendence proofs (Waldschmidt (1974), p. 10).

Let cm (1 < m < M, 1 < r < N) be elements of a number field of degree 8,
and let ax, a2, . . ., as be the distinct embeddings of the number field into C.
Suppose that A and D are (rational) integers such that D is a common
denominator of the c_, and

mr

2 K ( O | < A (\<m<M,l<h<8).

If N > SM, then the system 2?_, cmxr = 0 (1 < m < M) has a non-trivial
integral solution (x,, . . . , xN) in which \xr\ (1 < r < N) is no greater than
exp((MS/(iV - MS)) log DA V2 ).
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We think on P(w, z) as a sum of terms of the form ayw'zJ (0 < i,j < n) and
treat the a^s as unknowns. Using (3), we write P(f(z), z) as the power series
2 ftz' and compute that

„ min (/,«)

(6) ft = 2 2 %<7-y,,.
,=o y-o

where cl_ji is the coefficient of z'~J in the expansion for/(z)'. In terms of the
above form of Siegel's lemma, we seek to solve the system ft = 0 (0 < / <
«2/C,) of M = [«2/C,] + 1 equations by an appropriate choice of the N =
(n + I)2 unknowns atj. If C, has a suitable value (say C, = 35), then N > SM
and SM/\N - SM) < 1.

Calculating values for A and D is a straightforward matter. It involves
estimating the houses and denominators of the c,_J>t by writing the c,_,( as
Cauchy products and appealing to (4). We note that degw P > 1 whenever
n > C,, else P would be a non-zero polynomial in z whose order exceeded its
degree.

The key ingredient in our argument is an upper bound for ord P(f(z), z) of
the same shape as the lower bound of Lemma 1.

LEMMA 2. Let P be an element of C [w, z] such that 1 < degw P < n and
degr P < n. Then ord P(f(z), z) is at most C3n

2.

We introduce a second parameter, k, and consider the number
P(f(Tka), Tka). The bounds on ord P(f(z), z) enable us to prove

LEMMA 3. Let n and k be integers subject to n > Cx and pk > C4n
2. Construct

P(w, z) according to Lemma 1. Then

exp(-C5H
2p*) < \P(f(Tka), Tka)\ < exp(-C6n

2pk).

PROOF. We observe that (3) holds when z = Tka if k is larger than some
number depending on a and the cM. For convenience, set Ak = P(f(Tka), Tka).
We thus have that

where ft is as in the proof of Lemma 1. Let A = ord P(f(z), z). From (4), (5) and
(6), we find that |ft| < Cjl". Liouville estimates coupled with Lemma 2 then
yield that | ftj > exp(-C8n

2).
We shall show that

(7) \(Ak - Hx{Tka
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whence

The estimates of the lemma then follow immediately from upper and lower
bounds for | /Jx| and X.

We write the left hand side of (7) as
oo

2
/-X + l

which is less than or equal to

|(r*a)//8x|( 2 x I / W . I • \Tka\' + 2 l&+f+il " l^«l')-

The sum over / < X is trivially less than XC7
2X(2A)" < exp(C9n

2). When / > X, we
have that I >n2/Cx>n and / + \ + 1 < 3/, so that |/JX+/+1| < C7

3/(3/)(I <
(3C7«)'. If p* > C4n

2, then 3C7
3/i(r*a) <^; and the sum over / > X is majorized

by 2(j)' < 1. Thus we see that the left hand side of (7) is less than

exp(-p*| log |«| | + C8«
2 + C9n

2 + 1).

It now is clear that (7) is valid if p* > C4«
2.

Equation (2) may be rewritten as

(8) /(r*z) = (/(z)- * i \
\ i-0

The number t-k defined by

( k-\

£ ~ 2 a(l)(
(-0

is algebraic; and a comparison between (8) and (9) suggests that £k is a good
approximation tof(Tka) whenever |£ — /(a)| is small. We expand upon this idea
in

LEMMA 4. Suppose that n(> C,) and k(> C10) are non-negative integers. Define
6y (9). Let P be the polynomial of Lemma 1 and C5 fAe constant of Lemma 3. //"

|£-/(a)|<exp(-Cn/iV),

a), r*a)| < exp(-C5«V).

PROOF. We first observe from (8) and (9) that

(10) |4
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A straightforward calculation produces the Liouville estimate

|a<*>(«)| > exp(-C12p*).

Next we write P(w, z) = 2 avw'zJ (0 < i,j < n), so that

|P(&, 7*«) - P(f(Tka), Tka)\ < (n + I)2 max |a,(£ -

The a '̂s are bounded in Lemma 1 by exp(C2«
2), and

Finally, since the coefficients of/(z) satisfy |cj < C£+1, we have \f(Tka)\ <
2C0 for k > Cl0. A similar bound applies to 4 because of (10). Combining all
these estimates, we conclude that

1^(4, Tka) - P{f{Tka), Tka)\ < |£ - / ( « ) | exp(C13(«
2 + p*)).

This estabUshes the lemma.

We require a Liouville estimate for P(4, Tka). This is accomplished in

LEMMA 5. Suppose that n ( > C,) and k ( > C,4 log n) are positive integers. Let
i-k and P(w, z) be as in the previous lemma. If Pfa, Tka) ¥= 0 and if pk >
log H(Q, then

|P(4, Tka)\ > exp(-C15<fcp*).

(Recall that d - deg |.)

PROOF. We appeal to the following standard result (Lang (1966), p. 58).
Let ? ! , . . . , ? „ be algebraic numbers of degrees S{, . . ., Sm and logarithmic

heights hx, . . . ,hm respectively. Let 5 be the degree of the field Q(£i> • • • > fm)-
Let P be a polynomial in Xx, . . ., Xm with integer coefficients. Denote by TV, the
degree of P in Xt. If P($„ . . . , £J * 0, then

\P(Si, • • • , U\ > exp(-5(log H(P) + 2 W8, + 2 2

Now 4 and r*a are both contained in a field of degree dCl6 over Q. We
regard P(4» Tka) as a polynomial of degree at most n in 4 and at most npk in a.
The height of P is no greater than exp(C2n

2). We need only estimate H(^k) in
order to invoke the above result. A tedious, but completely routine calculation
(which is somewhat facilitated by bounding the house and denominator of 4
separately) reveals that

log / / & ) < C17(deg ik){pk + log H(0).

Lemma 5 then follows with a modest amount of arithmetic.
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We can now finish the proof of Theorem 2 in short order. We suppose that

(11) | ! - / ( a ) | < e x p ( - C u « V ) ,

where n and k are sufficiently large to satisfy the hypotheses of all the lemmas
(that is n > C,, pk > max(Cisn

2, log H(g))); and we derive a contradiction for
n > CX9d.

Using Lemma 1, we construct P(w, z). From Lemma 4, from the upper bound
for \P(f(Tka), Tka)\ of Lemma 3, and from the triangle inequality, we infer that
|P(4, Tka)\ < exp(-C2o/j2p*). By Lemma 5 this implies that P(£k, Tka) — 0
whenever n > dC^/C^. However, if P(£k, T

ka) = 0, then Lemma 4 gives an
upper bound for \P(f(Tka), Tka)\ which is inconsistent with the lower bound
of Lemma 3. Thus (11) is false whenever n > max(Ci, dC^/C^, pk >
max(C,g/j

2, log //(£))• The assertion of Theorem 2 is immediate from this.

4. The proof of Lemma 2.

For each non-negative integer m, we define a subset Sm of C[w, z] as follows:
The polynomial S(w, z) is in Sm if and only if

(12) 1 < degw S < n - m, degr S < npm, and

(13) ord S(f( Tmz), z) > C3npm(degw S),

where the value of C3 will be specified presently. We note that Sn = 0 because
of (12). We shall prove that So = 0 by showing that if Sm ¥= 0 (0 < m < n),
then Sm+1 ¥= 0. This will establish Lemma 2, since P(w, z) would be in So if
Lemma 2 failed to hold.

Assume that Sm ^ 0 for some m, (0 < m < ri), and let S be an element of
Sm. Set r = deg^ S and write c(z) for the denominator of a(z)b(z). We define
the polynomials 5, and S2 by

5,(w, z) = c(Tmz)rS(wa(Tmz) + b(Tmz), z),

S2(w, z) = S(w, Tz).

We first demonstrate that S{ and S2 have a common factor (say Q) as
polynomials in w, and next that either Q or S2/Q is in Sm +, .

It is easy to verify that 5", and S2 are both of degree r raw, that

deg, S, < C2lp
m(r + n) < 2C2lp

mn,

and that
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Because of (1) (with z replaced by Tmz), it is also apparent that

(14) ord Sl(f(T
m+1z), z) = pmr ord c(z) + ord S(f(Tmz), z) > C3npmr,

(15) ord S2(f(T
m+lz), z)=P ord S(f(Tmz), z) > C3npm+ V,

We claim that ord S(f(Tmz), z) is finite. To see this, suppose to the contrary.
Then/(rmz) is algebraic and hence (since it satisfies a functional equation like
(1)) rational. Write f(Tmz) = p(z)/q(z), where p and q are relatively prime
polynomials chosen so that either q(0) = 1 or else/»(0) = 1. Let ij be a primitive
pm-th root of unity. We have that/>(z)/#(z) = p{i\z)/ q(i\z), whence (by unique
factorization) p(z) = />(TJZ) and q(z) = q{t]z). Thus /(z) = p'{z)/ q\z), where
p'(Tmz) = p(z) and q'(Tmz) = q{z), clearly a contradiction. This permits us to
subtract (14) from (15) to obtain

ord S2(f(T
m+1z), z) - ord .!?,(/(r"+1z), z)

> (p - l)C3«pmr - pmr ord c(z) > npm + \

the latter inequality upon assuming that C3 > p 4- ord c(z).
We view S, and 52 as polynomials in w and consider their resultant, call it

H(Slt S^), which is a polynomial in z. On one hand we may expand R ^ , S^ as
a determinant. In this form R(5,, S^ consists of a sum of various products, each
non-zero product containing r factors chosen from among the coefficients of 5,
and r factors chosen from among the coefficients of S2. We see, therefore, that

deg R(SV S2) < r(2C2lP
mn) + r(«Pm+1)-

On the other hand,

(17) R(5,, S2) = S,e, + S2Q2,

where Q1 and Q2 are polynomials in w and z both of degree less than r in w. (See
Lang (1965), p. 136.) When w = f(Tm+lz), the right hand side of (17) has (by
(14) and (15)) order at least C3nrpm. We choose C3 to be larger than (2C21 + p)
and deduce that R(51, S^ must be identically zero upon comparing its order to
its degree. This implies that Sx and S2 have a common factor, say Q(w, z), of
positive degree in w.

We write

(18) S, = QTX, S2=QT2,

and note that deg, Q < npm+l and deg2 T2 < «p m + l (since degz S2 < npm+1).
We assert, furthermore, that both degw Q and deg,,, T2 lie between 1 and r — 1
inclusively. Because degw Q > 1 and /• = degw <2 + degw T2, it suffices to show
that deg^ T2 ^ 0. From (18) we have the equation T2Si = ^ S j . If deg,, T2 = 0,
then we let w = f(Tm+1z) in this equation and compute orders. We find that

ord T2 = ord Tx + ord S2{f(Tm+1z), z) - ord 5,( / (rm + Iz) , z),
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so that ord T2 > npm+l by (16). The order of T2 is thus larger than its degree,
whence T2 = 0, an obvious absurdity in light of (18).

Finally, we point out that either ord Q(f(Tm+1z), z) > C3npm+\degw Q) or
else ord T2(/(7""+1z), z) > C3npm+l(degw TJ. For if both inequalities were
simultaneously violated, we could add their negations to get ord S2(f(T

m+lz), z)
< C3npm+X(degw Sy in contradiction to (15). Thus Sm+J is non-empty since it
contains either Q or T2. This completes the proof of Lemma 2.

5. Concluding remarks

For fixed d, Theorem 1 is best possible in its dependence on H. Although the
dependence on d is presumably not so good, it is comparable to that of other
transcendence measures. The constant C can be given explicitly in terms of p,
CQ, deg a, H(a), the degrees of a(z) and b(z), and the heights and degrees of the
coefficients of a(z) and b(z). However the attendant technical complications
make such an exercise seem pointless.

It is worth noting that Lemma 2 readily generalizes to the case where
P G C[w, z,, z2, . . . , zm], f is a function of z,, . . . , zm, and T is a transforma-
tion of the type considered by Mahler (1929). Unfortunately this does not allow
us to generalize Theorem 1 except for very special T. The difficulty lies in
determining which term of P(f(Tk(zv . . . , zm)), Tk(zx, . . ., zm)) controls its
asymptotic behaviour.
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