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Abstract. An investigation of morphisms that coincide topologically is used to generalize to all
characteristics and partly reprove Tamagawa’s theorem on the Grothendieck conjecture in
anabelian geometry for affine hyperbolic curves. The theorem now deals with ptame

1 of curves

over a finitely generated field and its effect on the sets of isomorphisms. Universal homeo-
morphisms are formally inverted.
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1. Introduction

Anabelian geometry deals with anabelian categories of schemes for which the étale

fundamental group functor encodes many, if not all, algebraic properties. In other

words, the functor p1 should be an equivalence of a geometric category with a group

theoretic category.

In 1983 Grothendieck announced a list of anabelian conjectures within a letter to

Faltings [Gr]. His ‘Yoga der anabelschen Geometrie’ declares suitable varieties –

including hyperbolic curves – over fields of absolutely finite type to be anabelian.

For a survey and recent results see [Fa] and [Mz].

This paper describes a category FCk of curves over a field k and a category of pro-

finite exterior Galois representations gðGkÞ which is the natural target for the tame

fundamental group functor pt1 applied to schemes with k structure. The following

theorem of an anabelian nature is proved in Section 5. It generalizes Tamagawa’s

result from [Ta] which treats finite fields k and those of characteristic 0.

THEOREM. Let k be a field of absolutely finite type. For affine hyperbolic curves C

and C0 over k the map

pt1: IsomFCk
ðC;C0Þ ! IsomGk

pt1ðCÞ; p
t
1ðC
0Þ

� �
is bijective unless both curves are isotrivial. In that case the map is dense injective.

The method of proof relies on the idea that if a fine moduli space m is available,

then isomorphisms of curves correspond to coincidence of representing maps x.
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By specialization and the finite field case, pt1 controls the topological component of

x for an extension of the curve over a base S of finite type over Z with function field

k. Indeed, the finite field case not being rigid, the x’s of two curves with isomorphic

pt1 differ by a ‘Frobenius twist’. A priori, this twist may vary among the various

closed points of S. This motivates the search for the following rigidifying result:

PROPOSITION 2.3. Let S;m be of finite type over Fp, S be irreducible and reduced,

and x1; x2: S!m be maps such that xtop1 ¼ xtop2 .

Then x1 and x2 differ only by a power of the Frobenius map.

The case of isotrivial curves needs to be dealt with separately. They behave differ-

ently as their pt1 possesses an automorphism of infinite order: a suitable geometric

Frobenius. Hence Ẑ � AutGk
ðpt1Þ.

2. Topological Coincidence of Maps

For any scheme X and any prime number p, consider XðFpÞ as a subset of the topo-

logical space underlying X.

LEMMA 2.1. Let X be irreducible, of finite type over SpecðZÞ, such that XQ is

nonempty. Then
S

p XðFpÞ is Zariski-dense in X.

Proof. The generic point of X is in the generic fiber XQ which is the closure of its

closed points. Any of these points has a number field as its residue field and defines a

closed subscheme Z of dimension 1. By the Čebotarev theorem, Z is the closure ofS
p ZðFpÞ �

S
p XðFpÞ. &

LEMMA 2.2. Let X=k be irreducible and of finite type. Then any two closed points of

X lie on an irreducible curve on X.

Proof. This is a standard application of Bertini. &

Call the topological component of a map f of schemes f top. In positive character-

istic, there is the Frobenius map F which is raising to pth power and has F top ¼ id.

PROPOSITION 2.3. Let X;Y be of finite type over SpecðZÞ, X be irreducible and

reduced, and f; g: X! Y be maps such that f top ¼ gtop. Then f ¼ g or X=Fp. If X=Fp,

then f and g differ only by a power of the Frobenius map. Uniqueness of the exponent is

equivalent to f top ¼ gtop not being constant.

Proof. The assertion on uniqueness is clear as f ¼ f � Fm implies that the residue

field at the image of the generic point of X is fixed by Fm. From now on, we assume

that f top is nonconstant.

In view of uniqueness, we may assume X;Y affine. Now the locus of coinci-

dence ff 
 gg is closed in X and contains
S

p XðFpÞ. If XQ 6¼ ; we are done by

Lemma 2.1.
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From now on, assume X=Fp. For m 2 Z define Xm ¼ f f � F
m 
 gg or

f f 
 g � F�mg depending on the sign of m. Topological coincidence implies that

XðFqÞ �
[
m2Z

XmðFqÞ

since Fq-points are topologically identical if and only if they are GðFq=FpÞ conjugate,

and this Galois group is generated by Frobenius. If q ¼ pr, then it is sufficient to

allow m to vary over representatives of Z=rZ. To keep things small, we choose repre-

sentatives with minimal absolute value and thereby conserve symmetry:

XðFprÞ �
[

�r=2<m4r=2

XmðFpr Þ :

The case of dimX ¼ 1. First consider the following lemma:

LEMMA 2.4. If dimX ¼ 1, there is a constant c such that for all m with X 6¼ Xm the

bound #XmðFqÞ4 cpjmj holds.

Proof. Choose closed immersions X � A
d;Y � A

n and consider the graph G of

ð f; gÞ

X �
pr1

�
G � X� Y� Y � A

dþ2n
� P

dþ2n:

Let ðx1; . . . ; xn; y1; . . . ; ynÞ be coordinates of the factor A
2n. For m 2 Z let Rm be the

vanishing locus in P
dþ2n of those n sections of OðpjmjÞ described by x

pm

i � yi or

y
p�m

i � xi (depending on the sign of m) on the affine part A
dþ2n. This Rm is the closure

of the product of A
d with the graph of Fm, and pr1ðG \ RmÞ ¼ Xm.

If Xm 6¼ X, then a hypersurface Hm of degree pjmj defined by a single suitably cho-

sen such section suffices to cut down G to dimension 0.

An easy intersection theoretic estimate in P
dþ2n with the closure G of G gives

#XmðFqÞ4 degðG \HmÞ ¼ degðGÞ degðHmÞ ¼ degðGÞ pjmj: &

If Xm ¼ X for no m 2 Z, then by the lemma

#XðFpr Þ4
X

�r=2<m4r=2

#XmðFprÞ4 crpr=2;

for some constant c. This contradicts the ‘Weil conjectures’ (vary Fpr within the finite

fields containing the field of constants of the smooth part of X, then #XðFprÞ has

order of magnitude pr). In fact, we need only the case of algebraic curves, which

is known by a theorem of Hasse and Weil.

The case of dimX > 1. Take C1;C2 � X irreducible, horizontal curves, i.e., such

that f jCi
is not constant. By the one-dimensional case, there are unique mi 2 Z such

that Ci � Xmi
. For points xi 2 Ci, choose an irreducible curve C � X passing

through x1; x2. If fðx1Þ 6¼ fðx2Þ, then C � Xm for a unique m 2 Z.

If a closed point y lies in Xr \ Xr0 then degð fðyÞÞjr� r0. Consequently

degð fðxiÞÞjmi �m. Thus

gcd
�
degð fðx1ÞÞ; degð fðx2ÞÞ

�
j m1 �m2:
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Varying x1; x2 shows that m1 �m2 has arbitrary large divisors, hence m1 ¼ m2.

Finally, X is the closure of the union of such horizontal curves and so X ¼ Xm for

some m, as desired. &

3. Preliminaries on p t
1, Statement of Theorems

DEFINITION. Let S be a scheme. A smooth curve over S is a proper smooth map

p: X! S of finite presentation with geometrically irreducible fibers of dimension 1

together with a relative effective étale divisor D.

Denote by C the complement X�D with its induced scheme structure over S.

Consider C itself or ðX;DÞ as a short notation for the smooth curve. The geometric

genus g of the fiber is a locally constant function on S. The smooth curve is

called affine iff degðDÞ > 0. It is called hyperbolic iff its Euler characteristic

wC ¼ 2� 2g� degðDÞ is negative.

Tame fundamental group. Let X be a normal scheme and D � X a divisor with nor-

mal crossing. The pair (X,D) is associated a tame fundamental group pt1ðX;DÞ such
that the Galois category Revtame

X;D of normal covers which are at most tamely ramified

along D is equivalent to the category of finite continuous pt1ðX;DÞ-sets, cf. [SGA 1].

Neglecting base points results in a functor with values in g, the category of pro-finite

groups with exterior continuous morphisms, i.e., equivalence classes of maps up to

composition with inner automorphisms.

Exterior Galois representation. Let k always denote a field, k its algebraic closure.

Basechange X�k k is abbreviated by X
k
, and Gk ¼ Autðk=kÞ is the absolute Galois

group of k. For a smooth curve C ¼ ðX;DÞ over k the group pt1ðCÞ :¼ pt1ðXk
;D

k
Þ

carries a right action of Gk in g by functorial transport of the right Gk-action on

the scheme. Using inverses we transform it to a left action which we denote

rtC : Gk ! Autgðpt1ðCÞÞ. Clearly we obtain a functor pt1 from smooth k-curves with

values in gðGkÞ, the category of Gk-representations in g, i.e., pairs ðV; rÞ where
V 2 g and r : Gk ! AutgðVÞ ¼: OutðVÞ.

Gk extensions. It is known [SGA 1] that the tame fundamental group of a smooth

curve forms naturally an extension

1! pt1ðCÞ ! pt1ðCÞ ! Gk ! 1:

Maps of k-curves produce morphisms between these short exact sequences with iden-

tity on the Gk-part. The base points being neglected only pt1ðCÞ-conjugacy classes of

maps are well defined. We obtain a functor with values in EXT½Gk�, which denotes

this category of Gk-extensions and classes of maps. Acting on the kernel by conjuga-

tion passes to Gk if considered as an action in g, thus a functorial construction

R:EXT½Gk� ! gðGkÞ. We recover rtC from the above extension. Moreover, R is an

equivalence when restricted to isomorphisms, extensions with center free kernel,

and Gk-representations on center free groups. The extension is recovered by pull-

back: Gk �OutðVÞ AutðVÞ.
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Fact. If the curve is hyperbolic then pt1ðCÞ is center free, cf. [Fa]. The same

is valid for all open subgroups as these are pt1 of covers which are hyperbolic them-

selves.

Topological invariance. It is known [SGA 4, VIII 1.1] that p1 applied to universal

homeomorphisms yields isomorphisms. An easy descent of argument for tameness

ensures the same behaviour for pt1 of curves. The tame fundamental group is there-

fore not affected by pure inseparable covers. The natural conclusion suggests to

formally invert the class of universal homeomorphisms, a task already foreseen by

Grothendieck in his ‘esquisse’.

Frobenius [SGA 5, XV x1]. Fix a prime number p. The Frobenius map F commutes

with all maps between schemes of characteristic p, that is in SchFp
. If S 2 SchFp

then

the diagram

defines a functor ‘Frobenius twist’�ð1Þ: SchS ! SchS and a natural transformation

FS: idSchS ! �ð1Þ, the ‘geometric S-Frobenius’. They behave well under base change:

ðX�S TÞð1Þ ¼ Xð1Þ �S T and FT ¼ FS �S T. The mth iterated twist will be denoted

by XðmÞ.

In general, X and its twist Xð1Þ are not isomorphic, for example, the twist of

P
1
k � f0; 1; l;1g is still genus 0 but punctured in 0; 1; lp;1.

FCk. Let k be a field of positive characteristic. Consider the category of smooth k-

curves and dominant maps. Its localization at universal homeomorphisms is easily

seen to be equivalent to its localization at geometric k-Frobenius maps between

curves. By Dedekind–Weber equivalence, this localization can be constructed by

considering the perfection, i.e., the pure inseparable closure, of the function field

together with the unique prolongation of the set of infinite places and maps respect-

ing these places. Denote the resulting category FCk.

By topological invariance the tame fundamental group functor factorizes as

pt1:FCk ! gðGkÞ; C 7!rtC :

Results. A k-curve C is called isotrivial if C
k
is defined over a finite field. A field k

is said to be absolutely of finite type if it is finitely generated over its prime field. The

following theorems generalize the main result of A. Tamagawa from [Ta]. His result

treats curves over base fields which are either of characteristic 0 or finite. Proofs will

be given in the last section.

AFFINE ANABELIAN CURVES 79

https://doi.org/10.1023/A:1020290619656 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020290619656


THEOREM 1. Let k be absolutely of finite type, C and C0 be affine hyperbolic curves

over k, such that at least one of them is not isotrivial. Then

pt1: IsomFCk
ðC;C0Þ �!

�
IsomGk

pt1ðCÞ; p
t
1ðC
0Þ

� �
is a bijection.

THEOREM 2. Let k;C;C0 be as above but C;C0 both isotrivial. Then

pt1: IsomFCk
ðC;C0Þ ,! IsomGk

pt1ðCÞ; p
t
1ðC
0Þ

� �
is dense injective.

In particular that implies for affine hyperbolic curves C;C0 that they have iso-

morphic tame fundamental groups (with k-structure) if and only if there are

m;m0 2 N such that CðmÞ ffi C0ðm0Þ (with k-structure).

The statement of Theorem 2 will become clear as one finds an action of Z, respec-

tively Ẑ, on the Isom-sets compatible with the natural inclusion such that the

induced map on the quotients is bijective. This holds essentially due to:

THEOREM 3 (Tamagawa, [Ta, 0.5]). Let C;C0 be hyperbolic curves over finite fields.

Then the following map is a natural bijection:

pt1: IsomSchðC;C
0Þ �!
�

Isomg pt1ðCÞ; p
t
1ðC
0Þ

� �
:

Remark 3.2. The condition ‘affine’ in the theorem could be dropped if a

characterization of projective hyperbolic curves over finite fields by their pt1 were

available.

The method of proof relies on specialization and the finite field case like

Tamagawa’s proof does, but gives a unified treatment for arbitrary characteristic

thus also reproving the previously known.

4. Prerequisites for the Proof

LEMMA 4.1 (sheaf ). Let C;C0 be affine hyperbolic k-curves, and r; r0 2 gðGkÞ, i.e.,

r: Gk ! OutðVÞ; r0: Gk ! OutðV0Þ. Then

ðaÞ IsomFCk
ðC;C0Þ: l=k 7! IsomFCl

ðC;C0Þ,

ðbÞ IsomGk
ðr; r0Þ: l=k 7! IsomGl

ðV;V0Þ

are étale sheaves of sets on SpecðkÞ
et
. Moreover,

pt1: IsomFCk
ðC;C0Þ ! IsomGk

ðrtC; r
t
C 0 Þ

is a morphism of étale sheaves that behaves natural with respect to composition.
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Proof. (a) Galois descent, having localized does not matter. (b) Obvious, in the

Galois case IsomGk
ðr; r0ÞðkÞ are the invariants of the Gðl=kÞ action on IsomGk

ðr; r0Þðl Þ
by conjugation.

The last statement is again obvious because pt1 is a functor and both Galois actions

have geometric origin by conjugation with isomorphisms as schemes. &

Étale G-torsors. Let G be a finite group, and X a scheme with geometric point x.

Then almost by definition, Homðp1ðX; xÞ;GÞ is the set of pointed G-torsors ðE; eÞ on

ðX; xÞ up to isomorphism. Shifting the pointing e 7! ge within the fiber corresponds

to composition with the inner automorphism gð�Þg�1. Hence

Homgðp1ðXÞ;GÞ ¼ fE! X;G-torsorg= ffi :

Surjectivity is equivalent to connectedness of the torsor.

Geometrically connected tame G-torsors on a curve C=k are described by

c: pt1ðCÞ ! G, such that c ¼ cjpt1ðCÞ is surjective. An easy diagram chase shows that

H ¼ kerðcÞ carries a commuting outer action of G and Gk.

DEFINITION. Let V 2 gðGkÞ be center free. A centerfree, geometrically connected

G-torsor on V is a center free W 2 gðG� GkÞ together with an isomorphism

G�OutðWÞ AutðWÞ ffi V in gðGkÞ, where the Gk-action on the left group is by func-

toriality of the construction with respect to G compatible isomorphisms.

LEMMA 4.2. Let C=k be a hyperbolic curve. Then we have a bijection of isomorphism

classes:

tame; geom: connected
G-torsors on C=k

� �
=ffi

 !
1:1 geom: connected; center

free G-torsors on rtC

� �
=ffi

:

Proof. E! C is mapped to pt1ðEÞ, W 2 gðG� GkÞ is mapped to

pr1: ðG� GkÞ �OutðWÞ AutðWÞ ! G. These are mutually inverse. &

LEMMA 4.3 (descent). Let C;C0 be hyperbolic k-curves, F 0 ! C 0 a G-torsor,

E 0 ! C 0 a geometrically connected tame G-torsor and H
0
the corresponding G-torsor

for rtC0 . Let W
0 be a center free geometrically connected G-torsor on V 0 2 gðGkÞ and

V 2 gðGkÞ. Then we have natural bijections ðaÞ, ðbÞ and a commutative diagram ðcÞ:

ðaÞ

a
G-torsors F=C

HomG;kðF;F
0Þ

 !
=ffi

�!
�

HomkðC;C
0Þ;

ðbÞ

a
G-torsors W=V

IsomG�Gk
ðW;W 0Þ

 !
=ffi

�!
�

IsomGk
ðV;V 0Þ;
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ðcÞ

a
E=C

IsomG;FCk
ðE;E0Þ

 !
=ffi

�!
pt
1

a
H=rt

C

IsomG�Gk
ðH;H

0
Þ

0
@

1
A
=ffi¼# #¼

IsomFCk
ðC;C0Þ �!

pt
1

IsomGk
ðpt1ðCÞ; p

t
1ðC
0ÞÞ :

Here E ðresp. HÞ ranges over G-torsors on C ðresp. rtCÞ, and = ffi means up to equiva-

lence induced by isomorphisms of the ‘variable’ G-torsors.

Proof. (a) G-torsors are G-quotient maps and allow pullback construction. (b)

There is a map, as the ‘base’ V is recovered canonically by G�OutðWÞ AutðWÞ. It is

surjective by structure transport and obviously injective. (c) Trivial. &

Specialization. We restate here for the convenience of the reader Tamagawa’s the-

orem of reconstruction of the specialization map which is formulated entirely in

group theoretical terms. Base changes are abbreviated as XT ¼ X�S T.

THEOREM 4 (reconstruction of sp). Let K � R6k be a Henselian discrete valuation

ring and letc=R;c0=R be smooth hyperbolic curves. Then the kernel of the specialization

map sp: pt1ðcKÞ �! pt1ðckÞ consists of the intersection of those open H � pt1ðcKÞ which

satisfy

(i) the image of H in GK contains the inertia group I of R.

(ii) the image of I in Out(H) is trivial. Here H ¼ H \ pt1ðcKÞ.

Moreover, there is a natural map Sp

IsomGK
pt1ðcKÞ; pt1ðc

0
KÞ

� �
! IsomGk

pt1ðckÞ; pt1ðc
0
kÞ

� �
:

Proof. [Ta, 5.7], uses known criteria for good reduction of a proper curve X via its

Jacobian, minimal semistable models of (X;D) and the combinatorics of the dual

graphs for a Z=lZ-cover ramified along all of D. &

Level structure. For a pro-finite group P let Pab=n denote its maximal Abelian quo-

tient with exponent n 2 N. Let X=k be a proper smooth curve over k of genus g and

1=n 2 k . Then p1ðXk
Þ
ab=n is a Gk-module étale locally isomorphic to ðZ=nZÞ

2g with

trivial action. A choice of an isomorphism f: ðZ=nZÞ
2g
ffi p1ðXk

Þ
ab=n as Gk-modules

is the same as equipping the curve with a level n structure. If g5 2; n5 3 there exists

a fine moduli scheme mg½n� representing such pairs ðX;fÞ, cf. [DM, 5.8, 5.14].

LEMMA 4.4. Let k be absolutely of finite type and C ¼ ðX;DÞ be a smooth hyperbolic

curve over k. Then rtC encodes p1ðXk
Þ
ab=n as a Gk-module, i.e., for C;C

0 there is a

canonical map

IsomGk
pt1ðCÞ; p

t
1ðC
0Þ

� �
! IsomGk

p1ðXk
Þ
ab=n; p1ðX

0

k
Þ
ab=n

� �
:
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Proof. There is an exact sequence of Gk-modules:

0! Z=nð1Þ ! Z=nð1Þ½DðkÞ� ! pt1ðCÞ
ab=n! p1ðXk

Þ
ab=n! 0

Specialization at places of k modifies this sequence by restriction of its Galois action.

We use the above theorem until k is finite. Now Frobenius weights distinguish

p1ðXk
Þ
ab=n as a quotient of pt1ðCÞ

ab=n. &

Serre rigidity. As in the sheaf-lemma Isom’s of the Gk-modules pab1 =n form a sheaf.

PROPOSITION 4.5. Let X=k;X0=k be nonisotrivial, proper, and smooth curves of

genus 5 2, and n5 3 invertible in k. Then the canonical map

IsomFCk
ðX;X0Þ ,! IsomGk

p1ðXk
Þ
ab=n; p1ðX0kÞ

ab=n
� �

of étale sheaves of sets induced by p1 is injective.
Proof. We work étale locally on k, endow X with a level n structure and obtain

the characteristic map xX 2mg½n�ðkÞ. If f is a preimage of the identity then the

corresponding XðmÞ ffi Xðm0Þ for some m;m0 2 Z is an isomorphism of curves with

level n structure, hence xX � Fm ¼ xX � F m0 . As X is not isotrivial m ¼ m0.

The induced automorphism f  on the Jacobian has finite order as XðmÞ is hyper-

bolic and must be identity as it acts trivial on n-torsion points [Se]. In other words

fðPÞ � P � fðQÞ �Q for all P;Q 2 XðkÞ.

The Lefschetz number is Lð fÞ ¼ 2� trð f  jH1
�etÞ ¼ 2� 2g < 0. Consequently f has a

fixed point. But then fðPÞ � P � 0 for all P and f ¼ id as X is not P
1. &

5. The Proof

We are going to prove now Theorem 1.

Proof. Let C ¼ ðX;DÞ;C0 ¼ ðX0;D0Þ be affine hyperbolic k-curves and

a 2 IsomGk
pt1ðCÞ; p

t
1ðC
0Þ

� �
. By the descent lemma we may prove the theorem for

suitable tame covers, hence assume genus g5 2. (Being isotrivial holds or fails

simultaneously for the curve and its cover). By the sheaf lemma we may enlarge

k sufficiently such that the curves in question have potentially level n structures for

some n5 3.

Construction of the inverse. Choose a level structure on X and transport it to X0 via

a and Lemma 4.4. Extend the data to some base S of finite type over Z with function

field k and apply the following:

PROPOSITION 5.1. Let S be irreducible, reduced, and of finite type over Z with

function field k. Consider affine hyperbolic curves c ¼ ðx;dÞ;c0 ¼ ðx0;d0Þ over S of

genus g5 2 equipped with a level n structure and generic fiber C=k;C0=k.

If a: pt1ðCÞ ffi pt1ðC
0Þ as exterior Gk modules such that a respects level n structures then

the characteristic maps xx; xx0 :S!mg½n� representing x;x0 coincide topologically.
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Proof. We do induction on dim(S). We may assume S normal. For topological

coincidence it suffices to control closed points. The Theorem 4 of reconstruction of

specialization applied to the pullback of C;C0 over the henselization Spec Oh
S;s for all

s of codimension 1 does the induction step.

If dim(S)¼0 the base is a finite field k. We apply Theorem 3 and produce an iso-

morphism of schemes f :C ffi C0 with pt1ð f Þ ¼ a and ensure k compatibility of f by

performing a suitable Frobenius-twist on say C. Correspondingly, the characteristic

map is composed with a power of Frobenius and does not change topologically. But

now f is an isomorphism of k-curves with level structures as a ¼ pt1ð f Þ respects them,

hence the characteristic maps coincide. &

Now we know that xx and xx0 coincide topologically. This is the point where the
rigidifying effect of the result on topological coincidence of maps develops its

strength. From Proposition 2.3, we know that xx and xx0 differ only by a unique

power of Frobenius, hence there is m 2 Z such that xðmÞ ffi x
0 or x ffi x

0ð�mÞ as

S-curves with level structure.

This produces an isomorphism ~lðaÞ 2 IsomFCk
ðX;X0Þ which respects the effect of a

on level n structures and a natural map ~l in a commutative diagram:

Indeed, naturality is a consequence of injectivity in the bottom line, i.e., Serre rigidity

from Proposition 4.5.

To detect that ~l even factors as l we apply the descent lemma to a geometrically

connected (eventually enlarge k again) tame G-torsor which is ramified along the

whole of D. The construction of ~l is compatible and produces a map of G-torsors

therefore respecting the support of ramification.

Obviously l is a left inverse to pt1. To see that pt1 � l ¼ id we observe that the

family of l aja�1ðH0Þ
� �

where H0 varies over the open subgroups of pt1ðC
0Þ defines a

natural transformation a! lðaÞ , compatible with k structures, of functors

a; lðaÞ : Revtame
C0 ! Revtame

C where lðaÞ is pullback. But natural isomorphic functors

are identical on pt1 in cðGkÞ. &

Isotrivial curves. Only a sketch of proof for the case of isotrivial curves will be given.

Step 1. If k ¼ Fq; q ¼ p f then we need to quotient out the faithfull compatible

action on both Isom-sets of Z ¼ hF fi � GFq
¼ Ẑ to reduce to Theorem 3.

Step 2. If C ffi C0 �Fq
k such that Fq � k is relatively algebraically closed, then

base change �Fq
k is an isomorphism on rational points of the Isom-scheme, which

is finite unramified, and the Gk-action on pt1ðCÞ ffi pt1ðC0Þ factors through GFq
. This

reduces to step 1.
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Step 3. We use Galois descent with some care for the density assertion. Essentially

Galois action and Frobenius commute because of the notion of inseparable degree

for morphisms in FCk.
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