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Abstract

Let X be a finite set and S a semigroup of transformations of X. We investigate the trace on
X of a random walk on S. We relate the structure of the trace process, which turns out to be a
Markov chain, to that of the random walk. We show, for example, that all periods of the trace
process divide the period of the random walk.

1.

Let X be a finite set with n elements. By ?fx or 3~n we denote the set of
all transformations of X, that is, all the maps of X into itself. ?fx is a
semigroup under composition of mappings. We write xf for the image of
x £ X under the mapping / G STX. For basic semigroup terminology the
reader is referred to the fundamental Clifford and Preston (1961).

An act is a function from X x S to X, with S a semigroup, satisfying

(1)

for all x G X and all s,, s2 G S, where xs denotes the image of the point (x, s),
see Day and Wallace (1967). The act makes X a right S-semimodule (Deussen
(1971)).

The object of this paper is the study of random acts and the induced
random process on X. More specifically, we investigate the process on X
induced by a random walk on S.

The notion of random walk on semigroups is a natural extension of the
ordinary notion of random walk (on the real line). In that case we study the
behaviour of sums

*„ = J X
i = l
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482 Goran Hognas [2]

of independent, identically distributed random variables X,. In the semigroup
case we study products

rU
of independent, identically distributed random elements of a semigroup.
(Recall that the semigroup operation is denoted multiplicatively.)

The fundamental work on random walks on discrete semigroups is
Martin-L6f (1965) and we shall frequently quote results from this paper.
Larisse (1972) is another very thorough paper on discrete semigroups. Much
of the theory of probabilities on compact semigroups was developed by
Rosenblatt and can be found in the monograph Rosenblatt (1971). For later
work in this area see, e.g., Mukherjea, Sun and Tserpes (1973), Sun,
Mukherjea and Tserpes (1973), Hognas (1974a, 1974b). For a survey over the
field of probability theory on general algebraic structures the reader is
referred to the book by Grenander (1963).

The referee has kindly done a lot of work in examining my paper. I am
deeply indebted to him for his helpful suggestions resulting in numerous
improvements. He also pointed out a number of useful references.

2.

In this section we introduce the basic algebraic definitions and results
needed in subsequent sections. Most act definitions are quoted from Day and
Wallace (1967). Note that a finite space is a compact Hausdorff space in its
discrete topology; hence all functions defined on it are continuous. In
particular, any theorem about compact semigroups (acts) is true for finite
ones. The semigroup 5 is said to act unitarily if

x & xS for each x G X.

The set xS, that is {xs \s G S}, is called the orbit of the point x £ X. S acts
effectively on X if xs = xt for all x G X implies s = t. If 5 acts effectively on X
then S can be viewed as a subset of 2TX-

Let p be the equivalence relation

{(5, r)|xs = xt for all x EX}.

It is readily verified that p is a congruence and that S/p acts effectively. Hence
Sip is (isomorphic to) a subsemigroup of STX-

REMARK. The notion of act appears naturally in the theory of automata,
cf. Deussen (1971). The input of an automaton is a semigroup S, usually a free

https://doi.org/10.1017/S1446788700019637 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019637


[3] Random semigroup acts 483

semigroup over some alphabet. The input of an element of S (a word) causes
a change in the internal state of the automaton. The transition from one state
x to another state is a function of that state and the input s. Denote the
function by (x, s)s*xs, where s G S and x belongs to the state space X. We
require the function to satisfy (1), in other words, to be an act. The semigroup
S/p is called the semigroup of state transition maps. If X is finite then the
semigroup of state transition maps is also finite ( C f x ) .

A non-empty subset M of X is called an act ideal or S-ideal if MS C M,
where

MS = {xs\x<=M, sGS}.

M is a minimal act ideal if no proper subset of M is an act ideal. The sets xS
are act ideals since xSS C xS. The intersection of two act ideals is an act ideal
(or empty). Hence the minimal act ideals are either equal or disjoint. When X
is finite there is at least one minimal act ideal M. Clearly M = xS for each
AC £ M; in particular, x G xS for x G M. Thus, in the terminology of Stadtlan-
der (1968), p. 483, a minimal act ideal is a 5-class and its elements are minimal
in the natural quasi-order on X.

S is called transitive (simply transitive) if, for each couple (x, y) G X x X
there is at least (exactly) one s G S with xs = y. A subset Y of X is a set of
transitivity (and S is said to act transitively on Y) if, given any x, y £ Y, xs = y
for some s G S. For details see for example Clifford and Preston (1961) and
Hall (1959). The sets of transitivity are disjoint.

In the theory of random walks on semigroups the kernel of the
semigroup is of crucial importance. We shall therefore briefly look at the
kernel of the semigroup S C 3"x- For the notations and terminology the reader
is referred to Clifford and Preston (1961).

Let r % \X\ be the integer min{rank(s)|s G S}. We wish to show that the
set K' = {sG S | rank (s) = r} is the kernel of S. If S is the full transformation
semigroup STX then r = 1 and the kernel consists of all the constant functions.

For any s, t G S, | Xst | § | Xs | and | Xts | g | Xs |. (| A | denotes the number
of elements of the set A.) Hence K' is an ideal of S. To see that K' = K, the
kernel of S, it suffices to show that K' C K. Let / G K' and h G K. Then
fhf G K' n K. Now |X / | is minimal and Xfhf C Xf so these sets are equal.
Similarly, Xfhf = Xe, where e is the identity of the group of fhf in K (since
Xfhfe = XfhfCXe and Xe = Xfhfg C Xfhf, where g is an element of the
group). Thus Xf = Xe, hence xf = (xf)e = x(fe) for each x G X, because e is
the identity mapping on Xf. Hence/ = fe, by the effectiveness of S. Therefore
/ £ K and K' C K. I am grateful to the referee for this proof which is clearer
than my original one.
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We have thus proved the

THEOREM 1. The kernel K of S is precisely the set of elements of S with
minimal rank r.

We shall henceforth refer to the minimal rank r as the rank of the
kernel K.

A minimal right ideal of S is a set of the form

Rk ={SEK\TTS = nk}

and a minimal left ideal can be written

Lk = {sEK\Xs = Xk}

where k is any element of K. This can be seen by the following argument.
Consider a minimal right ideal R. R is a subset of Rk for some k; otherwise
R C\ Rk would be an ideal contained in R. Take an s £ R. The element sk has
partition TTS(= vk) and range Xk. Its restriction to Xk is a bijection. Hence
there is an n with (sk)" = e, e having the property ek = k. Thus k = (sk)"k,
i.e. k £ sS = R by the minimality of R. Hence Rk = R. There is thus a
one-to-one correspondence between the set S? of minimal right ideals and the
set {Rk | k 6 K} as well as between the set 5£ of minimal left ideals and the set
{Lk\kEK}.

The maximal subgroups of S are of the form

{sEK\ns = nk, Xs = Xk'}

where k, k' are any elements of K.
Let TT0, Xo be the partition and the range, respectively, of some element g

in K. Let k be an element of K, with partition v and range Y. Then, Trkg = TT,
Xkg = X,,, 77gk = TTO, and Xgk = Xk. With the technique used above we find
idempotents /, j with TT, = n, Xt = Xo, TT, = TTO, and X; = Xfc. Since k belongs
to the same minimal right ideal as / and the same minimal left ideal as /', k
may be written

k =ih=h 'j

for some h, h'E K. Again, for some power n of h'j, k = k(h'j)" =

The mapping g0 = h(h'j)"~'h' permutes the elements of Xo. We have,
then, proved the following

THEOREM 2. Any element k of K is expressible as a product k = igoj where
go is an element of the group with fixed partition TT0 and fixed range Xo, i is the
idempotent with partition irk and range Xo, and j is the idempotent with partition
TTO and range Xk.
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REMARK. This theorem is well-known, see for instance Wallace (1957),
Theorem 3 and Wallace (1963, 4.3).

In the terminology of the Rees-Susckhewitsch structure theorem the
above theorem reads as follows:

COROLLARY. K may be written as Rees product

where G is a subgroup of the symmetric group %, isomorphic to

{k GK|7Tk = TTo, Xk =Xo}

and 3? and !£ are the set of minimal right and left ideals, respectively. The
function <f>: Z£ x <3l -» G is given by

where the representatives jXk and !„ are the idempotents with partition TT0 and
range Xk and partition -n and range Xo, respectively.

Note that <£ is non-trivial, in general. For future reference we include the
following well-known result, see, for example, Schwarz (1964), p. 99:

LEMMA 1. If x, y £ K and G is a maximal group in K, then xyK = xK
and xyG = xG.

3.

Let S be any discrete semigroup. If s,t&S define s'lt to be the set
{u e S\su = t}. Let y be a probability measure on S. (We shall constantly
write v(s) for v{s}.) Then v and the multiplication on S induce a right random
walk {Sn} on S in a natural way: Define the transition probability function by

Intuitively, if slt is large, then s leads to t via many elements, and the
probability of "f following s" will be large.

The random walk thus defined may also be looked upon from another
point of view. Let x,,x2, ••• be independent random elements of S with
identical distribution v. Then the partial products {Sn} where

Sn = XjX2 • • • xn = Sn-,xn

form a Markov chain with transition probability function v(s~lt). Obviously,
we can define another Markov chain {Tn}, the left random walk, by multiply-
ing from the left instead:

Tn = xnxn-! • • • x2Xt = xnTn-u

https://doi.org/10.1017/S1446788700019637 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019637


486 Goran Hogniis [6]

In addition, two-sided and mixed random walk have been introduced as well,
cf. Martin-L6f (1965), Hognas (1974).

Let S be a semigroup acting on X, and consider a random walk on S. S
transforms X in the same way as S/p where p is the effectiveness congruence
defined in the beginning of section 2. Proposition 1 below guarantees that the
process induced on S/p by a random walk on 5 is also a random walk (to
which known results can be applied). That is why the results in section 2 were
stated mainly for finite semigroups, in particular subsemigroups of 3~x-

Consider a (discrete) semigroup 5 and a congruence 17 on S. Write [s] for
the 17-equivalence class containing s 6 S and put as usual

u'1[s] = {w ES\uw G[s ]} .

We have then

u 17 v =£> ut-qvt for all t, u, v G S,

and hence u '[s] = i>~'[s] for all s E S. Let v generate a right random walk on

S, i.e.

P r { 5 n = t \ S n - t = s } = v ( s l t ) .

Consider the probability measure v' on S/,, defined by

By the remarks made above

is well defined because the expressions are independent of the choice of
representative of [s]. The probability

= u\[Sn-,]=v} ( M 6 S / , )

is just

v'iv-'u).

We have thus shown that {[Sn]} is a right random walk on S/,,. For the left,
two-sided and mixed random walk the reasoning is analogous. We have the

PROPOSITION 1. / / {Sn} is a random walk on S then {[£„]} is a random
walk on S/,.

REMARK. If {Sn} is just a Markov chain on S then we cannot be sure that
{[Sn]} is a Markov chain on S/, at all.

We will limit our study to right random walks since they seem to be the
most natural in the present context (successive random transformations). In
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the sequel we require that S act effectively, that is, S is a subsemigroup of 3~x

and thus finite. This causes no loss of generality, in view of Proposition 1.
If x and y are independent random elements of S with probability

distributions /x and v, respectively, then the distribution A of the product xy is

where the last summation is to be taken over all r and f such that rt = s. The
probability measure A is called the convolution of fi and v (notation: /A * v).
For v * v we write vi2) and v{n) = v * v(n~x), n = 2,3, • • •. The support C(v) of i>
is the set {s G S | v(s) > 0}. One has C(JLA * F ) = C(/u. )C(v). The semigroup
U n a , C(c<")) = U n B i (C(»'))n is called the semigroup generated by (the support
of) v. Section 3 of Martin-L6f (1965) is a thorough discussion of the concept of
convolution of measures on a (discrete) semigroup.

If S is a finite semigroup and v induces a right random walk {Sn} on S,
then the probabilistically interesting part of 5 is actually U n e , (C(v))", that is,
the subsemigroup generated by the support of v. Thus we do not lose in
generality when we assume our semigroup S to be generated by the support of
v. This assumption means that, given s £ S , there is an n such that v{"\s) > 0,
in other words, there are s, (i = 1, • • •, n) with v(Si)>0 and SiS2 • • • sn = s. We
shall adhere to this assumption throughout the rest of the paper. We are now
going to investigate the trace on X of the random walk {Sn} on S, that is, the
process {xSn | n — 0,1 • • •} on X (where x is some element of X and xS0 = x).

LEMMA -2. For every x & X, {xSn} is a Markov chain on X, called the trace
chain.

PROOF. Immediate. The probability of going from xSn G X to y G X is
given by

REMARK. AS we are going to see later, all Markov chains on X can be
described as a process {xSn} where {£„} is a random walk on (a subset of) STX-
It is only when we have a priori knowledge of {Sn} that it is really worth-while
to investigate the Markov chain in this very roundabout way.

Let P = (P(u, y)), P(u, y) = Pr{xSn+l = y \xSn = u}, be the transition
probability matrix for the trace chain on X. P", the n-step transition
probability matrix, is then just the matrix product on n factors P. By an abuse
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of n o t a t i o n set x'y ={s G S | x s = y}, x , y G X. T h e n P(x, y) = v(x~'y) by
the proof of Lemma 2. We shall make use of both these notations in the
sequel.

Write x —» y (x leads to y) if P" (x, y) > 0 for some n. Here this condition
interprets as xs,s2 • • • sn = y for some s,, s2, • • •, sn G C(y) or simply xs = y for
some s G 5. So x —* y means y G xS. If x —» y and y -> x then x and y are said
to communicate (notation: x ~ y). ~ is an equivalence relation on the set
{x|x^>x} of "points of return". If 5 acts transitively then all of X is one
equivalence class. Otherwise, the sets of transitivity are the —classes. If
x —» y implies y —> x then x is said to be essential, otherwise x is inessential.
Here this means that y G xS => x G yS. The elements of a ~ -class are of the
same type, either all essential or all inessential. Since X is finite the essential
elements are precisely the recurrent elements and the inessential elements are
the transient ones. Henceforth, we prefer the terms recurrent and transient, (x
being recurrent means that

Pr{xSn = x for infinitely many n | xS0 = x} = 1.)

Note that

is at most \S\. If S is simply transitive then | S | = |X | .

REMARK. The definitions and their interpretation are valid for the right
random walk on S, too, provided x, y, • • • are taken to be elements of S. In
that case the act S x 5 —> S is simply multiplication in S, cf. Martin-L6f (1965),
section 4.

The next Lemma and Proposition give a connection to the notion of act
ideal, defined in section 2. I am indebted to the referee who pointed out the
connections to Stadtlander's work.

LEMMA 3. For the trace chain on a finite space X these are equivalent
1) x is recurrent (<=> x is essential)
2) x G xS and xS is a minimal act ideal.

PROOF. 1) => 2). Let y G xS. Then yS C xS2 C xS and x G yS (since x is
essential), hence xS C yS also. Thus xS = yS and x G xS. Since this is valid
for all y G xS, xS is a minimal act ideal.

2) =̂> 1). If y G xS then xS = yS, because of the minimality of xS. Hence
x G yS since x G x5. •

PROPOSITION 2. (cf. Stadtlander (1968), Proposition 1). x is recurrent if
and only if x G XK where XK = {xk | x G X, k G K}.

https://doi.org/10.1017/S1446788700019637 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019637


[9] Random semigroup acts 489

PROOF. By Lemma 3 we have to prove that x is an element of XK if and
only if x G xS and xS is a minimal act ideal.

Let xS be a minimal act ideal containing x. Then yS = xS for all y G xS.
In particular xkS = xS for all k G K. Hence x G xkS C xK C XK. On the
other hand, let x G XK, that is, x = zk for some z G X, k G K. There is an
e £ K with fee = k, whence x = zK = zke = xe G xS, i.e., x G xS. Since
x G XK, x G zi? for some 2 G X and some minimal right ideal R C K. Then
zi? = xS. Let y G xS; it remains to be shown that yS = xS in order to prove
that xS is minimal act ideal. Write y = zr (r G R). Then yS = zrS = zR =
xS. D

The observation that if xS is minimal act ideal then xS = xK gives the
following

COROLLARY, X and y belong to the same recurrent class if and only if they
are recurrent and xK = yK.

THEOREM 3. xK = yK if and only if xiG = yi'G for every maximal group
G in K and some idempotents i, i' G K.

In other words, x and y belong to the same recurrent class if and only if
a) x and y are recurrent elements
b) for any maximal group G in K,

xiG = yi'G for some idempotents i, i' G K.

PROOF. Suppose that xK = yK, i.e. there are k, fc'G K such that xfc =
yfc'. Let i and /' be the idempotents of the groups of k and k', respectively.
Then xik = yi'k', whence xikG = yi'k'G. Therefore xiG = yi'G for any
maximal group G in K, by Lemma 1. Conversely, if xiG = yi'G then
x K D y K ^ 0 . Thus xK = yK. •

PROPOSITION 3. The number of recurrent classes § the number of sets of
transitivity of a maximal group G g the rank r of the kernel K.

PROOF. Note first that the maximal groups in K are isomorphic, so the
number of sets of transitivity is independent of the choice of G. Let x and y
belong to a set of transitivity of G, which means that y = xfc for some fc G G.
Hence x —• y. Analogously, y —* x. Obviously, x and y are also recurrent.
Hence the number of transitivity sets of G is larger than the number of
recurrent classes. The maximal number of sets of transitivity of G is r, since G
is (isomorphic to) a subgroup of %. •

REMARK. If G has m sets of transitivity with r,,r2, ••-,rm elements
(n + r2 + • • • + rm = r) then G can be written as a subdirect product of groups
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Gv which are subgroups of the symmetric groups %, (i = 1,2, • • •, m), see
Hall (1959).

From now through section 5, we will limit ourselves to the recurrent
elements, that is, we assume X = XK. Note that the recurrent classes will then
be sets of transitivity of K. Let G be a maximal group. Define the equivalence
relation

that is, xcry if and only if x and y generate the same set of transitivity. <x is
the equivalence relation on X induced by the sets of transitivity of G.

Let 17 be the smallest equivalence relation that relates x and y if xay or
xiry for some IT G 5?, in other words,

77 = (J V SUp 77.

For the definition of the supremum of a set of equivalence relations see, for
instance, Arbib (1968).

The Corollary of Proposition 2 implies that x and y belong to the same
recurrent class if and only if xK = yK. This is equivalent with x ~ y since all
points of X are assumed to be recurrent. The number of recurrent classes is
therefore

PROPOSITION 4. ~ = TJ.

PROOF. We verify first that TJ C ~ , i.e., if xiry then x ~ y. xcry means
by definition that xG = yG; x(supireg!7r)y means that xk = yk for some
k G K. In both cases xK PI yKV 0 , hence xK = yK or x ~ y. On the other
hand, suppose that x ~ y. By Proposition 2, xiG = yi'G for some idempo-
tents i,i'GK, that is, xia-yi'. There is a k G K such that ifc = k whence
(xi)k = xk, that is, there exists a TT G 9? with xirxi. Analogously, yi'-rr'y for
some IT' G 5$. Hence —CTTVCTVTT- 'CT; . D

PROPOSITION 5. / / the trace chain has q recurrent classes then K can be
written as a subdirect product of q transformation semigroups which are all
kernel semigroups (that is, completely simple).

PROOF. The definition of subdirect product of semigroups is a straightfor-
ward generalisation of the same notion for groups. K C KCl x KC2 x • • • x KCq

where the C.'s are the sets of transitivity of K and KCi is the restriction of K
to Cj (modulo the relation p defined in section 2). K is simple, that is,
K k K = K for all k G K, whence KCl kC: KCi = Kc, for all kCi G KCi. K is simple
and thus, being finite, also completely simple. •
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4.

We will now look briefly at the periodicity of the trace chain in terms of
the structure of S and the periodicity of the random walk on S. Let P be the
transition probability matrix of a Markov chain on some discrete space Y. The
period of an element y G Y is the greatest common divisor of {n =£
11P" (y, y) > 0}. If y -A y the period is undefined. The period is the same for
all elements of a recurrent class. This number is called the period of the
recurrent class.

If we consider the right random walk on the finite semigroup S, induced
by the probability measure v, the situation is still simpler: all the recurrent
elements, that is, the elements of the kernel K, have the same period, to be
called the period of the kernel K. As shown by Martin-L6f (1965), p. 87, the
period of an s 6 S is the greatest common divisor of {n - m | v("\s), v(m)(s) >
0, n^ m}.

If the random walk on S is periodic with period p, then there is a proper
normal subgroup H of the group G in the Rees-Suschkewitsch decomposi-
tion (see the Corollary to Theorem 2) such that

where g£H and U ? . , g i H = G , cf. Martin-L6f (1965), pp. 88, 94. Con-
versely, if {0ixHxSe)C{v)Q9txgHx^ for some g £ H, H being a
proper normal subgroup of G, then the random walk on S is obviously
periodic. The period p is, of course, S the rank r of K, since G C %.

PROPOSITION 6. All periods of the trace chain divide p.

PROOF. The recurrent classes of X may have different periods d. Let Q
be a recurrent class. For some sufficiently large N,s-+ s in np steps (that is,
the probability of reaching s from 5 in np steps is positive) for all n g N and
s £ X (cf. Kemeny-Snell-Knapp (1966), p. 38). x G Q can be written x = ys
for some y G X and s G K. Hence x —> x in np steps for all n § N. Thus the
period d of x (= the period of Q) divides p. •

If the periods of the recurrent classes are d, (i = 1, • • •, q) we have then
d,\p and r g dx + d2+ • • • + dq.

5.

In this section, we are going to study the stationary probability distribu-
tions for the trace process on X. We have seen, in section 3, that the transition
probabilities P(x,y) may be written

P(x,y)= v(x~iy)= v{s\xs = y}.
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Then

P\x,y) = 2 P(x,z)F(2,y) = 2 2 "(*) 2 "(0
zeX z zs = z zt = y

= 2 "(*M0 = 2 vm(s)=V
m(x-'y)

xst~y xs = y

and f>"(x,y) = ( v ( " 1 ) * ^ ) ( x - 1 y ) = «/">(*-'y).

The probability distribution TT on X is said to be stationary if

2 , 7r(jc)i/(x-'y) = 7T (y) for all y £ l

LEMMA 4. Let /* = l i m n _ » ( l / n ) S J = , i><k). T/ien TT, defined by

is a stationary distribution on X. The support of TTX is the recurrent class
containing x.

PROOF.

since /x * v = JJL, cf. Rosenblatt (1971). The support of ft being K the support
of TTX must be xK, that is, the recurrent class containing x. Finally,

y y «s = y s

shows that irx is a probability distribution.
Since the stationary probability distribution on a recurrent class is unique

we have the

PROPOSITION 7. The stationary probability distribution on a recurrent class
C, is given by

^ ( y ) = 2 ^(-5)

where x is any element of Q.

The general theory of Markov chains tells us that

1 'V1 nfc / ^: 2 ( , y ) M - ' y ) = 2
ft t - l «s = y

as well as
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1 <»ij>«

77 Sd kJ

where d is the period of (the class containing) x. The first of the above limits
holds even if x is assumed transient. In that case fjb(x'y) is a convex
combination (a weighted average) of the stationary distributions on the
recurrent classes, given in Proposition 7. The second assertion holds if d is
chosen to be (a multiple of) the least common multiple of the periods
di, d2, • • •, dq of the recurrent classes.

The kernel K of S will be a group if S is commutative. Actually, it
suffices to require that the elements of C{v) generate a group; then, of course,
K will also be a group ( = S). For a transitive group we have the following

COROLLARY. // the kernel K is a transitive group acting on a subset Y of X
then the stationary distribution is uniform on Y.

PROOF. If K is a group then /J, is the uniform (Haar) measure on K. The
number of elements in x~ly = {k \xk = y} is independent of x and y. Suppose
that x 'y has the maximal number (N) of elements, that is, there are N group
elements k with xk = y. If x'g = x then x'gk = y for all k G x~'y. Thus x' 'y
also has N elements. K being a transitive group |jc~'y | = |y~'x | = N for all x
and y G Y.

6.

We remarked in section 3 that any Markov chain on a finite set X may
be viewed as the trace of a random walk on a subsemigroup S of 2TX- All we
have to do is to show that any stochastic matrix can be written as a convex
combination of transformation matrices, that is stochastic matrices with
exactly one non-zero element in each row. The non-zero element is, of course,
1. The method of proof of the following well-known result will be used later.

LEMMA 5. Any finite stochastic matrix is a convex combination of trans-
formation matrices.

PROOF. Let P be a n x n stochastic matrix, that is, a matrix (p^) with
Pn g 0 for all i and / (i,j = 1, • • •, n) and

2) Pij = 1 for all (' = 1, • • •, n.

Let a, be the minimal positive entry in P. For each i choose / such that
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Pij i? a, is a minimal positive entry in the ith row. Let the transformation

matrix Q(1) have its l 's in these places ( / , / ) . Then

where Po) is a matrix with non-negative entries and row sum 1 - a,.
Repeating the described procedure on P' we obtain

P = Pm•+ aiQ
w+ a2Q

f2)

where Q°\ Qa) are transformation matrices, au a2 are positive numbers with
a, + a2= I, and P(2) is a matrix with non-negative entries and row sum
l - ( a , + a2).

Continuing until the row sum of the "residual" P<m) is zero we obtain

where m S n2 and 1.?=t a, = 1. •
Let O(1) also denote the transformation of {1,2, • • •, n} described by t ie

matrix QU). Define v by v(Q(l)) = a, (i = 1, • • •, m). Then v is a probability
distribution on 3~x with X = {1,2, • • •, n}. The support Q(1\ • • •, O(m) of »/
generates a subsemigroup S of 9~x. We then have

We have thus proved the

PROPOSITION 8. Any Markov chain on a finite set X may be viewed as the
trace of a random walk on a semigroup S C STX.

The semigroup S and the probability v are by no means unique.
Consider, for example,

i n o i i r o i
2 L0 1J 2 l l 0

1 + 1 P 1
"> U Oj 2 LO 1

where S in the first case is a group and in the second case a semigroup of
constant mappings. The transformation matrices are permutation matrices if
there is exactly one 1 in every row and every column. If all Q's are
permutation matrices then S will be a group.

We showed in section 4 that the rank r satisfies the condition d\ + d2 +

"1
2
1
2

1
2
1
2
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• • • + dq g r, where d, is the period of the recurrent class C We now show that
there exists a "minimal semigroup".

PROPOSITION 9. There is a semigroup S the kernel K of which has rank
di + d2+ • • • + dq and period p = least common multiple {du • • •, dq}.

PROOF. Let P = (p,,) and pk, = min{pi; \ptj >0}. There is a finite number
M S n " of transformation matrices consistent with P (Q = (q,,) is consistent
with P if qit = 1 ^> p,j > 0 , cf. Rosenblatt (1971), p. 173). Give each of these
consistent transformation matrices the weight pk,IM > 0 . Then continue the
procedure of writing P as a convex combination of transformation matrices,
for example, by the method used in the proof of Lemma 5. Let C{v) be the set
of transformations thus obtained and let S = Ui Bi(C(i ' )) ' be the semigroup
generated by C(v). We want to show that S has the desired properties.

If 1 —» y, (transition from 1 to y,), 2—* y2, • • •, n —» yn are possible in one
step then, by construction, there is an s £ C{v) with Is = yl5 2s = y2, • • -,ns =
yn. If 1—> yi,2—*• y2, • • •, n —> yn in two steps then there is an s £ {C{v)f with
is = y, (i = 1, • • •, n) because (' —> y< (i = 1, • • •, n) in two steps implies the
existence of a z, with i —> z, in one step and z, —» yf in one step. There are,
then, a, /3 £ C(v) with ia = zi( z,(3 - y, (j = 1,2, • • •, n) whence is = y,
(( = 1, • • •, n) if we set s = a/3 £ (C(^))2.

Analogously, i —» yf (/' = 1, • • •, n) in N steps implies that there is an
s £ (C(v))N satisfying is = yf.

Let Z be an element of a cyclically moving subset D of a recurrent class
Co with period d. For a sufficeintly large N x ^> z in md steps for all m > N
and all x £ D ; it is a consequence of the finiteness of the chain. Thus there is
an s £ S such that Ds = {x}. Furthermore, N can be chosen so large that any
element of any cyclically moving subset of Co leads to a fixed representative z
of that subset in md steps. This means that there is an s £ (C(v))md such that
| Cos | = d, because there are d cyclically moving subclasses of Co.

Continuing the same line of reasoning we find that there is an s £
(C(v))md, where m is large and d' is the least common multiple of the periods
di, • • -, dq, such that s maps all recurrent elements into a set of representatives
of all the cyclically moving subclasses. Since the transient elements of X
eventually lead to some recurrent element we can choose s, by increasing m if
necessary, such that the transient elements, too, are mapped into the set of
representatives of the cyclically moving subclasses. Thus j Xs | =
di + d2 + • • • + dq. Since that rank r of the kernel is at least dx + d2 + • • • + dq

we have proved that there is equality in this particular case. Let d' = least
common multiple of du • • •, dq and let Y be a set of representatives of the
cyclically moving subclasses, | V| = d, + d2 + • • • + dq. Let (yi,---,yf) be a
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permutation of V. Then yt^yi in m<d(yj) steps where m, is an integer and
d{yi) is the period of y,. Thus y,—» y,, y2—» y2, • • •, y, —» y, only in md' steps,
where m is an integer. Using the same reasoning as in Kemeny-Snell-Knapp
(1966), p. 38, we find that the period of the transformation mapping
(y>>''"»)0 m t o (yi> •' ' yr) is d'. Hence the random walk on S has period d'
(for a discussion of the periodicity of the right and left walks on 5 see
Martin-L6f (1965), p. 87). •

PROPOSITION 10. Let all elements of X be recurrent. If S is a minimal
semigroup in the sense of Proposition 9 then its kernel K is the unique minimal
right ideal of S and the map <p in the Rees-Suschkewitsch decomposition is
trivial.

PROOF. Define TT by xvy <=> x and y belong to the same cyclically
moving subclass. If there is a k G K such that xk = yfc then x and y must
belong to the same subclass. Thus nk C TT. But rrk and TT have both r
equivalence classes whence TTk = 77, that is, there is only one minimal right
ideal. Consider <p (Xk, ir) = jXkL = jxkL0, cf. section 2. If x G Xo then x TT0 xjXk
whence x = xjXkini. In other words, jXkin is the identity mapping on Xn. •

COROLLARY. / / S is minimal then <p is trivial.

PROOF. The proof above works in the general case, too, since Xo is a
subset of XK = the set of recurrent elements of X. •

PROPOSITION I I . If S is minimal then G in the Rees-Suschkewitsch

decomposition of K is a cyclic group with p elements. G is a subdirect product of

q cyclic groups with d,,d2,- • -,dq elements, respectively, where d, is the period of

the ith recurent class.

PROOF. G maps the cyclically moving subclasses into one another; there
is a g G G taking Dtj (the j ' h subclass of the i'h recurrent class) into D,v+i,
where the addition is understood to be addition (mod d,). Take, for example,
g = ese, where e is the identity of G and s £ C(v). gp is the least power of g
taking D,, into itself. Let h be any element of G. Then h may be written es(m)e
for some s<m>£ C(v)m. But es<m)e = esme = (ese)m since ese is independent of
the choice of s G C(v). Thus G is cyclic. Trivially, G is a subdirect product of
the cyclic group on the different recurrent classes, which are precisely the sets
of transitivity of G. D

Notice that the preceding Proposition implies that the group G is
uniquely determined, that is, the minimal semigroup is essentially unique.

We sum up the last Propositions in a
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THEOREM 4. A Markov chain on a finite set X can always be written as the
trace process of a random walk on a subsemigroup S of the full transformation
semigroup 2TX. S can be chosen such that the rank of its kernel K is equal to the
sum of the periods of the different recurrent classes of the Markov chain. The
periodpofK is the least common multiple of the periods. Furthermore, the group
component G of K in the Rees-Suschkewitsch decomposition is cyclic of order p
and may be written as the subdirect product of the simply transitive cyclic groups
of order dt where d< is the period of the i'h recurrent class. The function <p in the
decomposition and the right ideal structure of K are trivial.
In other words, the group G completely describes the periodic structure of
the Markov chain on X.

7.

Consider the infinite convex combination

P = 2^ Q-&J

of transformation matrices. The largest weight at has to be Si maximal row
element in every row of P. Hence the stochastic matrix defined by

i n"1 for j = n

0 for j >n;n = 1,2, •••

cannot be written as a convex combination of transformation matrices.
This example shows that the results in section 8 do not extend to the

infinite case. Simple examples also show that Markov chains on a compact
space X are not, in general, trace processes of a random walk on a compact
transformation semigroup. We hope to discuss these more general cases in
subsequent papers.

The author is indebted to Magnus Ehrnrooths Stiftelse and Svenska
Vetenskapliga Centralradet for their financial support.
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