
THE DENSITY OF REDUCIBLE INTEGERS 
S. D. CHOWLA AND JOHN TODD 

Introduction. The concept of a reducible integer was introduced recently 
[3] : if P(m) denotes the greatest prime factor of m then n is said to be reducible 
if P ( l + n2) < 2n. The reason for the term is that reducibility is a condition 
necessary and sufficient for the existence of a relation of the form 

r 

arctan n = £ /» arctan m 

where the fi are integers and the rii positive integers less than n. J. C. P. 
Miller pointed out to us the regularity of the distribution of the reducible 
integers (less than 600). In collaboration with Dr. J. W. Wrench, using his 
tables of factors of 1 + w2, we carried the count still further, and observed the 
same regularity. The following conjecture suggested itself: 
C. "Reducible integers have a density about 0.3.'' 

We have not been able to make very much headway with this but have 
succeeded in establishing the following: 

THEOREM A. The density of the set of integers n for which P(n) < 2n* is 
1 - log 2 =.3069 

This note contains a proof of this theorem, and a table summarizing the 
numerical evidence in support of C. 

1. Numerical evidence. We give here a summary of the numerical evi
dence relating to the conjecture C together with corresponding results related 
to Theorem A. The table below gives, in each range (1 + 100 n, 100(n + 1)), 
for n = 0(1)49, on the right, the number of reducible integers in that range, 
and on the left, the number of integers in that range which satisfy P{n) < 2n*. 

Totals in the various chiliads and a grand total for the complete range 
(1-5000) are given in the last line of the table. 

0 1000 2000 3000 4000 

1-100 (29, 57) (31, 43) (29, 43) (33, 41) (29, 42) 
101-200 (29, 50) (25, 43) (30, 42) (28, 43) (28, 40) 
201-300 (28, 47) (33, 44) (23, 42) (23, 43) (27, 41) 
301-400 (26, 45) (28, 41) (32, 41) (32, 43) (31, 40) 
401-500 (30, 45) (31, 44) (28, 44) (29, 38) (27, 42) 
501-600 (30, 44) (23, 44) (32, 39) (32, 41) (38, 39) 
601-700 (30, 44) (27, 40) (26, 43) (25, 40) (30, 41) 
701-800 (29, 44) (34, 43) (32, 41) (30, 43) (35, 39) 
801-900 (27, 44) (28, 45) (27, 42) (29, 40) (30, 43) 
901-1000 (23, 42) (31, 39) (29, 41) (19, 41) (38, 41) 

(281, 462) (291, 426) (288, 418) (280,413) (313,408) 
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2. Proof of Theorem A. It is more convenient to show that the density 
of the integers n for which P(n) > 2w*, is log 2. That is, we shall show that 

Q(X) = £ 1 ~ x log 2 ; 
n<x 

P(w)>2n* 

to do this we establish the two following results: 

Ai. Qx(x) = E l ~ x l o g 2 ; 

P(n)>2x* 

A2. Q2(x) = Q(*) - Qi(x) = E 1 = *(*). 
n<x 

2n*<P(n)<2xi 

2.1. Proof of Ai. This is carried out by a modification of a method used 
recently [1] to evaluate lim x_1i?a(x) where Ra(x) is the number of integers 
n < x for which P(n) > xa. 

For any p the number of integers n < x which are multiples of p is [x/p]. 
In Qi(x) we consider only primes p — P(n) > 2x*: for such primes the residual 
factor (n/p) < \ x* < p and so every multiple of p which does not exceed x 
has p for its greatest prime factor. Hence 

Qi(x) = £ [x/p] 
2x*<p<x 

= £ {(x/P) + 0(1)} 
2x*<p<x 

= x E ^ ~ 1 + 0 ( x / l o g x ) , 

since E 1 < E 1 = 0(x/log x). 
2**<£<* p<x 

It is, however, well known [2, pp. 100-102] that 
B. E P~l= log log x - / + 0( l / log x) 

p<x 

where / is a certain constant. Hence 
x~~lQi{x) = log log x - log log 2**+ 0(1) 

= log {(log x ) / ( | log x + log 2)} + 0(1) 
= log 2 + 0(1), 

which establishes Aj.. 

2.2. Proof of A2. This is carried out in the following manner. First, it 
will be sufficient to restrict the values of n considered to the range 

x/(log x)2< n < x, 
for this implies a change in the sum of 0(x/(log x)2) = o(x). Secondly, we do 
not decrease the sum if we replace 2n*y the variable limit in the lower inequality, 
by its smallest value 2x*/log x. Thirdly, we do not decrease the sum by now 
allowing n to cover the full range 1 < n < x. Thus it will be sufficient to 
show that n , . ^ . s 

n<x 
(2xi/iogx)<p(n)<2xi 
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In order that an integer should contribute to Qz it is necessary that it should 
have a prime factor p in the range (2x*/log x, 2x*). For p fixed the number 
of such n is [x/p]. Hence 

Qz < £ [x/p]. 
(2xi/logx)<p<2xl 

(It is possible for an integer n < x to have two factors in the range and so we 
must allow for inequality, which was not so in the case of Q\.) 

We now proceed as before : 

Q*{x) < L [x/p] = x L p-*+ O(x*/iog x) 
(2*fylog x) < p < 2** (2*fylog x) < p < 2x* 

= x {log log 2x*- log log (2x*/log x)} + 0(x/log x), 

using B. Since 
log log 2x* — log log (2x Vlog x) 

= log {(£ log x + log 2)/(J log x + log 2 - log log *)} 
= log [{1 +(log 4)/(log x)\ {1 +(log 4 - 2 log log x)/log x}"1] 
= log {1 + O(l/log x))(l + 0(log log x/log x)} 
= O(log log X/log X) = 0(1), 

the proof of A2 is complete. 

3. Possible generalizations. It is clear that 2w* in Theorem A can be 
replaced by An* for any A > 1 without affecting the conclusion. 

Similar arguments show that the density of the integers n for which P(n) > 
Ana ( | < a < 1, A > 1) is exactly log a. 

The case when a < \ requires more careful study along the lines indicated 
in [1] and it can be shown that the device used here (replacing a summation 
over 1 < n < x by one over (x/(log x)2< n < x) will enable the density to 
be evaluated explicitly in this case, too. 

It is clear that an estimate for the error term 

x~lQ{x) - log 2 
is 

O(log log x/log x), 
and this explains the slowness of the convergence apparent in the table. 
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