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The linear stability of miscible displacement for radial source flow at infinite Péclet
number in a Hele-Shaw cell is calculated theoretically. The axisymmetric self-similar flow
is shown to be unstable to viscous fingering if the viscosity ratio m between ambient
and injected fluids exceeds 3/2, and to be stable if m < 3/2. If 1 < m < 3/2, then small
disturbances decay at rates between t−3/4 and t−1 (the exact range depending on m)
relative to the t1/2 radius of the axisymmetric base-state similarity solution; if m < 1,
then they decay faster than t−1. Asymptotic analysis confirms these results and gives
physical insight into various features of the numerically determined relationship between
the growth rate and the azimuthal wavenumber and viscosity ratio.
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1. Introduction
Viscous, or Saffman–Taylor, fingering is one of the canonical fluid-mechanical
instabilities, which occurs when a lower-viscosity fluid is driven into a restricted
environment occupied by fluid with a (sufficiently) higher viscosity. In the context of flow
in a porous medium (e.g. Homsy 1987), it has huge economic impact by significantly
reducing the efficiency of oil extraction from reservoirs by water injection (Lake 1989).
In the context of flow in a Hele-Shaw cell, it has generated significant scientific interest
following the seminal paper by Saffman & Taylor (1958) as a prototypical example of
pattern formation and selection, particularly in the limit of small or vanishing surface
tension (see e.g. Couder 2000; Bischofberger, Ramachandran & Nagel 2014; Andersen
et al. 2024). Other recent work considers the possible suppression or modification of
Saffman–Taylor fingering by varying the geometry of the Hele-Shaw cell boundaries
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(e.g. Pihler-Puzovic et al. 2012; Al-Housseiny, Tsai & Stone 2012; Zheng, Kim & Stone
2015; Peng & Lister 2019), viscous fingering in two-layer viscous gravity currents (e.g.
Kowal & Worster 2019a,b; Dauck 2020) and bubble compressibility (Cuttle, Morrow &
MacMinn 2023).

The linear instability of immiscible displacement in a Hele-Shaw cell or porous medium
has been variously analysed for both unidirectional and radial motion (e.g. Hill 1952;
Saffman & Taylor 1958; Chouke, van Meurs & van der Pol 1959; Wilson 1975; Paterson
1981). For simplicity, it is assumed that the intruding fluid displaces all of the ambient
fluid, though several authors comment that the analysis is easily adapted to the case
where a constant-thickness layer of ambient fluid is left behind (cf. Park & Homsy
1984) and coats the cell walls. In the simple case, the jump in the viscous pressure
gradient at the interface drives growth of interfacial perturbations at a rate proportional
to (μa − μi )kV/(μa + μi ), where μa is the ambient viscosity, μi is the intruding fluid
viscosity, k is the transverse wavenumber, and V is the displacement velocity. Gravity,
surface tension and a radial geometry may provide stabilising effects, but if the viscosity
ratio m ≡ μa/μi exceeds 1, and V is sufficiently large, then the flow will be unstable to
what has become known as Saffman–Taylor fingering. Surface tension does stabilise the
short wavelengths, leading to a most-unstable wavelength proportional to, and a growth
rate inversely proportional to, the square root of the surface tension. Hence the limit
of zero surface tension appears singular, but it can be regularised (e.g. Paterson 1985;
Dias & Miranda 2013; Nagel & Gallaire 2013) by re-including finite-aspect-ratio effects,
which lead to a most-unstable wavelength comparable to the cell thickness in accord with
observations.

The case of zero surface tension also arises naturally when considering miscible
displacement in a Hele-Shaw cell. Wooding (1969) first described experimentally viscous
fingering in a Hele-Shaw cell with miscible fluids similar to that seen with immiscible
fluids. Paterson (1985) presented a stability analysis for an inviscid intrusion spreading
from a point source into a miscible viscous ambient with diffusion assumed negligible.
Significantly, Paterson neglected radial variations in the thickness of the intrusion by
assuming that the ambient leaves at most a thin and immobile film of constant thickness
behind the front. His model is then effectively equivalent to the case of complete
displacement with immiscible fluids in the zero-surface-tension limit. However, if the
intrusion fluid is viscous, then miscible displacement results in an intruding tongue of fluid
along the centre of the channel, whose thickness varies with radial position (Petitjeans &
Maxworthy 1996; Chen & Meiburg 1996; Rakotomalala, Salin & Watzky 1997; Yang &
Yortsos 1997). The resultant viscosity variation across the cell causes the velocity profile
to differ from the simple Poiseuille profile of immiscible displacement (see figure 1).
Moreover, at low or moderate Péclet number, the radial and vertical viscosity structure
of miscible displacement is also affected by cross-flow diffusion and radial dispersion
(e.g. Tan & Homsy 1987; Goyal & Meiburg 2006; Nijjer, Hewitt & Neufeld 2018; Videbæk
& Nagel 2019; Sharma et al. 2020), and even the unperturbed base state is time-dependent
and must be determined numerically. At large Péclet number, however, it is reasonable to
neglect diffusion until the dimensionless radius is comparably large, and it is possible to
make more progress analytically.

Yang & Yortsos (1997) analysed unidirectional miscible displacement with negligible
diffusion and obtained a kinematic-wave equation for the height of the intruding tongue
of fluid. For viscosity ratios m < 3/2, they found a smooth similarity solution (with
no shocks) as a function of x/t . However, for m > 3/2, the kinematic-wave equation
necessarily forms a frontal shock of a height that they recognised, in principle, might
require a fully two-dimensional Stokes flow calculation near the nose to determine
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Figure 1. A radial cross-section of an axisymmetric intrusion with constant influx 2Q into a Hele-Shaw cell
with gap thickness 2h0. The shape of the intrusion is described by the intruding fluid fraction λ(r, θ, t) and its
radial extent r∗(θ, t). The viscosities μi and μa of the intruding and ambient fluids give rise to a viscosity ratio
m = μa/μi . The densities ρ are equal. The velocity profile is piecewise parabolic and given by (2.3).

(cf. Goyal & Meiburg 2006). As discussed further in § 3.1, they instead presented a
classical tangent construction of a so-called ‘contact’ shock from the flux function of the
intruding fluid. In terms of the intruding fluid fraction λ∗ at the nose, the contact-shock
height is given by λ∗ = λc(m), where

λc = 2
(

2
3 m − 1

)−1/2
sinh

[
1
3 sinh−1

{
(m − 1)−1

(
2
3 m − 1

)3/2
}] (

m > 3
2

)
(1.1)

is the real root of a certain cubic polynomial. They note that experiments and numerical
models (Petitjeans & Maxworthy 1996; Chen & Meiburg 1996; Rakotomalala et al. 1997)
suggest that (1.1) underestimates the shock height, particularly for m > 5, and more recent
experiments (Bischofberger et al. 2014; Videbæk 2020) support this. Limited data for
smaller m are approximately consistent with (1.1). To the best of our knowledge, the exact
nature of these shocks and how their height is determined are not yet fully understood,
perhaps because they are experimentally unstable to fingering in the transverse direction.

Lajeunesse et al. (1997, 1999, 2001) and later Bischofberger et al. (2014) conducted
experiments in Hele-Shaw cells with miscible fluids and negligible diffusion, and observed
a viscous fingering instability at the front of the intrusion if m was sufficiently large. The
minimum viscosity ratio for instability to be seen was 2–3, a little larger than the critical
value m = 3/2 derived by Yang & Yortsos (1997), and clearly larger than the critical value
m = 1 for the case of immiscible displacement. Both Lajeunesse et al. (1997, 1999, 2001)
and Bischofberger et al. (2014) suggested that the existence of a flat shock front and the
associated jump in pressure gradient across the front are crucial to the development of a
fingering instability similar to the classical Saffman–Taylor instability. Lajeunesse et al.
(2001) approximated the intrusion as being of uniform thickness equal to the shock height,
and by adapting the Saffman and Taylor analysis appropriately, obtained a good prediction
of the instability threshold for vertical displacement. Recently, Videbæk (2020) adopted
the same approach to obtain a good prediction for the instability onset radius for radial
flow. (Videbæk also provides an interesting synthesis of experimental observations of
immiscible and miscible displacements in linear and radial geometries.)

From the preceding work, it seems to be accepted that m = 3/2 is the predicted stability
boundary for miscible intrusion without diffusion. However, to the best of our knowledge,
it has not been demonstrated theoretically that the flow is stable for m < 3/2, and it
has been difficult to demonstrate experimentally that the flow is unstable for m less
than approximately 2–3 (Lajeunesse et al. 1997; Bischofberger et al. 2014; Videbæk
2020). Indeed, Bischofberger et al. (2014) note: ‘It is important to point out that both
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the connection between the shock-front formation and the onset of the lateral instability,
and the suppression of any instability (for example, of the kind from the original Saffman–
Taylor analysis) for 0.67 < ηin/ηout < 1 [i.e. 1 < m < 3/2] remain to be explained.’ It is
our intention to provide some explanation in this paper.

We consider the linear stability of miscible displacement with negligible diffusion
from a point source in Hele-Shaw flow, which is parametrised by the viscosity ratio
m between the ambient and intruding fluids. The set-up of the mathematical model,
its governing equations, assumptions and non-dimensionalisation are described in § 2.
An analytic solution to the initial-value problem is found in § 3 for the special case
of axisymmetric flow using the method of characteristics. In the absence of any
non-axisymmetric perturbations, this kinematic-wave solution tends towards a simple
axisymmetric similarity solution like t−1. The central point of the paper is a linear
stability analysis of this similarity solution in § 4. Working in similarity space, in § 4.1
we derive coupled ordinary differential equations for the radial structure of eigenmodes of
specified azimuthal wavenumber, and in § 4.2 we present numerical results for their growth
rates as functions of wavenumber and viscosity ratio. Further insight into the structure
of the problem and some good asymptotic approximations to the numerical results are
obtained in § 4.3 and in Appendix B by analysing the various modes using the Wentzel–
Kramers–Brillouin (WKB) method for large azimuthal wavenumber. We confirm stability
for m < 3/2, and explain why instability is hard to observe for m only somewhat larger
than 3/2. We discuss our conclusions in § 5.

2. Model description

2.1. Governing equations
Consider radial flow from a point source in a Hele-Shaw cell consisting of infinite parallel
rigid plates separated by a constant distance 2h0. The cell is initially filled with ambient
fluid of viscosity μa and density ρ. For t > 0, fluid of viscosity μi and (equal) density ρ is
injected at the origin at a constant volume flux 2Q. As shown in figure 1, we use cylindrical
polar coordinates (r, θ, z) to describe the horizontal extent of the current r∗(θ, t) and the
vertical thickness of the intrusion 2h0 λ(r, θ, t), where λ(r, θ, t) is the local fluid fraction
of injected fluid. Surface tension, diffusion and inertia are all assumed to be negligible.

After an initial transient, the horizontal extent of the intrusion is much greater than its
vertical extent, r∗ � h0. In this limit, the vertical velocity is negligible, and the horizontal
velocity u(r, z, t) is related to the horizontal pressure gradient ∇ p̃ by the lubrication
approximation

μ
∂2u
∂z2 = ∇ p̃ (2.1)

subject to boundary conditions

u = 0 at z = ±h0, [u]+− = 0 and
[
μ

∂u
∂z

]+

−
= 0 at z = ±λh0, (2.2)

which impose no-slip on the boundaries, and velocity and stress continuity at the interfaces
between the fluids. Solution of (2.1) and (2.2) yields the velocity profile

u = ∇ p̃

2μa

(
mz2 − h2

0{1 + (m − 1)λ2}
)

for |z| < λh0, (2.3a)

u = ∇ p̃

2μa

(
z2 − h2

0

)
for λh0 < |z| < h0, (2.3b)
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whose shape depends on the viscosity ratio m = μa/μi and the intruding fluid fraction λ.
Integration of (2.3a) between ±λh0 gives the horizontal flux 2q̃i of intruding fluid, while
integration of (2.3) between ±h0 gives the total flux 2q̃. We obtain

2q̃i = − h3
0

3μa
∇ p̃

{
3λ+ (2m − 3)λ3

}
, (2.4a)

2q̃ = − 2h3
0

3μa
∇ p̃

{
1 + (m − 1)λ3

}
. (2.4b)

Using these fluxes, we can straightforwardly obtain two local mass-conservation
equations for r < r∗(θ, t):

∂λ

∂t
= h2

0
6μa

∇ ·
(
∇ p̃

{
3λ+ (2m − 3)λ3

})
, (2.5a)

∇ ·
(
∇ p̃

{
1 + (m − 1)λ3

})
= 0. (2.5b)

Equation (2.5a) determines the evolution of λ from conservation of intruding fluid, while
(2.5b) determines the pressure gradient ∇ p̃ from a divergence-free constraint on the total
flux due to the fixed cell boundaries. Ahead of the intrusion, in r > r∗(θ, t), we have λ= 0,
thus (2.5a) is not relevant, and (2.5b) reduces to

∇2 p̃ = 0. (2.5c)

We assumethat there is no imposed far-field pressure gradient, i.e. ∇ p̃ → 0 as r → ∞ ,
and in the absence of surface tension, there is no capillary pressure jump at the nose of the
intrusion.

The injection of intruding fluid (only) at the origin at a constant flux 2Q corresponds to
the boundary conditions that λ= 1 at r = 0 and

−mh3
0

3μa
lim
r→0

(2πr er · ∇ p̃) = Q, (2.6)

where er is the radially outward unit vector.
At r = r∗(θ, t), continuity of pressure and of the total flux normal to the nose yields

[
p̃
]+
− = 0,

[
h2

0 (n · ∇ p̃)

3μa

{
1 + (m − 1)λ3

}]+

−
= 0 at r = r∗, (2.7)

where n is the normal to the perimeter r = r∗(θ, t) of the intrusion. The flux of intruding
fluid normal to the nose also has to be consistent with the normal velocity of the nose,
which gives

(n · er )
∂r∗
∂t

= −h2
0 (n · ∇ p̃)

6μa

{
3 + (2m − 3)λ2∗

}
, (2.8)

where λ∗ is the limiting value of λ as r → r∗−. For the case of a rounded nose with λ∗ = 0,
(2.8) is just the kinematic condition that the nose moves with the centreline velocity. For
the case of a frontal shock with λ∗ > 0, (2.8) is the condition of mass conservation of
intruding fluid across the shock.

Equations (2.5)–(2.8), together with a condition such as (1.1) on any frontal shock
height, describe the evolution of the spreading intrusion in terms of the dimensional
pressure p̃, the intruding fluid fraction λ, and the shape of the perimeter r∗. These
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equations for non-axisymmetric flow are equivalent to those of Yang & Yortsos (1997)
for unidirectional flow.

2.2. Non-dimensionalisation and similarity variables
The intrusion volume suggests an approximate scaling r2∗h0 ∼ Qt , and (2.8) suggests
r∗/t ∼ h2

0 p̃/r∗μa . More detailed scaling of (2.5a) and (2.6) provides numerical factors
and motivates definition of a radial similarity variable ξ and a dimensionless pressure
p by

ξ =
(

2πh0

Q

)1/2 r

t1/2 and p(ξ, θ, t) =
(

2πh3
0

3μa Q

)
p̃(r, θ, t). (2.9)

We also define a mobility function M and a flux function F by

M(λ; m) = 1 + (m − 1)λ3 and F(λ; m) = 3λ+ (2m − 3)λ3

2 + 2(m − 1)λ3 , (2.10)

which give the relative mobility for the total flux and the flux fraction of intruding fluid,
respectively. As usual for description of evolution towards self-similarity (e.g. Witelski &
Bernoff 1999; Leppinen & Lister 2003; Mathunjwa & Hogg 2006; Peng & Lister 2014),
we define a dimensionless time variable by τ = ln(t/t̂ ), where t̂ is a reference time scale
such as h3

0/Q.
In terms of the new dimensionless variables, the local mass-conservation equations (2.5)

can be written as the coupled partial differential equations

q = −M∇ p, ∇ · q = 0,
∂λ

∂τ
− ξ

2
∂λ

∂ξ
= −∇ · (Fq) for ξ < ξ∗, (2.11a-c)

q = −∇ p, ∇2 p = 0 for ξ > ξ∗, (2.11d,e)

where 2q(ξ, θ, τ ) is the total flux, and ∇ = eξ ∂/∂ξ + eθ ξ−1 ∂/∂θ now denotes the
horizontal gradient operator in similarity space. The boundary conditions (2.6)–(2.8) can
be written as

q → ξ−1eξ as ξ → 0, q → 0 as ξ → ∞, (2.12a,b)

[p]+− = 0,
[
n · q

]+
− = 0 and

∂ξ∗
∂τ

= n · q
n · eξ

F∗
λ∗

− ξ

2
at ξ = ξ∗, (2.12c-e)

where ∂ξ∗/∂τ is the dimensionless speed of the nose in similarity space.
If the evolution of the system becomes self-similar and independent of τ at late times,

then (2.11) reduces to a system of coupled ordinary differential equations.

3. Axisymmetric flows and similarity solutions
If the flow is axisymmetric, i.e. ∂/∂θ = 0, then qθ = 0, so ∇ · q = 0 gives q = ξ−1eξ

everywhere. Therefore, (2.11c) becomes

∂λ

∂τ
=
(

ξ

2
− F ′(λ)

ξ

)
∂λ

∂ξ
, (3.1)

where F ′(λ) denotes dF/dλ. This equation is a simple quasi-linear hyperbolic equation,
which, in the absence of shocks (discontinuities in λ), can be solved analytically by the
method of characteristics. (A similar kinematic-wave construction is given by Yang &
Yortsos (1997) and Lajeunesse et al. (1999) for related unidirectional flows.)
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Equation (3.1) implies that λ is constant along characteristic curves ξ(τ ) defined by

dξ

dτ
= F ′(λ)

ξ
− ξ

2
⇐⇒

(
ξ2 − 2F ′) eτ = const. (3.2)

Thus λ maintains its initial value λ(ξini t , 0) on the characteristic that passes through
ξ = ξini t at τ = 0. Solving (3.2) for ξini t (ξ, τ ) thus leads to a solution of (3.1) in the form

λ(ξ, τ ) = λ
({

ξ2eτ + 2F ′ (1 − eτ
)}1/2

, 0
)

. (3.3)

This is implicit in λ as the value of ξini t (ξ, τ ) depends on λ through F ′, and in general it is
not possible to solve (3.3) for λ(ξ, τ ) explicitly. If λ varies monotonically with ξ in some
region, then it is, however, possible to exploit a change of variable from λ(ξ, τ ) to ξ(λ, τ )

to obtain an explicit solution for ξ(λ, τ ):

ξ(λ, τ ) =
{
ξ2

ini t (λ) e−τ + 2F ′ (1 − e−τ
)}1/2

. (3.4)

We will see later that the fluid fraction λ is often a more convenient independent variable
than the radial distance ξ .

Provided that the characteristics do not cross (no shocks form), (3.4) shows that

ξ(λ, τ ) → X0(λ) ≡ {
2F ′(λ)

}1/2
as τ → ∞. (3.5)

For m � 3/2, F ′(λ) is a monotonically decreasing function for λ ∈ [0, 1], and (3.5)
describes the shape X0(λ) of a long-time similarity solution in which λ varies smoothly
from λ= 1 at ξ = 0 to λ= 0 at ξ = X0∗ = {2F ′(0)}1/2. For m > 3/2, F ′(λ) is an increasing
function for λ in a certain range [0, λm], where λm > 0 and F ′′(λm) = 0; hence a frontal
shock must form by some characteristics for some λ ∈ (0, λm) overtaking the characteristic
for λ= 0, as discussed further below. Neverthless, (3.5) still gives the shape of a long-time
similarity solution for λ ∈ [λ∗, 1], where λ∗ is the frontal shock height. Similar results
were obtained by Yang & Yortsos (1997) for unidirectional flow.

Importantly, as we are interested in the linear stability of radial intrusions into a Hele-
Shaw cell, we can expand (3.4) as τ → ∞, to obtain

ξ ∼ X0 + ξ2
ini t − X2

0
2X0

e−τ + · · · . (3.6)

A key implication of (3.6) is that any axisymmetric perturbations left over from the initial
conditions decay as O(e−τ ), or equivalently, O(t−1). The decay of all axisymmetric
perturbations at the same rate in this problem may be contrasted with perturbations from
self-similarity in other problems (see e.g. Witelski & Bernoff 1999; Leppinen & Lister
2003; Mathunjwa & Hogg 2006) where there is a discrete spectrum of distinct eigenmodes
with different decay rates.

3.1. Solutions with shocks
For m > 3/2, F ′(λ) does not vary monotonically with λ, as noted above, so some
characteristics overtake others, which leads to interfacial steepening and shock formation
– in physical terms, we interpret shocks as regions where λ(r) varies significantly on
the short length scale h0 rather than the long length scale r∗. (An interpretation that
the interface folds over to give a multivalued solution for λ is unphysical as the flow
profile (2.3) decreases monotonically away from the maximum velocity on the centreline.)
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Figure 2. Two possible axisymmetric similarity solutions with different frontal shock heights for an intrusion
with viscosity ratio m = 10. The curved profile for λ> λ∗ is given by (3.5) in both cases. The minimal shock
height is λ∗ = λc ≈ 0.34 for a contact shock (solid line). Also shown is a possible undercompressive shock of
height λ∗ = 0.55 (dashed), which travels faster than the characteristics with λ> 0.55, but slower than a contact
shock.

Depending on initial conditions, the shock may initially form in the interior of the flow
(Dauck et al. 2019), but it will eventually overtake the front and become a frontal shock of
some height λ∗. For axisymmetric flow, the frontal condition (2.12e) reduces to

dξ∗
dτ

= 1
ξ∗

F(λ∗)
λ∗

− ξ∗
2

. (3.7)

If F(λ∗)/λ∗ <F ′(λ∗), then characteristics continue to overtake the front, and the shock
height increases until F(λ∗)/λ∗ �F ′(λ∗). There are two cases to consider (see figure 2),
which previous work suggests may be relevant for smaller and larger values of m,
respectively.

If the shock height is determined by the information reaching it along characteristics,
then λ∗ will tend towards the equilibrium height λc of a so-called ‘contact’ shock,
where F(λc)/λc =F ′(λc), with λc given by (1.1). A consequence of this condition is
that {F(λc)/λc}′ = 0, so the shock speed F(λ∗)/λ∗ for small perturbations differs from
the equilibrium value only at O((λ∗ − λc)

2). This does not affect the linear behaviour,
hence the shock position ξ∗ tends towards its equilibrium position as e−τ just like the
characteristics (compare (3.2) and (3.7)).

Alternatively, as seems to be the case for at least m > 5, the shock height is determined
by local dynamics on the length scale h0 of two-dimensional Stokes flow around the
front of the intrusion (Yang & Yortsos 1997). In this case, we have λ∗ > λc, ξ∗ < ξc and
F(λ∗)/λ∗ >F ′(λ∗), and the so-called ‘undercompressive’ shock (see Bertozzi, Münch &
Shearer 1999) outpaces the characteristics to leave a flat region behind it where λ= λ∗
(dashed line in figure 2). There is currently no theory for λ∗, but prior work suggests
that λ∗ increases from about 0.45 to about 0.6 as m increases from 5 to ∞ (Reinelt
& Saffman 1985; Rakotomalala et al. 1997; Videbæk 2020). Since the shock height is
determined by local dynamics, it will become constant as the front moves some O(1)

multiple of h0, which is on a much shorter time scale than the evolution of the whole
flow.

To summarise, we have shown in this section that radial intrusions into a Hele-Shaw cell
with or without a shock are stable to axisymmetric perturbations, with all perturbations
decaying like e−τ = t̂/t . We have in (3.5) the shape X0(λ) of a steady axisymmetric
similarity solution. We now proceed to the central point of the paper, a linear stability
analysis of this base state to determine the growth rate of possible fingering instabilities.
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4. Linear stability analysis

4.1. Formulation of the equations
We wish to consider small non-axisymmetric perturbations to the axisymmetric similarity
solution of § 3. For simplicity, we will assume that any frontal shock for m > 3/2 is a
contact shock, and note that this gives the smallest shock height and plausibly the smallest
tendency to instability. We return to the case of undercompressive shocks in § 4.4.

Introducing the function Φ = ξqξ for convenience, we can write (2.11) in the form

Φ = −Mξ
∂p

∂ξ
, ξ

∂Φ

∂ξ
=M ∂2 p

∂θ2 + O(2), (4.1a)

∂λ

∂τ
+ 2F ′Φ − ξ2

2ξ

∂λ

∂ξ
= O(2) for ξ < ξ∗, (4.1b)

where O(2) denotes terms proportional to (∂M/∂θ)(∂p/∂θ) in (4.1b) and qθ (∂λ/∂θ) in
(4.1c) that are both quadratically small in the perturbation and can thus be neglected in a
linear analysis. Neglecting the O(2) term, (4.1c) implies that λ is constant to linear order
along radial characteristics defined by

dξ2

dτ
+ ξ2 = 2F ′Φ,

dθ

dτ
= 0. (4.2)

The axisymmetric base state is given by ξ = X0(λ), p = P0(λ) and Φ = Φ0 = 1, where

X0 = {
2F ′(λ)

}1/2
, MP ′

0 = −X (λ) and X (λ) ≡ X ′
0

X0
= F ′′

2F ′ . (4.3)

The base state and the functions M, F and X are all given as functions of λ. Hence it is
again convenient to use λ as the independent radial variable in place of ξ , and to pose the
perturbation expansion in ξ < ξ∗(θ, τ ) in the form

ξ(λ, θ, τ ) = X0(λ) + X1(λ) eikθ+στ + · · · , (4.4a)

p(λ, θ, τ ) = P0(λ) + P1(λ) eikθ+στ + · · · , (4.4b)

Φ(λ, θ, τ ) = 1 + Φ1(λ) eikθ+στ + · · · , (4.4c)
where σ is the growth rate. The azimuthal wavenumber k takes integer values for 2π-
periodicity, but can be treated as a continuous variable for convenience without loss of
generality. We neglect terms that are quadratic or higher in the perturbation quantities X1,
P1 and Φ1.

Applying the chain rule to the transformation from (ξ, θ, τ ) to (λ, θ, τ ), we transform
the derivatives in (4.1a,b) using

ξ
∂

∂ξ
= ξ

∂ξ/∂λ

∂

∂λ
and

(
∂

∂θ

)
ξ

=
(

∂

∂θ

)
λ

− ∂ξ/∂θ

∂ξ/∂λ

∂

∂λ
. (4.5)

We then substitute the expansion (4.4) into (4.1a,b) and (4.2), linearise the result, and use
(4.3) to simplify the equations further. After some algebra, we obtain

XΦ1 +
(

X1

X0

)′
= −MP ′

1, Φ ′
1 = −k2X

(
MP1 + X1

X0

)
(4.6)
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and

2(σ + 1)
X1

X0
= Φ1 . (4.7)

The special case σ = −1 provides stable perturbations, such as the axisymmetric
perturbations of § 3, and it will not be considered further. If σ �= −1, then we can use
(4.7) to eliminate X1/X0 from (4.6) and obtain the coupled system

(MP ′
1

Φ ′
1

)
=X

⎛
⎜⎜⎝

k2

2(1 + σ)

k2

4(1 + σ)2 − 1

−k2 − k2

2(1 + σ)

⎞
⎟⎟⎠ ·

(MP1
Φ1

)
. (4.8a)

As shown in Appendix A, the general boundary conditions (2.12) reduce to the boundary
conditions

P1

Φ1
= 1

k
− 1

2(1 + σ)
at λ= λ∗, Φ1 → 0 as λ→ 1 (4.8b)

on (4.8a). Equations (4.8) form a linear homogeneous system, which constitutes an
eigenvalue problem to determine the growth rates σ(k; m) of perturbations with radial
structure given by eigenfunctions P1 and Φ1. It can be solved numerically in this form.

Alternatively, we can eliminate P1 to obtain a second-order equation for Φ1:

XM
(

Φ ′
1

XM
)′

= k2X 2
(

1 + N
σ + 1

)
Φ1, where N (λ) ≡ M′

2MX , (4.9a)

with boundary conditions

Φ ′
1

k2X∗
=
(M∗ − 1

2(1 + σ)
− M∗

k

)
Φ1 at λ= λ∗, Φ1 → 0 as λ→ 1. (4.9b)

This second-order form is convenient for WKB analysis of the limit k → ∞.
Though it is slightly unusual for the eigenvalue σ to appear in the boundary condition

(4.9b) as well as the differential equation (4.9a), this second-order form is sufficiently
close to a standard Sturm–Liouville eigenvalue problem to expect, as proves to be the
case (see Appendix C), that there is a discrete spectrum of eigenmodes for each k and m.
We label these modes by an integer n � 0, which is equal to the number of zeros of the
eigenfunction away from the zero boundary condition at λ= 1, or equivalently, at ξ = 0
(see figure 5, for example).

4.2. Numerical solution and results
We solved the boundary-value problem (4.8) numerically using continuation methods
implemented with the software package AUTO-07P (freely available at http://indy.cs.
concordia.ca/auto). The strategy for obtaining an eigenmode is analogous to that detailed
in Ribe, Lister & Chiu-Webster (2006): start with a guess for σ and a non-zero solution
of (4.8a) that satisfies one of the homogeneous boundary conditions (4.8b), but will not,
in general, satisfy the other; then use continuation to slowly impose the other boundary
condition, keeping the solution non-zero and allowing σ to vary slowly until it reaches an
eigenvalue at the point where the second boundary condition is satisfied. Having obtained
the eigenmode for one set of parameters, continuation can again be used to track its
variation with k and m. We present results for the first three eigenmodes, n = 0, 1, 2, but,
given the discrete nature of the spectrum, it is easy to find starting values of σ that give
the higher eigenmodes.
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Figure 3. The axisymmetric base-state profiles ξ = X0(λ), as given by (4.3), of self-similar solutions for
intrusions with viscosity ratios m ∈ {0.15, 0.5, 1.25, 5}. For m = 5, there is a frontal shock at ξ∗ = 1.815 of
height λ∗ = 0.354, rather than the unphysical non-monotonic profile (dashed) that would be predicted by
ignoring the crossing of characteristics.

Figure 3 shows the analytical base-state profiles (4.3) for various values of m. For
m < 3/2, the profile has a rounded nose with the tip position at ξ∗ = √

3, as determined
by a combination of the centreline velocity for λ= 0 and radial spreading. For m � 1, the
more viscous intruding fluid is lubricated by the less viscous ambient fluid near the origin,
and the intrusion there is wider and closer to plug flow than for m = 1. For 1 < m < 3/2,
the lower viscosity intrusion is narrower near the origin, and wider near the rounded nose
than for m = 1. For m > 3/2, there is a frontal shock, which we are assuming has height
given by (1.1).

In the results below, we will use viscosity ratios m ∈ {0.15, 1.25, 5} as illustrative
examples of the stability behaviours found in the three distinct cases: a more viscous
intrusion (m < 1), a less viscous intrusion without a shock (1 < m < 3/2), and a less
viscous intrusion with a shock (m > 3/2). We observe briefly that m = 1 (equal viscosities)
is a very special case as the lack of any viscosity differences means that the flow is
always radial with flux q = ξ−1eξ and a parabolic (Poiseuille) profile. Hence there is no
perturbation flow (P1 = Φ1 = 0), the interface is simply a passive tracer in the base-state
flow, and any perturbations to X0(λ) decay purely kinematically with σ = −1.

Figure 4 shows the growth rates σ of the first three eigenmodes n ∈ {0, 1, 2} for the three
illustrative viscosity ratios as functions of the azimuthal wavenumber k. Some general
observations can be understood physically. First, for all the eigenmodes, σ → −1 as k → 0,
which reflects the result σ = −1 for axisymmetric perturbations in § 3. (Recall that we are
treating k as a continuous variable for convenience, rather than imposing 2π-periodicity.)
A second, related observation is that in each graph, σ becomes closer to −1 as n increases.
Increasing n corresponds to increasing the number of zeros in the eigenfunctions and
hence to increasing the amount of radial structure. We can reasonably expect that as
n → ∞ for fixed k, the radial structure dominates the azimuthal variation, and therefore
the growth rate again approaches the σ = −1 result for axisymmetric perturbations. Third,
σ < −1 for m < 1, and σ > −1 for m > 1. This is consistent with the observation that
σ = −1 for all perturbations when m = 1, and is also consistent with intuition derived from
the Saffman–Taylor instability mechanism that pushing a more viscous fluid into a less
viscous fluid tends to be stable, whereas pushing a less viscous fluid into a more viscous
fluid tends to promote instability. Nevertheless, m = 1 is definitely stable (σ = −1), so
m > 1 is not sufficient to produce instability, as can been seen, for example, in figure 4 for
m = 1.25.

For m = 0.15, all modes are stable with σ < −1, the fundamental mode n = 0 is the
most stable, and as k increases the perturbations become more stable. For m = 1.25, all
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Figure 4. The growth rates σ corresponding to the first three eigenmodes n ∈ {0, 1, 2} with viscosity ratios
m ∈ {0.15, 1.25, 5} as functions of the azimuthal wavenumber k. For m = 5, the fundamental mode n = 0 is
unstable if k exceeds a critical value ≈ 18 where σ = 0 (blue dot).

modes are again stable, but with −1 < σ < 0, the fundamental mode n = 0 is the least
stable, and though the perturbations become less stable as k increases, the growth rates
appear to tend to a limit that is still negative as k → ∞. For m = 5, which has a base state
with a shock, modes n = 1, 2 are again stable with −1 < σ < 0. The crucial difference for
m = 5 is that the fundamental mode n = 0 becomes unstable at k ≈ 18, and the growth rate
increases rapidly as k → ∞. In § 4.3, we show that the instability mechanism is essentially
the Saffman–Taylor mechanism acting on the jump in mobility at the frontal shock.

Figure 5 shows the radial structure of the first three eigenmodes of the pressure
perturbation P1 and flux perturbation Φ1 as functions of the radial similarity variable
ξ . The plots show solutions for the three illustrative viscosity ratios and for four azimuthal
wavenumbers k ∈ {1, 5, 25, 100}. As expected, the number of zeros (additional to ξ = 0)
increases with mode number n. We note that Φ1 is approximately in phase with P1 for
m = 0.15, but has approximately the opposite phase (sign) for m = 1.25 and m = 5. From
the form of the matrix in (4.8a), it can be inferred that this is largely a consequence of the
sign of the factor 1/(σ + 1), which is different for m > 1 and m < 1.

For k = 1 (sideways displacement, perturbations ∝ cos θ ) the figure shows that the
eigenmodes giving relaxation back to axisymmetry have a comparable length scale to the
full extent of the intrusion. As k increases, the eigenmodes become increasingly localised
radially. In Appendix B, we show that as k → ∞ for m < 3/2, the eigenmodes become
localised about an interior position between the origin and the nose; for m > 3/2, the
eigenmodes become localised near the frontal shock.

Figure 4 showed that for m = 5, the fundamental mode is unstable for k � 18. Figure 6
extends this result by showing the regions in the (k, m)-plane where σ > 0 or σ < 0, and
the curve of marginal stability where σ = 0. For m > 3/2, the fundamental mode is always
unstable for sufficiently large k, while for m < 3/2, it is stable for all k. In particular,
for 1 < m < 3/2, the flow is stable to all perturbations, which agrees with experimental
observations of stability in this regime, but contrasts with instability in the classical
Saffman–Taylor problem for m > 1.

As m decreases towards 3/2, these calculations show that the flow is only unstable to
very large k, for example k > 103 for m < 1.75. However, if k is too large (k � r∗/h0), then
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Figure 5. Numerical solutions for the first three eigenmodes n ∈ {0, 1, 2} in terms of the perturbation
pressure P1 (solid) and perturbation flux Φ1 (dotted) for wavenumbers k ∈ {1, 5, 25, 100} and viscosity ratios
m ∈ {0.15, 1.25, 5}. The nose position is at ξ∗ = √

3 for m ∈ {0.15, 1.25}, and at ξ∗ ≈ 1.81 for m = 5.

the horizontal length scale r∗/k of perturbations near the front is less than the thickness
2h0 of the Hele-Shaw cell, and the horizontal viscous stresses, which are neglected in the
lubrication model (2.1), will stabilise the flow and provide a large wavenumber cut-off
(cf. Paterson 1985). It follows that as m decreases towards 3/2, the instability would
manifest only at very large r∗/h0, and would thus be difficult to observe experimentally in
practice.

Figure 6 also shows asymptotic results for the large-wavenumber limit k → ∞, which
are derived in the next subsection. The excellent agreement with the numerical results
supports the accuracy of the calculations.

4.3. Analysis of the limit k � 1 for m > 3/2 and n = 0
Numerically, instability occurs only for n = 0, sufficiently large k and m > 3/2 (figures 4
and 6). We now pursue an analysis of the limit k → ∞ to confirm these results and examine
the nature of the instability as m → 3/2. Numerically, it appears that σ ∼ k as k → ∞, and
we note that this is also true for the Saffman–Taylor instability in the limit of vanishing
surface tension.
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Figure 6. The marginal-stability contour σ = 0 for the fundamental mode n = 0 in the (m, k)-plane compared
to the asymptotic result (4.16) for k � 1.

For convenience of notation, we define

T = k

2(1 + σ)
, (4.10)

which we anticipate will be an O(1) quantity if σ ∼ k. Equations (4.9a,b) can then be
written in the form

Φ ′′
1 − k2X 2Φ1 =

(X ′

X + M′

M
)

Φ ′
1 + kX TM′

M Φ1, (4.11a)

Φ ′
1

kX∗
= (TM∗ − T −M∗) Φ1 at λ= λ∗, Φ1 → 0 as λ→ 1. (4.11b)

We make the usual WKB assumption that Φ1 = exp[S(λ)] with S = kS0 + S1 + O(k−1) ,
and substitute into (4.11a) to obtain

k2S′
0

2 − k2X 2 + kS′′
0 + 2kS′

0S′
1 = kS′

0

(X ′

X + M′

M
)

+ kX TM′

M + O(1). (4.12)

At O(k2), we have the decaying solution S′
0 = +X . (Note that X < 0, so this solution

has Φ1 → 0 as λ→ 1.) This also implies that kS′′
0 = kS′

0X ′/X in (4.12). At O(k), the
remaining terms simplify to

2S′
1 = (1 + T )

M′

M ⇒ S1 = 1 + T

2
ln M+ c . (4.13)

We note that we can substitute the solutions for S0 and S1 into the WKB ansatz to obtain
a uniformly asymptotic expression Φ1 = AM(1+T )/2(X0/X0∗)k for the structure of the
fundamental eigenmode, which includes the effect of radial mobility variations.

The boundary condition (4.11b) at λ= λ∗ yields

S′
0

X∗
+ S′

1
kX∗

+ O(k−2) = TM∗ − T −M∗ , (4.14)
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Figure 7. Comparison of the numerically computed growth rate σ(k) for n ∈ {0, 1, 2} and m = 5 (solid lines)
with the corresponding WKB solution (dashed lines). Note that σ changes sign for n = 0 at k ≈ 18.

where S′
0 and S′

1 are now known. This equation can be rearranged using (4.10) to give the
desired asymptotic result for the growth rate:

σ(k; m) ∼ k

2
M∗ − 1
M∗ + 1

− 1 + 1
2|X∗|

M′∗
(M∗ + 1)2 + O(k−1) . (4.15)

As shown in figure 7, (4.15) gives a very good approximation to the full numerical
result, even at moderate k. The first term agrees with a simple analysis of Saffman–
Taylor instability at the front of an intrusion of uniform thickness and hence uniform
mobility M∗ > 1 (see e.g. Saffman & Taylor 1958; Lajeunesse et al. 2001; Videbæk 2020).
The second term, −1, reflects the stabilising effect of radial geometry (cf. Wilson 1975;
Paterson 1981, 1985).

The third term, involving M′∗, is new and describes the effects of the base-state variation
of the intrusion thickness away from the front. The term is positive as the mobility M
is an increasing function of λ for m > 1, so M′∗ > 0. Hence it represents an additional
destabilisation relative to the Saffman–Taylor result for an intrusion of uniform thickness
in radial geometry. This may be understood physically as the effect of greater mobility
(M>M∗) behind the frontal shock, which facilitates the growth of perturbations. The
size of the third term varies only slowly with m from 1/4 at m = 3/2 to 3/16 as m → ∞.

By setting σ = 0 in (4.15), we can also obtain an asymptotic estimate for the curve of
marginal stability. We substitute for M∗ and X∗ from (2.10) and (4.3), and rearrange (4.15)
to obtain

k(m) ≈ 3
(m − 1)λ3∗

+ 3 + 2(m − 1)λ3∗
2 + (m − 1)λ3∗

. (4.16)

This result is asymptotic as m → (3/2)+, since this gives λ∗ → 0 and k → ∞, and it agrees
remarkably well with the numerically calculated curve of marginal stability (figure 6), even
for relatively small wavenumber k.

The WKB analysis for n = 0 with m > 3/2 has thus provided excellent confirmation
of the numerical results, and gives asymptotic expressions as k → ∞ for the unstable
eigenmode, growth rate and marginal stability curve that include the leading-order effects
of the radial variation in the mobility M of the base state. In Appendix B, we analyse
the limit k → ∞ for n > 0 with m > 3/2, and for n � 0 with m < 3/2, which again
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provides good confirmation of the numerical results. For 1 < m < 3/2, we find that
−1 < σ < −3/4.

4.4. Undercompressive shocks
A formal stability analysis of undercompressive shocks is somewhat complicated by
the need to split the intrusion into a central region where λ> λ∗ that is reached by
characteristics from the origin, and an annular region where λ= λ∗ that lies between the
shock and the central region. The equations in the annular region are similar to those ahead
of the shock, but with mobility M∗. As noted earlier, there is currently no theory for λ∗.
Fortunately, we can, nevertheless, derive a simple result from the large-k analysis in the
previous section.

Recalling that X = X ′
0/X0, we can rewrite M′/X in (4.15) as X0 dM/dX0. For an

undercompressive shock, this derivative is zero in the annular region of constant λ, thus

σ(k; m) ∼ k

2
M∗ − 1
M∗ + 1

− 1 . (4.17)

This result is the same as for an entirely uniform thickness intrusion (Paterson 1985;
Videbæk 2020). It appears here as the asymptotic result, despite the non-uniform central
region, because the asymptotic radial eigenfunction Φ0 ∝ (X0/X0∗)k is concentrated near
the front, and lies in the uniform annular region (cf. the final panel of figure 5).

The loss of the third term from (4.15) makes the disturbance more stable, but the fact
that λ∗ > λc for an undercompressive shock makes the disturbance less stable. The net
effect depends on λ∗. However, provided that λ∗ → 0 as m → 3/2, the marginal stability
estimate from (4.17) also has k → ∞.

5. Discussion and conclusions
Using lubrication theory, we have derived the equations governing the shape of a fluid
tongue intruding from a point source into a Hele-Shaw cell filled with another fluid of
the same density but differing viscosity, neglecting both diffusion and surface tension.
For the case of perfectly axisymmetric flow, changing variables to the relative fluid
fraction λ allowed an explicit solution from initial conditions, from which we could show
that the initial-value problem approaches a late-time similarity solution with all relative
perturbations decaying like t−1. This similarity solution is the axisymmetric equivalent
of that found by Yang & Yortsos (1997) for rectilinear flow, and it grows like t1/2 instead
of t . As in Yang & Yortsos (1997), if the viscosity ratio m exceeds 3/2, then there must be
a frontal shock of height λ∗ � λc.

Our linear stability analysis of non-axisymmetric perturbations to this self-similar base
state has provided clear theoretical confirmation of the previously stated hypothesis that
the frontal shock is crucial for the development of instability in miscible Hele-Shaw
displacement with negligible diffusion: axisymmetric flows with viscosity ratio m < 3/2,
and hence without a shock, were shown to be stable; axisymmetric flows with viscosity
ratio m > 3/2, and hence with a shock, were shown to be unstable. In particular, this means
that intrusions of less viscous fluid into a more viscous ambient can be stable, provided
that the viscosity ratio does not exceed 3/2.

The analysis gives an indication why the critical viscosity ratio is m = 3/2 and not
m = 1 as for immiscible displacement. For miscible displacement with m = 1, the fluid
interface is just a passive tracer, which is advected by the base-state radial Poiseuille flow.
The kinematics are the same as described in § 3 , and give stable behaviour with σ = −1.
Crucially, the radial gradient of the mobility M remains finite for 1 � m < 3/2, so σ
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varies continuously from σ = −1 as m varies from 1. As might be expected physically,
the flow does becomes less stable as m increases, but as shown in Appendix B, σ

actually remains less than −3/4 for any m < 3/2, hence the flow remains stable. (By
contrast, immiscible displacement has a sharp jump in mobility at the front for m > 1,
and this causes a significant change in the behaviour of σ at large k, which drives the
Saffman–Taylor instability.)

For m > 3/2, there must be a frontal shock and a mobility jump, and we find the
expected Saffman–Taylor-like instability. Our analysis puts this expectation on a firm
theoretical footing by including the effects of the radial variation of the base state. There
is a discrete spectrum of radial eigenmodes with differing numbers of zeros, and only the
fundamental mode n = 0 can be unstable. It is unstable for sufficiently large azimuthal
wavenumber k and, within the lubrication model, is most unstable as k → ∞. This
divergence for very large k could be regularised (see e.g. Paterson 1985; Dias & Miranda
2013; Nagel & Gallaire 2013) by re-including neglected horizontal stresses, which would
stabilise wavelengths less than the cell thickness and predict the most unstable wavelength
to be a few times the cell thickness.

Comparison of wavelengths to the cell thickness is also essential for prediction of the
onset radius at which the instability becomes manifest in experiments, particularly as m
decreases towards 3/2. As shown in figure 6, the sufficiently large k for instability is
predicted to increase rapidly as m decreases, and it diverges as m → 3/2. For example,
k > 103 is necessary for instability with m = 1.75. For the unstable wavelengths to exceed
the cell thickness, one also needs r∗ > h0k, making the instability more difficult to observe
in a given experimental cell. The predicted divergence in the onset radius is consistent with
experimental data in Videbæk (2020) and with the difficulty in observing instability for m
less than approximately 2–3 (Lajeunesse et al. 1997; Bischofberger et al. 2014). (A further
contributing factor may be the time take to form the frontal shock structure: for m = 2, the
velocity of even the fastest characteristic exceeds the centreline velocity by less than 1 %.)

In addition to the numerical results, we also found asymptotic solutions to the linear
stability problem by using a WKB analysis for large k. These confirm the numerical results
and provide useful analytic expressions for the growth rates, for example, the remarkably
good marginal stability curve (4.16) for a contact shock or the asymptotic growth rate
(4.17) of an undercompressive shock.

It would be nice to have a better understanding which of the two theoretical shock
structures applies for m < 5, and why. We note, however, both from above and from
Goyal & Meiburg (2006), that for m < 2−3, the front is likely very slow to become quasi-
steady (even in a tube where it is stable), and that a very large, or infinite, Péclet number
may be required for diffusion to remain negligible. Full direct numerical simulations
or experiments could be challenging. The effects of diffusion (physical or numerical)
increase with radial distance in an axisymmetric geometry since the velocity ṙ∗ of the
front decreases like t−1/2. Goyal & Meiburg (2006) studied diffusive effects on instability
numerically in a linear geometry, and found that the most unstable wavelength and the
growth rate increase only slightly, by of order 10 %, for m > 7 as the Péclet number
2h0 ẋ∗/D increased from 500to 2000. Similarly, Videbæk & Nagel (2019) found similarly
in radial (and linear) experiments that the most unstable wavelength and also the onset
radius showed no discernible trend for m = 5 as the Péclet number at onset ranged from
1000 to 20 000, but also that a quite different fingering instability is seen at lower Péclet
numbers. The boundary between their low- and high-Péclet-number regimes increases as
m decreases, which might be linked to the increase in the marginally stable wavenumber,
and hence onset radius, shown here (figure 6) as m decreases towards the critical value
m = 3/2. While questions remain over the detailed effects of diffusion, these studies are
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at least indicative of a high-Péclet-number regime in which diffusion can be neglected.
Perhaps the shock structure could be investigated by Stokes flow calculations in this limit.

We have concentrated here on the case of radial flow, in part because of its experimental
relevance, and in part because the radial geometry allows fully separable eigenfunctions
with a certain radial structure in similarity space, fixed azimuthal wavenumber and power-
law time dependence. (Analysis of unidirectional flow is significantly more difficult.) To
summarise our main conclusions: the case m = 1 is kinematically stable with algebraic
decay like t−1; intrusions with 1 < m < 3/2 are stable, though less so; intrusions with
m > 3/2 are unstable for sufficiently large wavenumber due to the jump in mobility, and
hence pressure gradient, at the frontal shock; the instability is hard to observe for m only
a little larger than 3/2.
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Appendix A. Boundary conditions on the perturbations
The perturbation equations (4.8a) are a second-order system of linear ordinary differential
equations, hence we expect two boundary conditions. Physically, these are given by a
matching condition to the flux and pressure distribution ahead of the nose, and a condition
on there being no perturbation flux at the origin. Mathematically, we solve the system
ahead of the nose analytically to find a matching condition via (2.12b–d), and we use a
local expansion near the origin to find an appropriate boundary condition from (2.12a).

Ahead of the nose (ξ > ξ∗), we have λ≡ 0 and must pose a perturbation expansion of
the form

p(ξ, θ, τ ) = p0(ξ) + p1(ξ) eikθ+στ + · · · , (A1a)

Φ(ξ, θ, τ ) = 1 + φ1(ξ) eikθ+στ + · · · , (A1b)
rather than (4.4). Since λ= 0, we have M= 1, q = −∇ p and ∇2 p = 0. The base state
Φ = 1 gives p0 = − ln ξ to within an unimportant additive constant. Since the perturbation
term in (A1 a ) also satisfies Laplace’s equation, we must have p1 ∝ ξ±k . Assuming k > 0
for definiteness, the condition (2.12a) of decaying flow in the far field rules out ξ+k , hence
we obtain

p1(ξ) = Aξ−k and φ1(ξ) = Akξ−k , (A2)

where A is the (small) perturbation amplitude ahead of the nose.
Since qθnθ is quadratically small in the perturbation, the frontal boundary conditions

(2.12c) and (2.12 d) reduce to Φ and p being continuous across ξ = ξ∗. As discussed
in § 3.1, contact shocks tend to their equilibrium height like e−τ . Hence for σ �= −1, we
can assume that the frontal height λ∗ is not perturbed, so the frontal position from the
expansion (4.4a) is ξ∗ = X0(λ∗) + X1(λ∗) eikθ+στ . We substitute this position into (A1)
and equate the linearised results to the expansions (4.4b,c) to obtain

P1 = p1(X0) + X1
dp0

dξ
= p1(X0) − X1

X0
and Φ1 = φ1(X0) at λ= λ∗. (A3a,b)
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We use (4.7) to replace X1/X0 by Φ1/2(1 + σ). We then divide (A3a) by (A3b) to obtain
the desired matching condition

P1

Φ1
= 1

k
− 1

2(1 + σ)
at λ= λ∗, (A4)

which ensures that the solution to (4.8a) in x < x∗ can be matched to the decaying solution
(A2) in x > x∗.

At the origin ξ = 0, we have λ= 1. Expanding (3.5) about this point yields λ∼ 1 −
1
6 mξ2 as ξ → 0, thus M= m + O(ξ2). We can thus approximate (4.1) by

Φ ∼ −mξ
∂p

∂ξ
and ξ

∂Φ

∂ξ
∼ m

∂2 p

∂θ2 as ξ → 0. (A5)

Hence p again satisfies Laplace’s equation at leading order, and substitution of the
expansion (A1) again leads to p1 ∝ ξ±k . This time it is the singular solution ξ−k that
is ruled out by the origin condition (2.12a), hence we obtain

p1(ξ) ∼ Bξ k and φ1(ξ) ∼ −Bmkξ k as ξ → 0, (A6)

where B is an amplitude. Again by equating the expansions (4.4) and (A1), this time as
ξ → 0 or λ→ 1, we obtain

P1 = p1(X0) − X1

m X0
and Φ1 = φ1(X0) as λ→ 1. (A7)

The condition Φ1(1) = 0 is the simplest way of imposing the boundary condition (2.12a)
on (4.9a). Alternatively, we again eliminate X1/X0 and divide the equations to obtain the
equivalent condition

lim
λ→1

P1

Φ1
= − 1

mk
− 1

2m(1 + σ)
, (A8)

which is more convenient numerically for (4.8a). Either form of boundary condition
ensures regularity of the perturbation as ξ → 0.

Appendix B. Analysis of the limit k → ∞ for the stable modes
We wish to solve (4.9) as k → ∞ for the cases n � 1 with m > 3/2 and n � 0 with
m < 3/2. From figure 4 , we expect that σ → 0 in the first case, and that σ tends to a
finite negative limit (distinct from −1) in the second.

From the form of (4.9a), we expect that Φ1(λ) varies rapidly on a scale that is
O((kX )−1) except perhaps where σ ≈ −N − 1. On the other hand, the functions X (λ),
M(λ) and N (λ) vary relatively slowly over the O(1) interval λ∗ < λ< 1. Hence we expect
Φ ′′ � Φ ′X ′/X , Φ ′′ � Φ ′M′/M, and we approximate (4.9) asymptotically by

Φ ′′
1 = k2X 2

(
1 + N

σ + 1

)
Φ1, where N (λ) = M′

2MX = M′F ′

MF ′′ , (B1a)

Φ1 = 0 at λ= λ∗, Φ1 → 0 as λ→ 1. (B1b)

For m > 3/2 , the asymptotic approximation of (4.9b) by (B1b) as k → ∞ follows
from M∗ �= 1, σ = O(1) and Φ ′

1/k2 = O(k−1); for m < 3/2 , the approximation will be
justified in § B.2 .
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To analyse (B1), we again make the WKB assumption that Φ1 = exp[kS0 + S1 +
O(k−1)], and find straightforwardly that

S′
0 = ±|X |

(
1 + N

σ + 1

)1/2

. (B2)

If 1 +N /(σ + 1) > 0 everywhere, then S′
0 is real, the WKB solutions are exponential in

character, and it is impossible to satisfy the boundary conditions (B1b). Hence to satisfy
the boundary conditions, there must be a region where 1 +N /(σ + 1) < 0 and the WKB
solutions are oscillatory. For n = O(1), this region must be relatively small since the
oscillations are rapid.

The full solutions to (B1) are constructed by matching the oscillatory solution in the
region where 1 +N /(σ + 1) < 0 through the ‘turning point(s)’ where 1 +N /(σ + 1) = 0
to exponentially decaying behaviour in the region(s) where 1 +N /(σ + 1) > 0. The value
of σ is determined by the criterion that matching through the turning point results in only
the decaying, and not the growing, solution. There are two cases to consider.

B.1. Case m > 3/2 and n � 1
For m > 3/2, it can be shown that N (λ) varies monotonically from N (1) = 0 to N (λ∗) =
−1. Hence if σ > 0 or σ < −1, then there is only exponential behaviour and no solution.
We deduce that −1 < σ < 0. Moreover, if the region of oscillatory behaviour is relatively
small for n = O(1), then it must be near λ= λ∗, and we must have |σ | � 1.

We expand locally using |σ | � 1 and N∗ = −1 to obtain

1 + N (λ)

1 + σ
= 1 +N∗(1 − σ + · · · ) + (N −N∗)(1 − σ + · · · ) = σ + (λ− λ∗)N ′∗ + · · · ,

(B3)

where N ′∗ > 0. At leading order, (B1a) reduces to a shifted form of Airy’s equation:

Φ ′′
1 = k2X 2{σ + (λ− λ∗)N ′∗

}
Φ1 . (B4)

The condition of matching to a decaying solution as λ→ 1 requires

Φ1 ∼ Ai
((

k2X 2∗N ′∗
)1/3

{
λ− λ∗ + σ

N ′∗

})
, (B5)

where Ai(z) denotes the Airy function. We note that Φ ′
1/k2 = O(k−4/3), which is

consistent with our previous approximation of (4.9b) by (B1b).
The condition Φ1(λ∗) = 0 requires (k |X∗|/N ′∗)2/3σ to be one of the roots zn of

Ai(z) = 0. These roots satisfy (2/3)(−zn)
3/2 ∼ (n − (1/4))π as n → ∞ (Abramowitz &

Stegun 1964), and the formula gives even the first root correct to within 1 %. Using this
approximation, we obtain the growth rate of the nth eigenmode as

σ ∼ −
(

3
2

{(
n − 1

4

)
π

} N ′∗
|X∗|

)2/3

k−2/3 for n � 1, (B6)

which, as anticipated, is negative and tends to zero as k → ∞. The local expansion
can be continued to calculate an O(k−4/3) correction (Dauck 2020). A global WKB
approximation can be obtained by integration of the equations for S0 and S1 away from
the turning point, and the result of this approximation gives excellent agreement with the
full numerical results for m = 5 and n = 1, 2 shown in figure 7.
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B.2. Case m < 3/2 and n � 1
For the case 1 < m < 3/2, it can be shown that N (0) =N (1) = 0, N (λ) < 0 for λ ∈ (0, 1),
and N (λ) has a unique minimum Nm =N (λm), where Nm ∈ (−1/4, 0) and depends on
m. Hence if σ + 1 > −Nm or σ + 1 < 0, then 1 +N /(σ + 1) > 0 everywhere,and there
is only exponential behaviour and no solution. We deduce that −1 < σ < −1 −Nm , that
the small region of oscillatory behaviour for n = O(1) must be near λm , and that σ + 1
must be just a little smaller than −Nm .

We expand (B1a) near λm to obtain

Φ ′′
1 = k2X 2

m

(
σ + 1 +Nm + 1

2N ′′
m(λ− λm)2

−Nm

)
Φ1, (B7)

where N ′′
m > 0 and we have used σ + 1 ∼ −Nm in the denominator. Equation (B7) has

the same form as the equation of a quantum harmonic oscillator, and the eigenvalues and
eigenfunctions are determined similarly by the condition of matching to decaying solutions
outside the oscillatory region (i.e. for |λ− λm | � k−1/2). On rescaling the standard results
for the harmonic oscillator, we obtain the asymptotic growth rate of the nth eigenmode as

σ ∼ −1 −Nm + (2n + 1)
(−N ′′

m/2Nm
)1/2Nm

|Xm | k−1 for n � 0, (B8)

which, as anticipated, is just a little smaller than −1 −Nm . The value of Nm varies
monotonically in 1 < m < 3/2, with Nm → 0 as m → 1+, and Nm → −1/4 as m →
(3/2)−. Thus as m approaches 1, the full range of decay rates −1 < σ(k) < −1 −Nm
is confined increasingly closely to the t−1 behaviour obtained at m = 1 when the interface
is just a passive tracer. As m approaches 3/2, the range of decay rates expands to rates
between t−3/4 and t−1 at large and small k, respectively, but remains well short of
instability. (There is a non-uniformity in the double limit m → 3/2 as k → ∞, which in
principle should allow matching to the behaviours found for m > 3/2 in §§ 4.3 and B.1.)

For the case m < 1, we find that N (0) =N (1) = 0 again, but N (λ) > 0 for λ ∈ (0, 1),
and N (λ) has a unique maximum Nm . Hence if σ + 1 < −Nm or σ + 1 > 0, then 1 +
N /(σ + 1) > 0 everywhere, and we deduce that −1 −Nm < σ < −1. The signs of Nm ,
N ′′

m and σ + 1 are the opposite of those for 1 < m < 3/2, but the same argument can be
followed through and leads to the same expression (B8) for the asymptotic behaviour of
the growth rates.

The asymptotic analysis again agrees well with the numerical calculations. For example,
as k → ∞, σ → −1 −Nm and the eigenfunctions concentrate around ξm = X0(λm). For
m = 0.15 this gives σ → −2.93 and ξm = 1.10, while for m = 1.25 it gives σ → −0.87
and ξm = 1.53; cf. figures 4 and 5.

Appendix C. Connection with Sturm–Liouville theory
To establish a connection between the linear stability problem of § 4.1 and Sturm–Liouville
theory, it is convenient to change variables using ξ = {F(λ)

}1/2
and X−1 d/dλ= ξ d/dξ

to rewrite (4.9) as

d
dξ

(
ξ

M
dΦ1

dξ

)
= k2

ξM
(

1 + N
σ + 1

)
Φ1, where N = ξ

2M
dM
dξ

, (C1)

with M and N now implicit functions of ξ . We compare (C1) with the standard form
(py′)′ − qy + λwy = 0, where λ is the eigenvalue, y is the eigenfunction, and p, q and w
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are coefficient functions. We set

p(ξ) = ξ

M , q(ξ) = k2

ξM , w(ξ) = k2

M2

∣∣∣∣dMdξ

∣∣∣∣ , λ= sgn(m − 1)

2(σ + 1)
, (C2)

so p and w are, as usual, positive on (0, ξ∗); the factor sgn(m − 1) in λ then accounts for
dM/dξ < 0 if m > 1 and dM/dξ > 0 if m < 1. Also p, p′, q and w are continuous on
(0, ξ∗).

Equation (C1) has a singular point at ξ = 0, where p = 0, but it is regular and non-
oscillatory with local solutions Φ1 = ξ±k . Hence boundedness of Φ1 at ξ = 0 would be
sufficient as a boundary condition to eliminate the singular solutions. (The situation at
this point is essentially the same as for Bessel’s equation at the origin.)

For m < 3/2, we have M∗ = 1 and the boundary conditions (4.9b) reduce to

Φ1 → 0 as ξ → 0, ξ
dΦ1

dξ
+ kΦ1 = 0 at ξ = ξ∗, (C3)

which are standard separated boundary conditions. Thus (C1) and (C3) have the form of
a Sturm–Liouville problem. From the general theory of such problems (see e.g. Morse
& Feshbach 1953, pp. 719ff), we deduce that (C1) and (C3) have a discrete spectrum of
distinct eigenvalues λn with λn → ∞ as n → ∞. It follows from (C2) that σn → −1 from
above (below) if m > 1 (m < 1) as n → ∞ for fixed k, which confirms and extends the
trends seen for small n in figure 4.

For m > 3/2, the argument is complicated slightly by the appearance of the eigenvalue
λ in the boundary condition:

ξ
dΦ1

dξ
+M∗kΦ1 − λ(M∗ − 1)k2Φ1 = 0 at ξ = ξ∗. (C4)

However, if (C4) is replaced by either of the boundary conditions (i) ξΦ1ξ +M∗kΦ1 = 0
or (ii) Φ1(ξ∗) = 0, then in each case, we obtain a standard Sturm–Liouville problem with
a discrete unbounded spectrum. It can be argued that the sequence of eigenvalues with
condition (C4) is bracketed by the sequences with conditions (i) and (ii), hence that the
eigenvalues with (C4) also form a discrete unbounded spectrum; once again, for fixed k,
σn → −1 from above as n → ∞.
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