PROFINITE MODULES

BY GERARD ELIE COHEN(¹)

Introduction. An inverse limit of finite groups has been called in the literature a pro-finite group and we have extensive studies of profinite groups from the cohomological point of view by J. P. Serre. The general theory of non-abelian modules has not yet been developed and therefore we consider a generalization of profinite abelian groups. We study inverse systems of discrete finite length *R*-modules. Profinite modules are inverse limits of discrete finite length *R*-modules with the inverse limit topology.

Let R be a topological ring, C_R the category of all R-modules and R-homomorphisms. Let B_R be the category of profinite R-modules and continuous Rhomomorphisms. Then B_R is a coreflective subcategory of C_R . Moreover it has exact inverse limits and we study the free and projective objects of B_R . B_R is not full unless the coreflection map is continuous $\forall B \in B_R \cdot B_R$ is an abelian subcategory of C_R , thus B_R is colocally finite.

I. The category of profinite *R*-modules: B_R . We consider an associative ring *R* with 1 and right-unitary *R*-modules unless otherwise stated.

1.1. **PROPOSITION.** Let R be a topological ring, A a simple R-module. The following are equivalent:

- (1) A with the discrete topology is a topological R-module.
- (2) There exists an open maximal right ideal M such that $A \cong R/M$.
- (3) $A \cong R/M'$ implies that M' is open.

Proof. (1) \Rightarrow (2): Let $a \in A$, $a \neq 0$, M = Ann(a). Then $A \cong R/M$. Let $f: A \to R/M$ be the isomorphism (ar)f = r + M. Also $g: A \times R \to A$ is continuous where (a, r)g = ar. Ker $(g) = \{(at, r): atr = 0\} = \bigcup_{t \in r} (\{at\} \times U_t)$ is open where U_t is open in R. $s \in M \Leftrightarrow as = 0 \Leftrightarrow (a, s) \in \text{Ker}(g) \Leftrightarrow s \in U_1$. Thus $M = U_1$ is open.

 $(2) \Rightarrow (3)$: Suppose $A \cong R/M'$. There exists an open maximal right ideal M such that $A \cong R/M$. Let $f: R/M' \to R/M$ be the isomorphism (1+M')f=r+M. Now $g: R \to R$ where (x)g=rx is continuous. $(M)g^{-1}=\{x \in R: (x)g \in M\}=\{x \in R: x \in M'\}=M'$ is open.

Received by the editors June 2, 1971 and, in revised form, August 28, 1972.

⁽¹⁾ This is part of my doctoral thesis which I wrote in 1967 under the guidance and encouragement of Professor I. G. Connell while I was supported by a National Research Council of Canada's Scholarship.

[September

 $(3) \Rightarrow (1)$: The map $(x, y) \rightarrow (x-y)$ is obviously continuous. Also the map g: $A \times R \rightarrow A$ where (a, r)g = ar is continuous since $(\{ar\})g^{-1} = \{(at, s): ats = ar\} = \bigcup_{t \in T} (\{at\} \times C_t\})$ is open where $C_t = \{s \in R: ats = ar\}$: indeed if $C_t = \phi$, C_t is open; otherwise $\exists u \in C_t$ and $C_t = \operatorname{Ann}(at) + u$; if at = 0, $\operatorname{Ann}(at) = R = C_t$ is open; and if $at \neq 0$, $\operatorname{Ann}(at)$ is a maximal right ideal such that $A \cong R/\operatorname{Ann}(at)$. By (3), $\operatorname{Ann}(at)$ is open and thus C is open.

1.2. DEFINITION. The simple *R*-modules satisfying the equivalent properties of 1.1 are called the *discrete simple R-modules*.

1.3. DEFINITION. A discrete finite length *R*-module is an *R*-module *A* of finite length, (i.e., it has a composition series of length $l(A) < +\infty$) and *A* with the discrete topology is a topological *R*-module.

1.4. LEMMA. The class of discrete finite length R-modules is closed under taking submodules, factor modules, finite direct sums and homomorphic images.

Proof. Left to reader.

1.4.1. COROLLARY. Let D_R be the category whose objects are discrete finite length *R*-modules and whose morphisms are continuous *R*-homomorphisms. Then D_R is a full, abelian subcategory of C_R , the category of *R*-modules.

Proof. Left to reader.

1.5. LEMMA. A is a discrete finite length R-module if and only if the composition factors are discrete simple.

Proof. Left to reader.

1.6. DEFINITION. Let C_R be the category of *R*-modules, *R* is a topological ring. Then the subcategory B_R is defined as follows: its objects are inverse limits of discrete finite length modules with the inverse limit topology and its morphisms are continuous *R*-homomorphisms. We call B_R the category of profinite modules.

1.7. EXAMPLE 1. Let Z be the ring of rational integers with the discrete topology. The discrete finite length Z-modules are finite abelian groups: being noetherian, they are finitely generated and being artinian, they cannot have infinite cycles in their decomposition. Thus B_Z is the category of profinite groups with the inverse limit topology.

1.8. EXAMPLE 2. Consider Z, the ring of integers with the (p)-topology, (a basis for the neighborhood system of zero is given by the powers of the prime (hence

maximal) ideal (p)). Thus Z/(p) is a discrete simple R-module. If $q \neq p$ then (q) is not an open maximal ideal and thus Z/(q) is not a discrete simple R-module although it is simple. $Z/(p)^k$ is a discrete finite length R-module. Lim $Z/(p)^n$ is a

profinite Z-module which is the uniform completion of Z when we give Z the (p)-topology.

1.9. EXAMPLE 3. Let R be a commutative local noetherian ring whose maximal ideal is M. We give R the M-topology. Let A be a finitely generated R-module. Then $B_k = A/AM^k$ is a discrete finite length R-module: B_k is the image of a finitely generated free module, $R \oplus \cdots \oplus R \rightarrow B_k$, whence the epimorphism

$$R/M^k \oplus \cdots \oplus R/M^k \rightarrow B_k;$$

one shows R/M^k (and hence B_k by 1.4) is a discrete finite length R-module. Also the $\{B_k\}$ forms an inverse system. Let $B = \lim_{\leftarrow} B_k$, $B \in B_R$. (B is the uniform completion of A if we give A the M-topology). In fact, $B = \lim_{\leftarrow} A/A_i$ where $\{A/A_i\}$ is the set of all the factor modules of A which are discrete finite length R-modules: it suffices to show that $\{A/AM^k = B_k\}$ is cofinal in $\{A/A_i\}$, i.e., $\forall i \in k \exists A_i \supseteq AM^k$. Consider the following chain

$$(A_i + AM^k)/A_i \supseteq (A_i + AM^{k+1})/A_i \supseteq \cdots$$

Since A/A_i is artinian, without loss of generality, we have $(A_i + AM^k)/A_i = (A_i + AM^{k+1})/A_i$, thus $((A_i + AM^k)/A_i)M = (A_i + AM^k)/A_i$. Also $(A_i + AM^k)/A_i$ is finitely generated since A/A_i is noetherian and Rad R = M. Thus $(A_i + AM^k)/A_i = 0$, $A_i + AM^k = A_i$, $AM^k \subseteq A_i$. (Thus if we give A the M-topology, the uniform completion of A is $\lim A/A_i$.)

II. The coreflectivity of B_R . We refer the reader to [5, p. 128] for the definition of the terms: coreflection map, coreflective subcategory.

2.1. DEFINITION. A topological *R*-module is *linearly compact* if every family of closed cosets which has the finite intersection property has a nonvoid intersection.

2.2. LEMMA. Every discrete finite length module is linearly compact and hence every object of B_R is linearly compact.

Proof. (Cf. [6, p. 81, Propositions 5 and 4]).

2.3. LEMMA. Let A_1, \ldots, A_n be submodules of an R-module A such that $A|A_i$ is a discrete finite length R-module. Then $A|\bigcap_{i=1}^n A_i$ is a discrete finite length module.

Proof. Consider the canonical monomorphism

$$A/\bigcap A_i \to A/A_1 \oplus \cdots \oplus A/A_n$$

and it follows from 1.4.

2.4. LEMMA. Let $A = \underset{\leftarrow}{\text{Lim }} A_i \in B_R$, $p_i: A \to A_i$. Let $B_i = \underset{i}{\text{Imp}}_i$. Then A is topologically isomorphic to $\underset{\leftarrow}{\text{Lim }} B_i$ where the canonical projections $q_i: A \to B_i$ are onto.

Proof. Left to reader.

2.4.1. REMARK. Thus $A = \lim_{\leftarrow} A/N_i$ where $N_i = \operatorname{Ker} q_i$.

2.5. Definition of the coreflector G. $C_R \rightarrow B_R$: For any $A \in C_R$ there corresponds a pair $(c_A, (A)G), c_A: A \rightarrow (A)G$ such that the following universal property holds: given any *R*-homomorphism $f: A \rightarrow B$, $B \in B_R$, there exists a unique continuous *R*homomorphism $g: (A)G \rightarrow B$ such that the following diagram commutes

 $f = c_A g$, we sometimes write g = (f)G.

2.5.1. REMARK. This is the same as saying that the inclusion functor $F: B_R \to C_R$ (which forgets the topology of objects of B_R) has a left-adjoint $G: C_R \to B_R$, i.e., $C_R[A, (B)F] \cong B_R[(A)G, B]$.

2.6. Construction of the coreflection G. Let $A \in C_R$. We define $(A)G = \text{Lim } A/A_i$

where (A/A_i) 's are all the factor modules of A which are discrete finite length Rmodules: $\{A/A_i\}$ forms an inverse system (2.3), $(A)G \in B_R$. Let $p_i: \lim_{\leftarrow} A/A_i \rightarrow A/A_i, c_A: A \rightarrow (A)G$ is defined by $(a)c_Ap_i = a + A_i$. Let $f: A \rightarrow B$ be a given R-homo-

 A/A_i , $c_A \cdot A \to (A)G$ is defined by $(a)c_A p_i = a + A_i$. Let $f: A \to B$ be a given K-holiomorphism, $B \in B_R$. $B \cong \text{Lim } B/B_j$ (2.4.1); let $q_j: B \to B/B_j$, $(a)fq_j = (a)f + B_j$. Define g as follows: $(\ldots, a_i + A_i, \ldots)gq_j = (a_k)f + B_j$ where $A_k = (B_j)f^{-1}$. Now A/A_k is a discrete finite length R-module since it is isomorphic to a submodule of B/B_j , where the explicit map is given by $a + A_k \mapsto (a)f + B_j$. One shows g is a continuous Rhomomorphism, makes the diagram commutative and is unique. (The following two facts are used: first, if $q_{ij}: B/B_j \to B/B_i$, $(B_j)q_{ij} \subseteq B_i$, thus $A_e = (B_j)f^{-1} =$ $(B_j)q_j^{-1}f^{-1} \subseteq (B_i)q_{ij}^{-1}(fq_j)^{-1} = (B_i)f^{-1} = A_k$. Thus $A_e \subseteq A_k$ and $q_{ke}: A/A_e \to A/A_k$; also, $(A)c_A$ is dense in (A)G, thus $g: (A)G \to B$ is the unique extension of the continuous mapping $(A)c_A \to B$ defined by the commutativity of the diagram by [1, p. 85, Corollary 1 to Proposition 2]).

1973]

PROFINITE MODULES

2.7. PROPOSITION. Every object $B \in B_R$ is linearly topologized.

Proof. Let U be any open neighborhood of 0, $U \subseteq B$. U is the union of basic open sets. Thus $0 \in$ some basic open set V, $V = (\{0\} \times \cdots \times \{0\} \times B/B_{n+1} \times \cdots) \cap B$. V is a submodule.

2.8. PROPOSITION. Let U be an open submodule of $B \in B_R$. Then B|U is a discrete finite length R-module.

Proof. Left to reader.

2.9. LEMMA. Let $C \cong \lim_{\leftarrow} C/C_i \in B_R$, $q_i: C \to C/C_i$. Let D be a linearly compact *R*-module. If $f: D \to C$ is an *R*-homomorphism such that $p_i = fq_i: D \to C/C_i$ is continuous and onto $\forall i$, then f is onto.

Proof. Let $y \in C$. We have to find $x \in D \ni (x)f=y$: let $(y)q_i=y_i=c_i+C_i$. Consider $V_i=(y_i)p_i^{-1}$. The V_i 's are closed cosets of D, moreover they have the finite intersection property: consider V_1, \ldots, V_n , since the index set is directed $\exists k \ni i \le k$, $i=1,\ldots,n$; V_k is a nonempty closed coset of D, thus $\exists t \in V_k \ni (t)p_k=y_k=c_k+C_k$. Let q_{ik} : $C/C_k \rightarrow C/C_i$, $(t)p_i=(t)fq_i=(t)fq_kq_{ik}=(t)p_kq_{ik}=(c_k+C_k)q_{ik}=c_i+C_i=y_i$; thus $t \in V_i \forall i=1,\ldots,n$; since D is linearly compact, the intersection of all V_i 's contains an element x.

2.10. THEOREM. Let $B \in B_R$. Let c_B , the coreflection map, be continuous. Then B is topologically isomorphic to ((B)F)G. In fact the coreflection map is a topological isomorphism.

Proof. Consider the following diagram $B \to B$ where $c_B: B \to (B)FG$, $\downarrow \nearrow$ (B)FG

 $g:(B)FG \rightarrow B$, $c_Bg=1_B$. Thus c_B is mono; $(B)FG=\lim_{\leftarrow} B/B_k$ where $\{B/B_k\}$ is the set of all the factor modules of B which are discrete finite length; in the commutative diagram $(B)FG \rightarrow B/B_k$ where $q_k:(B)FG \rightarrow B/B_k$, $p_k:B \rightarrow B/B_k$, $c_Bq_k=p_k$. Since $\bigvee_{P} \mathcal{A}$

 q_k 's and c_B are continuous, p_k 's are continuous, p_k 's are also onto, B is linearly compact (2.2), thus c_B is onto (2.9); c_B is an R-module isomorphism, $\exists c^{-1} \in c_B c^{-1} = 1_B$, $c^{-1}c_B = 1_{(B)FG} \cdot g(c_B c^{-1}) = g = (c^{-1}(c_B g) = c^{-1}, g$ is continuous (2.6), thus $c^{-1} = g$ is continuous and c_B is open.

2.10.1. COROLLARY. If c_B is continuous, then any R-homomorphism $f: B \rightarrow C$, where $B, C \in B_R$, is a continuous R-homomorphism.

GERARD ELIE COHEN

Proof. $c_B: B \to (B)FG$ is continuous, $g:(B)FG \to C$ is continuous, (2.6), $\therefore f = c_B g$ is continuous.

2.10.2. COROLLARY. B_R is full if and only if c_B is continuous $\forall B \in B_R$.

Proof. Left to reader.

2.11. PROPOSITION. B_R is not necessarily a full subcategory.

Proof. Consider $\prod Z_2, Z_2 \in B_{Z_2}$ where Z_2 is the 2-element field with the discrete topology. Let M be a maximal submodule of $\prod Z_2$, thus $\prod Z_2/M \cong Z_2$. Now M is the kernel of a map $f: \prod Z_2 \to Z_2$. Now M is dense in $\prod Z_2$, if f is continuous, M is closed and $M = \overline{M} = \prod Z_2$.

III. Subjects and quotient objects of B_R .

3.1. PROPOSITION. Let $A \in B_R$. Let B be a submodule of A with the relative topology. B is closed if and only if $B \in B_R$.

Proof. If $B \in B_R$, B is linearly compact (2.2), A is linearly topologized (2.8) thus B is closed [6, p. 82, Proposition 7]; conversely, if B is closed, B is linearly compact. Now $A = \lim_{i \to i} A_i, q_i: A \to A_i$, let $(B)q_i = B_i$, the $\{B_i\}$ forms an inverse system of discrete finite length R-modules: consider the following diagram $B \to \lim_{i \to i} B_i$ is continuous $\forall i$, since p_i is the restriction of q_i . Let

$$B_i$$

 $m_i: \underset{\leftarrow}{\text{Lim } B_i \rightarrow B_i}$. By properties of inverse limits, we have a unique *R*-homomorphism $g: B \rightarrow \text{Lim } B_i$. One shows g is a topological isomorphism and thus $B \in B_R$.

3.2. PROPOSITION. Let C be a linearly compact (and hence closed) submodule of B, $B \in B_R$. Then $B/C \cong \lim_{\leftarrow} B_i/C_i$ where $B = \lim_{\leftarrow} B_i$, $p_i: B \to B_i$, $(C)p_i = C_i$ and where B/C has the quotient topology.

Proof. By (3.1), $C = \lim_{\leftarrow} C_i$. Consider $p_i m_i : B \to B_i \to B_i / C_i$ where B_i / C_i has the quotient topology which coincides here with the discrete topology: $\operatorname{Ker}(p_i m_i) \supseteq$ $\lim_{\leftarrow} C_i$. Thus $p_i m_i$ induces $v_i : B/C \to B_i / C_i$. One shows v_i 's are continuous, $\{B_i / C_i\}$ is an inverse system of discrete finite length *R*-modules and that $g: (B/C \to \operatorname{Lim} B_i / C_i)$ induced by the v_i 's is a topological isomorphism.

3.3. PROPOSITION. Let A, $B \in B_R$. Form $A \times B = A \oplus B \in C_R$. Then $A \times B \in B_R$ when we give $A \times B$ the product topology. (In fact it is the sum and the product of A and B in B_R).

Proof. Left to reader.

3.4. PROPOSITION. Every morphism in B_R has a kernel and a cokernel.

Proof. Let $f: A \to B \in B_R$. Let $K = \text{Ker}(f) = (0)f^{-1}$, then K is a closed submodule of A, $K \in B_R$ (3.2), one shows that $i: K \to A$ the canonical monomorphism is the kernel of $f: A \to B$. Also $(A)f \in B_R$ using [6, p. 81, Proposition 2], (2.8) [6, p. 82, Proposition 7], (3.2), $\therefore B/(A)f \in B_R$, (3.3); one shows Coker $(f) \cong B/(A)f$.

3.5. PROPOSITION. Let $f: A \rightarrow B \in B_R$ be a monomorphism, then $f: A \rightarrow B$ is a monomorphism in C_R and hence 1-1.

Proof. Let $a, b: D \to A$ be *R*-homomorphisms such that af = bf. Now $c_D(a)G = a$, $c_D(b)G = b$, $\therefore c_D(a)Gf = c_D(b)Gf$, thus (a)Gf and (b) Gf agree on the dense subset $(D)c_D$ of (D)G, $\therefore (a)Gf = (b)Gf$ on (D)G, thus (a)G = (b)G, and a = c(a)G = c(b)G = b.

3.6. PROPOSITION. Let $f: A \rightarrow B \in B_R$ be an epimorphism, then f is onto.

Proof. Consider 0, $x: B \rightarrow B/(A)F$, now f = fx, $\therefore 0 = x$, B = (A)f.

3.7. PROPOSITION. $F: B_R \rightarrow C_R$ is exact and $G: C_R \rightarrow B_R$ is right exact.

Proof. F is exact (3.5, 3.6, 3.1, 3.2, 3.4). Now consider $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ an exact sequence in C_R where $f: A \rightarrow B$, $g: B \rightarrow C$; we show $(A)G \rightarrow (B)G \rightarrow (C)G \rightarrow 0$ is exact in B_R . First (g)G is onto: let $y \in (C)G$, we have to find $x \in (B)G$ such that (x)(f)G=y; let $p_i:(C)G \rightarrow C/C_i$, $(y)p_i=y_i$, now $B/B_j \cong C/C_i$ where $B_j=(C_i)g^{-1}$ since $g: B \rightarrow C$ is onto, $q_j:(B)G \rightarrow B/B_j$ is onto since $(b+B_j) \in (B)G$, $\therefore (B)G \rightarrow C/C_i$ is continuous and onto: moreover (B)G is linearly compact, $\therefore (g)G$ is onto (2.9). Now $\operatorname{Im}((f)G) \subseteq \operatorname{Ker}((g)G)$ since fg=0; conversely, let $(y)(g)G=(0+C_k), (y)q_j=y_j=(b_j+B_j)$, consider $r_i:(A)G \rightarrow A/A_i$ and the monomorphism $t_j:A/A_i \rightarrow B/B_j$ derived from f where $A_i=B_if^{-1}$, let $s_j=r_it_j$, let $V_j=(y_j)s_j^{-1}$, let $B_m=B_jgg^{-1}=B_j+N$ where $N=\operatorname{Ker}(g)=\operatorname{Im}(f)$; B/B_m is a discrete finite length R-module since $B/B_j \rightarrow B/B_m$ is onto (1.4), $\therefore B/B_m=(B)g/(B_m)g=C/(B_m)g$ and since $(b_m)g+(B_m)g=0+(B_m)g \therefore b_m \in B_m$; since $B_j \subseteq B_m, b_j+B_m=b_m+B_m=0+B_m, \therefore b_j \in B_m, \therefore b_j=s+(a)f$, where $s \in B_j$ and $(a)f \in N, b_j+B_j=(a)f+B_j, \therefore (a+A_i) \in V_j$; thus $\{V_j\}$ are nonempty closed cosets, they have the finite intersection property as in (2.9), and there exists $x \in (A)G$ such that (x)(f)G=y.

GERARD ELIE COHEN

3.8. REMARK 1. (3.7) is also the consequence of the fact that G is left adjoint to F(2.5.1) and thus right exact. It preserves all colimits [4].

3.9. REMARK 2. If B_R is full then B_R is abelian for then every monomorphism is the kernel of a morphism and every epimorphism is the cokernel of a morphism. i.e., by (2.10.2) if c_B is continuous $\forall B \in B_R$, B_R is abelian.

IV. Exact inverse limits and cogenerators in B_R .

4.1. LEMMA. If U_i is closed in B_i , then $\prod U_i$ is closed in $\prod B_i$.

Proof. $\prod U_i = \bigcap S_i$ where $S_i = B_1 \times \cdots \times B_{i-1} \times U_i \times B_{i+1} \times \cdots$ is closed \forall_i .

4.2. LEMMA. Let $\{B_i\}$ be a family of discrete finite length modules. Then $\prod B_i \in B_R$.

Proof. Left to reader.

4.3. THEOREM. B_R is closed under inverse limits.

Proof. Let $\{B_i\}$ be an inverse system of profinite modules, $B_i = \underset{\leftarrow}{\text{Lim } B(i, j_i)}$. Now $\prod B_i = \prod \underset{\leftarrow}{\text{Lim } B(i, j_i) \subseteq \prod_i \prod_{j_i} B(i, j_i) = P, P \in B_R \text{ by 4.2. Also since } B_i \text{ is a closed submodule of } \prod B(i, j_i), \therefore \prod B_i \text{ is a closed submodule of } P \text{ by 4.1.}$

$$\therefore \prod B_i \in B_R$$
 by 3.1

 \therefore Lim B_i , being a closed submodule of $\prod B_i$, belongs to B_R (3.1).

4.4. THEOREM. Lim is an exact functor: $T_R \rightarrow B_R$ where B_R is the category having for objects inverse systems of objects of B_R and for morphisms inverse systems of morphisms of B_R .

Proof. Since Lim is left exact on C_R , it is left exact on B_R . Given $B_i \rightarrow C_i \rightarrow 0$ exact in $B_R \forall_i, v_i: B_i \rightarrow C_i$, let $v: B \rightarrow C \in B_R$ be the morphism induced by the v_i 's. We have to show that v is onto. Let $K = \ker(v_i), t_i: \lim_{i \rightarrow B_i} B_i/K_i$, $(\lim_{i \rightarrow B_i} B_i/K_i)t_i = E_i/K_i$, where $E_i \subseteq B_i$. One shows $\lim_{i \rightarrow B_i} B_i/K_i \cong \lim_{i \rightarrow E_i} E_i/K_i$ (2.4), $\{E_i\} \in T_R$, $\lim_{i \rightarrow E_i} E_i \rightarrow E_i$. Lim B_i . It is thus sufficient to show that the restricted morphism $u: \lim_{i \rightarrow E_i} E_i \rightarrow E_i/K_i$ is onto, let $q_i: \lim_{i \rightarrow E_i} E_i \rightarrow E_i, p_i: \prod_{i \rightarrow E_i} E_i \rightarrow E_i/K_i, p_i m_i$ is onto, one shows $q_i m_i$ is onto and thus u is onto (2.9).

PROFINITE MODULES

4.5. PROPOSITION. B_R has a family of cogenerators $\{U_i\}$.

Proof. Let A/A_j be a discrete finite length *R*-module. Let $A = X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n = A_j$ be a composition series with discrete simple composition factors (1.5). $X_i/X_{i+1} \cong R/M_{i+1}$, where M_{i+1} is a maximal open right ideal of *R* (1.1). Thus $X_i/X_{i+1} \cong \bar{a}_{i+1}R$ where $\bar{a}_{i+1} = a_{i+1} + X_{i+1}$, $a_{i+1} \notin X_{i+1}$. Let $x \in A$,

$$x + X_1 = a_1 r_1 + X_1, \quad x = a_1 r_1 + x_1, \quad x_1 \in X_1; \quad x_1 + X_2 = a_2 r_2 + X_2,$$

$$x_1 = a_2 r_2 + x_2, \quad x_2 \in X_2; \ldots; \quad x = a_1 r_1 + a_2 r_2 + \cdots + a_n r_n + s_n,$$

 $s_n \in A_j$; $x+A_j=a_1r_1+\cdots+a_nr_n+A_j$. Thus the mapping $f: \mathbb{R}^n \to A/A_j$ defined by $(r_1, \ldots, r_n)f=a_1r_1+\cdots+a_nr_n+A_j$ is onto. Let Ker $f=N_j$ and $\mathbb{R}^n/N_j\cong A/A_j$, when we give \mathbb{R}^n/N_j the discrete topology, it is a finite length discrete \mathbb{R} -module. Let $U(n, j)=\mathbb{R}^n/N_j$ where N_j is any right ideal of \mathbb{R}^n such that \mathbb{R}^n/N_j is a discrete finite length \mathbb{R} -module and n a positive integer. The $\{U(n, j)\}$ forms a set of cogenerators of B_R since $\lim_{t \to \infty} A/A_j$ is a closed submodule of $\prod_{t \to \infty} (A/A_j)$ which is topologically isomorphic to $\prod_{t \to \infty} U(n, j)$.

V. Free and projective objects of B_R .

5.1. DEFINITION. Let $F: A \rightarrow Ens$ be a functor, where *Ens* is the category of sets. If *F* has a left adjoint $G: Ens \rightarrow A$ then an object $A \in A$ is *free* if A = (S)G for $S \in Ens$.

5.2. EXAMPLE. Let $F': C_R \to Ens$ be the "forgetful" functor that assigns to each module its underlying set. Then F' has a left adjoint G' where $(S)G' = \bigoplus_{sGs} R_s$ where $R_s = R \forall s \in S$.

5.3. PROPOSITION. Let $G: C_R \rightarrow B_R$ be defined as in (2.6). Then the free objects of B_R are of the form $(\oplus R_s)G = \sum (R_s)G$ where \sum denotes direct sums in B_R .

Proof. Since $B_R((A)G, B) = C_R(A, (B)F)$ and $C_R((C)G', D) = Ens(C, (D)F')$, $\therefore Ens(S, (B)FF') = C_R((S)G', (B)F) = B_R((S)G'G, B)$. Now $(\oplus R_s)G = \sum (R_s)G$ since G is a coreflector.

5.4. PROPOSITION. Let P be a projective object of C_R , then (P)G is a projective object in B_R .

Proof. Let $A \rightarrow B \rightarrow 0$ be exact in B_R , $f: A \rightarrow B$. Now $A \rightarrow B \rightarrow 0$ is exact in C_R , (3.6). Let $g:(P)G \rightarrow B$ in B_R be given, $c_P: P \rightarrow (P)G$ be the coreflection map, thus $c_Pg: P \rightarrow B$, thus there exists $h: P \rightarrow A$ such that $c_Pg = hf$; also there exists $k = (h)G:(P)G \rightarrow A \in B_R$ such that $c_Pg = c_Pkf$, thus g and kf agree on the dense subset $(P)c_P$ of (P)G; thus g = kf [1, p. 85, Corollary 1 to Proposition 2]. 5.5. PROPOSITION. B_R has enough projectives.

Proof. Let $A \in B_R$. Since C_R has enough projectives, there exists $P \in C_R$, P projective such that $P \rightarrow A \rightarrow 0$ is exact in C_R ; one shows that the corresponding $(P)G \rightarrow A$ is also onto. $\therefore (P)G \rightarrow A \rightarrow 0$ is exact in B_R , (P)G projective (5.4).

5.6. PROPOSITION Every free object of B_R is projective.

Proof. Let $D \in B_R$ be free, $D = (\oplus R)G$; now R is projective in C_R , $\therefore \oplus R$ is projective in C_R , thus $(\oplus R)G = D$ is projective in B_R (5.4.).

5.7.1. DEFINITION. (5) Let \mathscr{A} be any category, $c: A \rightarrow B \in \mathscr{A}$; if there exists $c': B \rightarrow A$ such that $c'c=1_B$, then B is called a *coretract* of A.

5.7.2. PROPOSITION. In B_R every projective object is a coretract of a free object.

Proof. Let P be a projective object of B_R ; there exists $\oplus R$ such that $\oplus R \to P \to 0$ is exact in C_R , \therefore $(\oplus R)G \to P \to 0$ is exact in B_R where $f: (\oplus R)G \to P$. Now $1_P: P \to P$, P projective, \therefore there exists $g: P \to (\oplus R)G$ such that $gf=1_P$.

5.8. PROPOSITION. (R)G is a generator of B_R .

Proof. Let $i: C \to B \in B_R$ be a proper monomorphism, thus i is 1-1, and C is a closed submodule of B, $C \neq B$. Thus there exists $b \in B$ such that $b \notin C$. Let $f: R \to B \in C_R$ be defined by $(1_R)f=b$; thus $c_R(f)G=f$ where c_R is the coreflection map; $(R)G=\lim_{\leftarrow} R/N_i$, $(1_R+N_i)(f)G=(1_R)c_R(f)G=(1_R)f=b$; thus the morphism (f)G cannot factor through C: for if there exists $g:(R)G\to C$, gi=(f)G, then $(1_R+N_i)gi=(1_R+N_i)(f)G=b$, but since $b \notin C$, $(1_R+N_i)gi\neq b$.

VI. B_R , an abelian subcategory (colocally finite).

6.1. LEMMA. Let $f: A \rightarrow B \in B_R$ be a continuous R-isomorphism, then f is a topological isomorphism.

Proof. We have to show that f is open, i.e., \forall open submodule A' of A, (A')f contains an open submodule B' of B. Consider the basis of the neighborhood system of 0 given by the open submodules $\{B_i\}$ of B (2.7), and the corresponding family $\{(A'+B_if^{-1})|A'\}$. Since A|A' is a discrete finite length module (2.8), we have a minimal element $(A'+f^{-1}B_0)|A'$. Since \lim_{\leftarrow} is exact (4.4), \therefore by the dual of the equivalent conditions of [2, p. 337, Proposition 6], $(\bigcap_{i}B_if^{-1})+A'=\cap_{i}(A'+B_if^{-1})$. Now $\bigcap_{i}B_if^{-1}=0$ since $\bigcap_{i}B_i=0$ by properties of inverse limit topology; also $\bigcap_{i}(A'+B_if^{-1})=A'+B_0f^{-1}$ since it is the minimal element. $\therefore_{i}A'=A'+B_0f^{-1}$, $B_0f^{-1}\subseteq_{i}A'$ and $B_0\subseteq_{i}(A')f$ [2, pp. 392–393].

6.2. LEMMA. \forall monomorphism $f: A \rightarrow B \in B_R$ is the kernel of some morphism in B_R .

Proof. f is 1-1 (3.5). Consider the canonical epimorphism $g:B \to B/(A)f \in B_R$ (3.2), then $f = \ker g: \forall x: C \to B \in B_R \ni xg = 0$, $(C)x \subseteq (A)f$. Now $\tilde{f}: A \to (A)f$ where $(x)f = (x)f \forall x \in A$ is a continuous *R*-isomorphism, \therefore it is open (6.1) $\therefore \tilde{f}^{-1} \in B_R$ and $u = x\tilde{f}^{-1}$ is a unique mapping $\ni uf = x$.

6.3. LEMMA. \forall epimorphism $f: A \rightarrow B \in B_R$ is the cokernel of some morphism in B_R .

Proof. f is onto (3.6). Let $i: K \rightarrow A$ be ker f, then $f = \operatorname{coker} i: A/K \in B_R$ and is

topologically isomorphic to B (6.1) $\therefore \forall x: A \rightarrow C \in B_R \ni ix=0$, (K)x=0, $\therefore x$ factors through $B \cong A/K$ in B_R .

6.4. THEOREM. B_R is an abelian subcategory of C_R and is colocally finite.

Proof. B_R is abelian (6.2), (6.3), (3.3), (3.4). $F: B_R \rightarrow C_R$ is exact (3.7) $\therefore B_R$ is an abelian subcategory. Since B_R is abelian, has exact inverse limits (4.6) and has cogenerators of finite length (4.5) $\therefore B_R$ is colocally finite [2, p. 356].

References

1. N. Bourbaki, Topologie générale, Chapitres 1 et 2, Hermann, Paris, 1965.

2. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-448.

3. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221.

4. J. Lambek, Completion of categories, Springer lecture notes in Mathematics no. 24, 1966.

5. B. Mitchell, Theory of categories, Academic Press, New York, 1965.

6. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90.

SIR GEORGE WILLIAMS UNIVERSITY, MONTREAL, QUEBEC