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BOUNDS FOR THE VARIANCE OF THE BUSY
PERIOD OF THE M/ G/oo QUEUE

M. F. RAMALHOTO,* Instituto Superior Tecnico, Lisbon

Abstract

Some bounds for the variance of the busy period of an M/G/oo
queue are calculated as functions of parameters of the service-time
distribution function. For any type of service-time distribution func
tion, upper and lower bounds are evaluated in terms of the intensity
of traffic and the coefficient of variation of the service time. Other
lower and upper bounds are derived when the service time is a NBUE,

DFR or IMRL random variable. The variance of the busy period is also
related to the variance of the number of busy periods that are
initiated in (0, t] by renewal arguments.

LOWER AND UPPER BOUNDS; STOCHASTIC ORDER RELATIONS;

V ARIANCE OF NUMBER OF BUSY PERIODS

The busy-period distribution of the MlMl» queue has been studied by Shanbhag
(1966) and Conolly (1971). Shanbhag (1966), p. 278, presents a formula for the Laplace
transform of the joint probability and density function of Nand BP for an M/G/oo
queue with group arrival, where N is the total number of customers served during a
busy period and BP represents the duration in time of the busy period. Conolly (1971),
by direct arguments in the time domain, obtains a formula for the joint probability and
density function of Nand BP. Another way of deriving the Laplace-Stieltjes transform
of the distribution function of BP is to consider that Z = BP+ IP, where IP represents
the idle period of the infinite-server queue and Z the interval of time between two
consecutive busy periods. In an MlGl» queue it is known that E[Z] = exp (A.a)/A. and

E[Z2] = A-'2exp (2Aa)r[exp (-Af[1- G(x)] dx)-exp (-Aa)] dt+2 exp (Aa)/A 2

(see Takacs (1962), p. 211, Theorem 3); here G(.) represents the distribution function
of the service time (a positive random variable (r.v.)); a=.rc;'xdG(x)<oo; and 1...>0 is
the parameter of the Poisson input process.

The LV. BP and IP are stochastically independent and the r.v. IP is exponentially
distributed with parameter A. > O. Combining all these results with J~ [(1- G(x)] dx =

a - r; [1- G(x)] dx, it follows that Var [BP] = A. -lh1(p, G*(.)) + A. -2h 2(p), where P = A.a;
G*(t) = J~ [1- G(x)] dxla : h1(p, G*(.)) = 2 exp (p) ~ [exp (p[l- G*(t)]) -1] dt and
h2 (p) = exp (p)[2-exp (p)-exp (-p)]. For further details see Ramalhoto (1983).
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1. Lower and upper bounds of the Var [BP] as functions of p and 'Y~

For any service-time distribution function the following result is valid.

Proposition 1. f1(A -2, o, 'Y~)~Var [BP]~f2(A -2, p, 'Y~), where

i, (A-2, o, 'Y~) = max {A -2 exp (p )[p2('Y~ + 1) + 2 - exp (p) - exp (-p )], O};

f2(A -2, o, 'Y~) = A-2 exp (p)[p(exp (p)-l)('Y~+1)+2-exp (p)-exp (-p)];

and 'Y~ is the coefficient of variation of the service time.

Proof. For any t E!R+, aCt,G(.)) = Ar; [1- G(x)] dx is non-negative so
exp (a(t, G(.)) ~ 1 + aCt, G(.)). Thus

h1(A, a, G(.) ~ 2 exp (Ao )raCt, GO) dt

= 2 exp (Aa)Ar(f[l- G(x)] dx) dt

= A exp (Aa)«T~+a?),

from which the lower bound follows. Let bet, G(.)) = a-I r; [1- G(x)] dx. If a =1= 0 and
a =1= 00 then for any t E!R+, 0 ~ bet, G(.)) ~ 1 and [bet, G(.))]n ~ bet, G(.)) for n = 1, 2, ....
Therefore, exp (pb(t, G(.))) -1 ~ bet, G(.))[exp (p) -1]. And,

Var [BP]~ (Iexp (p) -1)/p) exp (p)«T~ + a 2
) + (exp (p)/A2)[2- exp (p) - exp (p)].

2. Relations of stochastic ordering and the Var [BP]

For a service time NBUE the following upper bound is derived solely in terms of the
intensity of traffic.

Proposition 2. If the service time is a NBUE (new better than used in expectation) r.v.
of mean value a, then

Var [BP]~A-2[2pexp (p) ntl pn/(nn!) + h2(p)]

(the right-hand side of this inequality is the variance of the busy period when the service
time is exponential of parameter l/a). The inequality is reversed if the service time is a
NWUE (W for worse) r.v.

Proof. For the distribution function of a r.v. NBUE of mean value a, G(.), S;[1
G(x)] dx ~S; exp (-x/a) dx for all b ~O (see, for instance, Ross (1983), p. 273); the
inequality is reversed for NWUE. The result follows directly from the above inequality.

For a service time DFR (decreasing failure rate) a tighter lower bound than that in
Proposition 1 is the following.

Proposition 3. If the service time is a DFR r.v. then

Var [BP]~ A-2[2 exp (p)p ntl (pn/nn!) exp ((-n/2Ky~-1))+ h2(p)J.
Proof. For a DFR r.v., 1- G(x) ~exp (-x/a - 'Y~/2+~), (see Ross (1983), p. 265), from

which the result follows.

A non-negative r.v. with distribution function G(.) is defined to have an IMRL
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(increasing mean residual life) if a = E[S] < 00 and E[S - tiS> t] is increasing
(monotone non-decreasing) in t ~ O. Brown (1981) showed that for an IMRL r.v.
this is equivalent to the distribution function G*(x) = a -1 J~ [1- G(y)] dy being that
of a DFR r.v. Then as pointed out in the last paragraph, 1- G*(x) ~
exp ([-x/m1 - m2/2(m1)2+ 1]) = exp (-2xa/ 11-2 - (2a/311-~)11-3 + 1), where m, denotes the
rth moment about the origin of the distribution function G*(.), and m r = I1-r+t![(r+ I}o ],
where I1-r are the corresponding moments of G(.), see Cox (1962), p. 64.

For a service time IMRL a lower bound in terms of the intensity of traffic and the first
three central moments of the service time is given in the following proposition.

Proposition 4. If the service time is an IMRL LV. then
00

Var [BP] ~ p-1 exp (P)11-2 L (p"/nn!) exp (-n«2aI1-3/311-~)-1)) + A-2h2(p)
"=1

where a = E[S], 11-2 = E[S2] and 11-3 = E[S3].

Proof·

Var[BP]= 2A~1 exp (p) f[exp (p[1-G*(t)])-1] dt+A-2h2(p)

~2A ~1 exp (p) f[exp (p exp (-2aIL3/31L~+ 1)

x exp (-(2a/11-2)t)) - 1] dt + A-2h 2(p)
oo

= 2A-1 exp (p) L [p" exp (n«-2aI1-3/311-~)+ 1))]/n
t1=1

x l°Oexp(-(2na/1L2)t) dt+ A 2h2(p),

from which the result follows.

3. Relationship between the Var [BP] and the Var [N(t)]

Let Ntt) be the number of busy periods initiated in (0, t]. Brown and Solomon (1974)
have evaluated the moments of N(t) for the Ml Glt» queue. (The mean value of Ntt) had
already been evaluated by Takacs (1954) for the type II counter.) In a type II counter
with the input forming a renewal process and an arbitrary impulse distribution function,
the number N(t) of recorded particles in (0, r], i.e. the N(t) in the GI/G/oo queue, is
represented by a renewal process (Cox and Isham (1980), p. 102). Thus Var [N(t)]===
(Var [Z]/E[Z]3)t, for t large enough. In the MlGl » queue, Var [N(t)] ===

[(I/A 2+ Var [BP])/(exp (Aa)/A)3]t, for t large enough. Therefore, formulas for Var [BP]
lead to formulas for Var [N(t)] and vice versa. From renewal theory for t large enough,
Var [N(t)]/E[N(t)] === Var [Z]/(E[Z])2 = 'Y~, where 'Yz is the coefficient of variation of Z
in a GI/G/oo queue. In the Ml Gl» queue E[Z] = A-1 exp (Ao) and Var [Z] = Var [BP] +
A-2. By Proposition 1, c(p, 'Y~) ~ 'Y~ ~ d(p, 'Y~) where

c(p, 'Y~) = exp (-2p)A 2 Max {A -2 exp (p)[p2('Y~+ 1) + 2-exp (p) - exp (-p)], O}+exp (-2p),

and

d(p, 'Y~) = exp (-p )[p(exp (p) -1)('Y~ + 1) - (exp (o) - 2)].
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