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PROJECTIVE SOCLES 

BY 

PATRICK N. STEWART 

ABSTRACT. Nicholson and Watters have recently investigated rings 
with projective socles and they have shown, among other things, that a 
ring R has a projective socle if and only if each matrix ring Mn(R), n > 1, 
has a projective socle. We generalize this result by showing that if S is 
an excellent extension of R, then the socle of R is projective if and only 
if the socle of S is projective. Examples of excellent extensions include, 
as well as matrix rings Mn(R), skew group rings R * G where G is a finite 
group and the order of G is invertible in R. 

Nicholson and Watters [3] prove that R has a projective socle if and only if Mn(R) 
has a projective socle by showing somewhat more. They prove that having a projective 
socle is a Morita invariant. In this paper we generalize the matrix ring result in a 
different direction by showing that if S is an excellent extension of R, then S has a 
projective socle if and only if R has a projective socle. The proof is elementary and 
avoids the Morita context machinery used in [3], 

All rings considered in this paper are associative and have multiplicative identities, 
all modules are unital right modules. Let R and S be rings with the same identity, 
R Ç S. The ring S is an excellent extension of R if 

(i) there is a finite set {1 = s\,...,sn} Ç S such that S is a free right and left 
^-module with basis {s i , . . . , sn} and stR — Rsi for all / = 1 , . . . , n, and 

(ii) S is /^-projective; that is, if N is an S -submodule of the S -module M and N is 
a direct summand of M as an /^-module, then TV is a direct summand as an S -module 
(note that the use of 'projective' in '/^-projective' differs from the usual homological 
use of 'projective'). See [4] for further information about excellent extensions. 

The right socle of a ring A will be denoted by ]T(A), it is the sum of all the minimal 
right ideals of A. 

THEOREM. If S is an excellent extension of R, then ^2(S) is a projective S-module 
if and only if ^2(R) is a projective R-module. 

PROOF. First assume that $2(S) is projective and that x G R is such that xR is 
a minimal right ideal. For each / = l , . . . ,w, xRst is a simple /^-module and so 
*S = 0 " = 1 xRsi is a completely reducible /^-module. Thus every S -submodule of 
xS is a direct summand because S is /^-projective. It follows that xS is a completely 
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reducible S -module and so, since 52(5) *s projective, xS is a direct summand of a 
free S-module F. Now, since s\ — 1, xR is a direct summand of the /^-module xS and 
since S is a free /^-module, so is F. Thus x/? is a projective 7?-module and so X^(^) 
is projective. 

Now assume that YJfi) *s projective and that t G S is such that fS is a minimal 
right ideal. It follows from [2, Theorem 4] that tS is completely reducible as an R-
module so, since ^2(R) is projective, there is a free /^-module F and an 7?-submodule 
M of F such that F = tS 0 M (we have used the fact that simple submodules of free 
modules are isomorphic to minimal right ideals). Thus F ®R S = (tS 0 M) <g)R 5 = 
(fS <8te 5) 0 (M 0/? 5). Since F is a direct sum of copies of R and R ®R S = S, F ®R S 
is a free 5 -module. Moreover, viewing tS as an /^-module we have 

n 

tS®RS =@tS®RSi 
i=i 

and so, since si = 1, tS = tS ®R 1 is a direct summand, as an /^-module, of F ®R S. 
Because S is R-projective, tS is also a direct summand of F (g>R S as an S -module. 
Thus tS is a projective S -module and it follows that J^(5) is projective. 

Let A be a ring graded by a finite group G. The smash product A#G* is a free 
right and left A-module with basis {pg : g G G} and multiplication determined by 
(apg)(bph) = abgh-\ph where g,h £ G,a,b £ A and fr^-i is the g/i-1 component of /?. 

COROLLARY. //"A /s graded by a finite group G and |G|_1 G A, /̂ze/i ]T)04) /s a 
projective A-module if and only if^{A#G*) is a projective A#G*-module. 

PROOF. From [1, Theorem 3.5] we know that G acts as automorphisms on A#G* 
and that the skew group ring (A#G*)*G is isomorphic to the matrix ring M„(A) where 
n = \G\. Since both skew group rings and matrix rings are excellent extensions, the 
corollary follows from two applications of the theorem. 
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