PROJECTIVE SOCLES

BY

PATRICK N. STEWART

ABSTRACT. Nicholson and Watters have recently investigated rings with projective socles and they have shown, among other things, that a ring R has a projective socle if and only if each matrix ring $M_n(R)$, n > 1, has a projective socle. We generalize this result by showing that if S is an excellent extension of R, then the socle of R is projective if and only if the socle of S is projective. Examples of excellent extensions include, as well as matrix rings $M_n(R)$, skew group rings R * G where G is a finite group and the order of G is invertible in R.

Nicholson and Watters [3] prove that R has a projective socle if and only if $M_n(R)$ has a projective socle by showing somewhat more. They prove that having a projective socle is a Morita invariant. In this paper we generalize the matrix ring result in a different direction by showing that if S is an excellent extension of R, then S has a projective socle if and only if R has a projective socle. The proof is elementary and avoids the Morita context machinery used in [3].

All rings considered in this paper are associative and have multiplicative identities, all modules are unital right modules. Let R and S be rings with the same identity, $R \subseteq S$. The ring S is an *excellent extension* of R if

(i) there is a finite set $\{1 = s_1, ..., s_n\} \subseteq S$ such that S is a free right and left R-module with basis $\{s_1, ..., s_n\}$ and $s_i R = R s_i$ for all i = 1, ..., n, and

(ii) S is R-projective; that is, if N is an S-submodule of the S-module M and N is a direct summand of M as an R-module, then N is a direct summand as an S-module (note that the use of 'projective' in 'R-projective' differs from the usual homological use of 'projective'). See [4] for further information about excellent extensions.

The right socle of a ring A will be denoted by $\sum(A)$, it is the sum of all the minimal right ideals of A.

THEOREM. If S is an excellent extension of R, then $\sum(S)$ is a projective S-module if and only if $\sum(R)$ is a projective R-module.

PROOF. First assume that $\sum(S)$ is projective and that $x \in R$ is such that xR is a minimal right ideal. For each i = 1, ..., n, xRs_i is a simple *R*-module and so $xS = \bigoplus_{i=1}^{n} xRs_i$ is a completely reducible *R*-module. Thus every *S*-submodule of xS is a direct summand because *S* is *R*-projective. It follows that xS is a completely

Received by the editors June 20, 1988 and, in revised form, November 10, 1988.

AMS Subject Classification (1980): Primary 16A50, 16A56.

[©] Canadian Mathematical Society 1988.

PROJECTIVE SOCLES

reducible S-module and so, since $\sum(S)$ is projective, xS is a direct summand of a free S-module F. Now, since $s_1 = 1$, xR is a direct summand of the R-module xS and since S is a free R-module, so is F. Thus xR is a projective R-module and so $\sum(R)$ is projective.

Now assume that $\sum(R)$ is projective and that $t \in S$ is such that tS is a minimal right ideal. It follows from [2, Theorem 4] that tS is completely reducible as an R-module so, since $\sum(R)$ is projective, there is a free R-module F and an R-submodule M of F such that $F = tS \oplus M$ (we have used the fact that simple submodules of free modules are isomorphic to minimal right ideals). Thus $F \otimes_R S = (tS \oplus M) \otimes_R S \cong (tS \otimes_R S) \oplus (M \otimes_R S)$. Since F is a direct sum of copies of R and $R \otimes_R S \cong S$, $F \otimes_R S$ is a free S-module. Moreover, viewing tS as an R-module we have

$$tS \otimes_R S = \bigoplus_{i=1}^n tS \otimes_R s_i$$

and so, since $s_1 = 1$, $tS \cong tS \otimes_R 1$ is a direct summand, as an *R*-module, of $F \otimes_R S$. Because *S* is *R*-projective, tS is also a direct summand of $F \otimes_R S$ as an *S*-module. Thus tS is a projective *S*-module and it follows that $\sum(S)$ is projective.

Let A be a ring graded by a finite group G. The smash product $A#G^*$ is a free right and left A-module with basis $\{p_g : g \in G\}$ and multiplication determined by $(ap_g)(bp_h) = ab_{gh^{-1}}p_h$ where $g, h \in G, a, b \in A$ and $b_{gh^{-1}}$ is the gh^{-1} component of b.

COROLLARY. If A is graded by a finite group G and $|G|^{-1} \in A$, then $\sum(A)$ is a projective A-module if and only if $\sum(A\#G^*)$ is a projective $A\#G^*$ -module.

PROOF. From [1, Theorem 3.5] we know that G acts as automorphisms on $A#G^*$ and that the skew group ring $(A#G^*)*G$ is isomorphic to the matrix ring $M_n(A)$ where n = |G|. Since both skew group rings and matrix rings are excellent extensions, the corollary follows from two applications of the theorem.

ACKNOWLEDGMENTS. The author appreciates the support of NSERC (grant #8789) and the hospitality of the University of Ottawa where this paper was written while he was there on sabbatical leave.

REFERENCES

1. M. Cohen and S. Montmogery, Group graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), pp. 237–258.

2. E. Formanek and A. V. Jategaonkar, *Subrings of noetherian rings*, Proc. Amer. Math. Soc. 46 (1974), pp. 181–186.

3. W. K. Nicholson and J. F. Watters, *Rings with projective socle*, Proc. Amer. Math. Soc. **102** (1988), pp. 443–450.

4. M. M. Parmenter and P. N. Stewart, Excellent extensions, Comm. Algebra 16 (1988), pp. 703-713.

Department of Mathematics Statistics and Computing Science Dalhousie University Halifax, Nova Scotia Canada B3H 3J5