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Consider a deterministic dynamical system in a domain containing a stable equilibrium,

e.g., a particle in a potential well. The particle, independent of initial conditions, eventually

reaches the bottom of the well. If however, the particle is subjected to white noise, due, e.g.,

to collisions with a population of smaller, lighter particles comprising the medium through

which the particle travels, a dramatic difference in the behaviour of the Brownian particle

occurs. The particle will exit the well. The natural questions then are how long will it take for

it to exit and from where on the boundary of the domain of attraction of the deterministic

equilibrium (the rim of the well) will it exit. We compute the mean first passage time to

the boundary and the mean probabilities of the exit positions. When the noise is small

each quantity satisfies a singularly perturbed deterministic boundary value problem. We treat

the problem by the method of matched asymptotic expansions (MAE) and generalizations

thereof. MAE has been used successfully to solve problems in many applications. However,

there exist problems for which MAE does not suffice. Among these are problems exhibiting

boundary layer resonance, i.e., the problem of ‘spurious solutions’, which led some to conclude

that this was ‘the failure of MAE’. We present a physical argument and four mathematical

arguments to modify or augment MAE to make it successful. Finally, we discuss applications

of the theory.

Key words: Singular perturbations, asymptotic expansions, JWKB methods.

1 Introduction

I am honoured and humbled by the award of the John von Neumann Lecture Prize by

SIAM. This award is particularly meaningful to me, as four of the previous awardees were

my teachers and my inspirations, including Kurt Friedrichs, Peter Lax, Jurgen Moser, and

most importantly, my advisor Joe Keller. To have my name linked to theirs is a great

honour indeed. Since two of these luminaries chose the subject of asymptotic expansions

and applications thereof, for award talks, I have chosen to follow in their footsteps and

speak on the same topic.

Asymptotics is the study of the local behaviour of a function. The function may

be known a priori or we may only have hints as to what it is, e.g., that it satisfies a
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differential equation (DE) and associated boundary and/or initial conditions. In this case,

we employ a perturbation method to solve the problem. One such problem concerns the

effect of a small perturbation, e.g., noise, on a deterministic dynamical system. If the

perturbation leads to only a small effect on the system, we refer to this as a regular

perturbation, whose result generally will be little noted nor long remembered. However,

it is possible for the perturbation to have a dramatic effect, which is of far greater

interest and is referred to as a singular perturbation (SP). This can occur, e.g., if the

perturbation is random. The DE is then a stochastic DE, since certain terms are only

known statistically, i.e., as stochastic processes, so that the solution is then only known

statistically, as in a microscopic description of the phenomenon under consideration.

However, certain macroscopic quantities, e.g., moments of the solution, may be shown to

satisfy related deterministic DEs. To determine the local behaviour of the solution of the

equation containing a small parameter, say ε, i.e., the asymptotic solution locally in the

neighbourhood of ε = 0, we employ SP techniques. Below, I will consider such problems.

Specifically, I will consider the exit problem. Thus, consider a deterministic dynamical

system containing a stable equilibrium point, e.g., a particle in a potential well. The

particle, no matter where it starts out, will eventually end up at the bottom of the

well (the stable equilibrium point). If however, the particle is subjected to white noise

(the ‘derivative’ of Brownian motion, with the quotes inserted since Brownian motion is

nowhere differentiable and must be interpreted in terms of a stochastic process with an

appropriate stochastic calculus, e.g., Ito or Stratonovich), due to collisions with a large

population of smaller and lighter particles comprising the medium through which the

Brownian particle travels, a dramatic difference in the behaviour of the particle can occur.

Due to the collisions, the particle can exit the well, just as a gambler can have a run of

good luck. It might take a long time, but it will , in fact, exit. To be sure, this occurrence

is a rare event (not in the sense that its probability is low [it is 1], but rather that its

frequency is low, which is why the exit time far exceeds the deterministic time scale). The

natural questions then are (i) how long will it take for it to occur and (ii) from where on

the boundary of the domain of attraction of the stable equilibrium point (the rim of the

well) will it exit. These quantities are random variables. Thus, we will compute the mean

first passage time (MFPT) to the boundary and the probability distribution of boundary

points being exit points. Each quantity satisfies a deterministic boundary value problem

(BVP) governed by a DE. When the noise is small, the resulting BVP is an SP problem.

We treat this problem by SP methods, in particular, the method of matched asymptotic

expansions (MAE) and generalizations thereof. In 1904, L. Prandtl [44], in a talk presented

at the International Congress of Mathematicians in Heidelberg, introduced a paper which

revolutionized the study of fluid mechanics. In studying the low viscosity fluid flow over

a solid object, he proposed that the viscous term in the Navier Stokes equations could

be ignored in the fluid away from the solid, thus leading to the Euler equations, but

must be accounted for in a thin layer near the boundary of the solid, where the solution

varies rapidly. His theory came to be known as Boundary Layer theory. After hearing

the talk, C. Felix Klein arranged a position for Prandtl in Gottingen, then the mecca of

mathematics and science. Unfortunately, Prandtl, undoubtedly a great fluid mechanician,

later showed himself to be a flawed human being as an apologist for the nazi regime.

Boundary Layer theory was later systematized and generalized by K. O. Friedrichs and
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his student W. Wasow [16, 48] to what is now called MAE, which leads to an asymptotic

series approximation to the solution of the SP problem under consideration. In the outer

region (away from the boundary) the solution, u is expanded in a power series in the small

parameter, say ε, with the coefficients functions of the independent variable, say x, which

may be thought of as a spatial variable. Here, ε is a measure of the non-dimensional

viscosity. In the boundary layer, the stretching transformation ξ = x−x0

εα
is introduced,

where x0 denotes the location of the layer and α determines the width of the layer. The

solution u is then expanded in ε with coefficients functions of ξ, so that the solution

is rapidly varying. Finally, the two expansions are appropriately matched so that they

connect smoothly. It should be noted that in some problems, the thin layer is not attached

to the boundary, but occurs in the interior of the domain, in which case it is referred to

as an internal layer. We note that others have contributed to the development of MAE,

notable among them N. Levinson [31] and his students, as well as researchers from the

Soviet Union.

MAE has been used successfully to solve many problems in a wide variety of areas of

application. However, there exist a number of problems for which MAE does not suffice.

Among these is the phenomenon exhibiting so-called boundary layer resonance, i.e., the

problem of ‘spurious solutions’. In these problems, after all the conditions employed in

MAE are applied, the asymptotic solution of the problem is not uniquely determined, as

a constant is left undetermined. Thus, MAE yields a one parameter family of possible

asymptotic solutions, though only one will turn out to be the solution. This led some

researchers to conclude that they had encountered ‘the failure of MAE’. Below, we present

a physical argument and four different mathematical arguments to modify or augment

MAE so that it is successful for such problems. Finally, we discuss applications of the

above theory.

Since the lecture is intended for a large audience with many diverse specialties and

interests, I have decided not to focus on technical details, but rather to focus on the

basic ideas and present the material so that it is easy to follow. With this in mind, for

ease of exposition, I will restrict attention to problems in one dimension, though results

in higher dimensions [35–39, 45], among others, have been obtained, as have results for

non-linear problems [21], results for different types of noise, e.g., coloured noise [22, 23]

shot noise [3–5], Markovian and non-Markovian noise [10–12,24,25,40], as well as escape

from a limit cycle [6]. In addition, I will restrict consideration to only the leading term in

the expansion. First, some background material.

2 Brownian motion

In 1827, Robert Brown [8], a botanist, observed that when pollen grains were suspended

in water, they moved in an agitated and irregular state of motion. He then showed that

the same occurs for many types of fine particles, e.g., glass, metals. Interestingly, in 1785,

a similar, though less systematic, observation was made by Jan Ingenhausz, a Dutch

physiologist, of carbon dust particles suspended in alcohol. However, the phenomenon is

known to this day as Brownian motion, perhaps because the physics community learned

of it from Brown’s work. Ingenhausz was the discoverer of photosynthesis, was the

personal physician of Empress Maria Theresa of Austria, was a scientific correspondent
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of Benjamin Franklin and Henry Cavendish (for whom the Cavendish lab at Cambridge

was named) and was a Fellow of the Royal Society. Thus, he was no slouch. This may be

an example of Stigler’s law of eponymy, which states that ‘no discovery is named after its

original discoverer’. We note that the path of the Brownian particle is not differentiable.

An explanation for Brownian motion was first provided by Einstein [14] in 1905.

Interestingly, in this paper, he was unaware of the Brownian phenomenon. He was

interested in the molecular composition of matter. It was not until 1906 that he discussed

Brownian motion. However, the ideas for the explanation were already in the 1905 paper.

Essentially, the same explanation was given in 1906, independently by Smoluchowski [46],

both arguing that the motion was due to the frequent collisions of the Brownian particle

with the smaller and lighter particles which are always on the move in the liquid in

which they are suspended (there are O(1021) collisions/sec). The motion is so complicated

that it can only be described probabilistically in terms of the very frequent, statistically

independent collisions. This is because the individual collisions cannot be observed nor

can the path of the Brownian particle, in any detail. We certainly cannot describe the

motion of all the individual particles of the medium nor their interactions. This was the

beginning of stochastic modelling of natural phenomena.

Einstein argued that there are two forces acting on the Brownian particle: (1) the

collisions and (2) the viscous drag force on the Brownian particle in the fluid, so that the

process is essentially a diffusive process (solution of ut = Duxx) and, using Stokes law for

the viscous drag, computed the diffusion coefficient as

D =
kT

6πηa
,

where k is Boltzmann’s constant and T the mean temperature. The viscous drag is −6πηa,

where η is the drag coefficient and a is the particle’s diameter. Einstein formulated the

diffusion equation whose diffusion coefficient was related to observable physical quantities.

Thus, he was able to compute the size of the atoms and how many there were in a mole,

i.e., Avogadro’s number. His explanation gave definitive confirmation of the existence of

atoms and molecules, which was then a topic of debate [Dalton and Boltzmann (pro) and

Mach and Ostwald (anti)]. Einstein’s explanation was experimentally verified by Perrin in

1908 [41] for which he received the Nobel prize.

Langevin in 1908 [29], employing the same two forces wrote the particle’s equation of

motion as

mẍ = −6πηaẋ+ R,

where R is a fluctuating (random) force modelling the collisions. He noticed the similarity

of this process to a diffusion process and also concluded that

D =
kT

6πηa
.

This was the first example of a stochastic DE.

Note that there is an intimate connection between probability (SDEs) and partial

differential equations. As we saw, Brownian motion is associated with the diffusion

equation, i.e., the probability density function is the probability that the Brownian particle,
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initially at the point x0 will be at the point x at time t, i.e., p(x, t|x0) satisfies the partial

differential equation pt = Dpxx. Thus, the particle will diffuse. For example, a drop of

cream diffuses in a cup of coffee, as higher cream concentrations diffuse towards lower

concentrations. The collision process is related to, and thus modelled by, diffusion. Since

the process goes from x0 at t = s to x at t, x and t are called the forward variables

(where it is going), while x0 and s are called the backward variables (where it is coming

from). The equations pt = L∗p ≡ pxx and ps = Lp satisfy the forward Kolmogorov [26]

(a.k.a. Fokker [15]–Planck [42]) and Backward Kolmogorov equations for a free Brownian

particle, respectively. Here, L∗ denotes the adjoint of the operator L. These equations will

be employed below.

Henceforth, we will restrict attention to one dimension. The extension to higher dimen-

sions will be clear. For purposes of illustration, we now employ a simpler, though not

quite realistic, model of the collision process, to derive the diffusion equation. Specifically,

we employ a random walk model on the line (1D) where the particle is located at point x

and can (a) jump to the right with probability r(x), (b) jump to the left with probability

l(x) or (c) not jump at all with probability (1 − r(x) − l(x)). Let us assume that both the

jump size ε and jump time Δt are small. Thus,

Prob[Δx = ε|x(t) = x] = r(x)Δt,

Prob[Δx = −ε|x(t) = x] = l(x)Δt,

Prob[Δx = 0|x(t) = x] = (1 − r(x) − l(x))Δt,

and let p(x, y, t) denote the probability of reaching x(t) = y given x(0) = x, with y the

forward variable and x the backward variable. Then,

p(x, y, t) = p(x, y − ε, t− Δt)r(y − ε)Δt+ p(x, y + ε, t− Δt)l(y + ε)Δt

+ p(x, y, t− Δt)[1 − r(y) − l(y)]Δt.

Now, consider

p(x, y, t) − p(x, y, t− Δt)

Δt
.

Expand in ε and take the limit as Δt goes to 0 to obtain

∂p

∂t
= L∗p = ε

∂

∂y
[(l(x) − r(x))p] +

ε2

2

∂2

∂y2
[(r(x) + l(x))p] + O(ε3).

Define τ = εt, so that the equation describes behaviour for large times, since for short

or even O(1) times there is hardly any movement. After ignoring the O(ε3) term and

cancelling the factor ε, which is common to all terms, we arrive at

∂p

∂τ
= −∂[(r − l)p]

∂y
+
ε

2

∂2((r + l)p)

∂y2
,

a diffusion equation.

The first term on the right side of this equation is called the drift, while the second term

describes diffusion. For example, if r > l, there is a bias of jumping towards the right,

while if l > r, there is a bias of jumping towards the left.
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We see that if r = l, the drift term vanishes and we have

∂p

∂τ
= ε

∂2

∂y2
(rp),

which describes a pure diffusion on the long time scale. If r �= l, there is a drift so that it

describes diffusion in a force field. Note that ε multiplies the diffusion term so that it may

be thought of as studying the effect of perturbing the drift, which might model a noisy

perturbation of a deterministic dynamical system. This is an SP problem. The random

walk description may be thought of as a description at the microscopic level, while the

diffusion equation may be thought of as a description at the macroscopic level. This can

be extended to account for long jumps and for waiting times before jumping.

In his book ‘Stochastic Processes in Physics and Chemistry’, N. von Kampen [47] asks

‘why do stochastic processes enter into physics?’ He answers ‘many phenomena which

evolve in time in an extremely complicated way, well beyond any possibility of calculation

or even observation, do have some average features that can be observed and obey simple

laws. For example, the precise instantaneous value of the force exerted by the molecules

of a gas medium on a piston over a time interval becomes a smooth function obeying

Boyle’s law. The use of probability considerations is justified by our ignorance of the

precise microscopic state. However, in spite of our ignorance of the microscopic details,

macroscopic variables are observable and can be calculated’.

It was Norbert Wiener [50], who provided a formalized mathematical theory of

Brownian motion in terms of what is now called a Wiener process w. Its ‘derivative’

is referred to as white noise, which is a model for the random collision process. The

reason for the quotes around the word derivative is that the path of the Brownian particle

is not, of course, differentiable. White noise is only a caricature of a real noise process

since its power spectral density, i.e., the area under the curve of power (a measure of

the amplitude, e.g., the L2 norm of x(t) which satisfies ‖x(t)‖L2
= ‖xf(ω)‖L2

, with xf the

Fourier transform of x) vs. the frequency ω, is infinite. A more realistic model is the so

called coloured noise, whose power spectral density is constant for finite ω, but tails off

for large ω, and therefore has a finite power spectral density. Nevertheless, white noise is

quite useful for the description of Brownian motion type phenomena.

3 Stochastic differential equations (SDEs)

An SDE is a DE containing term(s) which are only known probabilistically. Thus, the

solution is only known probabilistically. Examples include phenomena which involve many

collisions at the microscopic level, e.g., Brownian motion. Here, we shall not study the

details of manipulating SDEs, since dealing with the details of the microscopic behaviour

are generally sufficiently complicated to calculate and often even to observe. Rather, we

will consider certain partial differential equations which are related to the SDEs and

compute certain macroscopic quantities which are both calculable and observable. We

will employ SP techniques, in particular the method of MAE, to compute these quantities.

It should be mentioned that employing SP techniques in these problems began in the

1970s by Matkowsky and colleagues, and was continued for years thereafter.

https://doi.org/10.1017/S0956792518000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000025


576 B. J. Matkowsky

We consider a deterministic dynamical system of the form ẋ = b(x), where x(t) may be

a vector. We perturb the system by small noise of the form considered above, i.e., white

noise. Thus, e.g., we consider the SDE

dx = b(x)dt+
√

2εdw,

where
√

2ε is the amplitude, here a small constant, and dw describes white noise. As

noted above, the Wiener process w and the white noise process dw are not differentiable,

so that the white noise description must be defined appropriately. It might seem better

to integrate the SDE to obtain a stochastic integral equation. However, it would then be

necessary to define the resulting stochastic integral of the random term. Without going

into technical detail, there are two widely used stochastic integrals. The Ito integral and

the Stratonovich integral. The result is the same for both provided the noise term is state

independent, i.e., independent of x, e.g., the amplitude is constant as above. However, they

may differ if the noise is state dependent. Here we consider state independent white noise

of amplitude
√

2ε (with ε denoting the small parameter kT ), as in Brownian motion. We

will not use the stochastic integral equation approach here.

Thus, we consider the SDE

dx = b(x)dt+
√

2εdw,

where the first term describes the deterministic drift and the second the random term,

describing diffusion due to the noise.

In contrast to the deterministic situation, where we can predict the location and velocity

of a particle at time t, knowing the forces acting on the particle and its initial conditions,

due to noise we can no longer know its exact position or velocity. We can only determine

the probabilities of being at a certain position x, and having a certain velocity at time t.

These are random quantities.

For the SDE above, the corresponding stationary (time-independent) Kolmogorov

forward operator is

L∗p = −(bp)y + εpyy,

where y is the forward variable, while the stationary Kolmogorov backward operator is

Lp = bpx + εpxx,

where x is the backward variable. The Kolmogorov forward equation describes the time

evolution of the probability distribution function. The Kolmogorov backward equation

can be employed to compute the MFPT and also the distribution of the exit points on

the boundary, in the exit problem discussed in the next section.

4 The exit problem

If the effect of small noise is to change the behaviour of the deterministic dynamics by

only a small amount, it is of little interest. However, the effect can be quite dramatic. For

example, consider a deterministic system with a stable attractor in a domain D, say at the

origin. Assume that the dynamic forces are derivable from a potential V (x).
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We show below that due to even very small noise, the particle is guaranteed to leave

(exit) the domain of attraction D, in which it initially exists. The occurrence of exit is

analogous to a gamblers run of good luck. Both events are examples of rare events,

occurring in the tails of the probability distribution. They are also dealt with in the theory

of large deviations. It might take a very long time to leave, but it will leave. In fact,

the MFPT can be shown to be O(e1/ε). Incidentally, independent of any computations, it

would seem to be intuitively clear that the point(s) on the boundary at which the particle

exits should have the shortest exit path. Thus, if there is one such point, the probability

of exiting there is 1, and the probability of exiting elsewhere on the boundary is zero. If

there are N such points, the probability of exiting from each is 1
N

, and zero elsewhere,

since the probability of exiting from somewhere is 1.

The so called exit problem consists in determining (1) how long will it take to exit the

domain D and (2) from where on the boundary of D will the particle exit? Specifically,

(1) what is the MFPT from D and (2) what is the probability of each boundary point

being an exit point? Note that if we ran the experiment multiple times, or had multiple

experimenters run the experiment, we would not get the same outcome every time. Thus,

it is a random variable, and we can only determine statistics, e.g., its mean.

We first consider the problem of a free Brownian particle in one dimension. That is,

there are no additional forces acting on the particle (b(x) ≡ 0). Let the domain D be the

interval (−a, b), with the constants a, b > 0 and x = 0 is a stable equilibrium point.

The MFPT τ is a solution of the BVP

Lτ = ετ′′ = −1 inD,

τ = 0 on ∂D,

where L is the stationary backward Kolmogorov operator ετ′′ (see Dynkin [13]). It follows

from Ito’s formula [19], as we now show. Let xε be the solution of the more general SDE

for a particle starting at x

dxε = b(xε)dt+
√

2εdw,

where b is the drift,
√

2ε the diffusion coefficient and dw denotes white noise. Then, the

stationary backward Kolmogorov operator L is

L = ε
∂2

∂x2
+ b

∂

∂x
,

and the operator M acting on f is Mf = ∂f
∂x

. The Ito formula in integral form, for any

sufficiently smooth function f, is then given by

f(xε) = f(x) +

∫ t

0

Lf(xε)ds+

∫ t

0

Mfdw,

the latter term being a stochastic integral. Let u be the solution of the BVP Lu = −1

in the domain D and boundary condition u = 0 on ∂D, where D is the interval (−a, b)
with a, b > 0. Let f = u and let t = T in Ito’s formula, where T is the first passage time

to ∂D, a random variable. Then, since Lu = −1 in D and u = 0 on ∂D, we have that

u(x) − T +
∫ T

0
Mudw = 0. Finally, taking the expectation of the equation, and using the
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fact that the expectation of a stochastic integral vanishes, we arrive at u(x) = ET = τ,

where E denotes expectation and τ is the MFPT.

The boundary condition is clear since the time to reach the boundary is zero if you

start at the boundary. The solution of the BVP with b(x) = 0 is τ = (a+x)(b−x)
2ε

. Thus, for

any fixed x in D, the particle will exit in finite time. Note that the MFPT is algebraically

large in ε.

Similarly, we show below that τ is finite, so exit is guaranteed, for Brownian particles

when external forces are present (b(x) � 0). For example, a particle in a potential well,

e.g., b(x) = −x, with the origin as a deterministically stable equilibrium point. Here, τ is

a solution of the BVP

Lτ = ετ′′ − xτ′ = −1 inD,

τ = 0 on ∂D,

corresponding to a particle in the potential well V (x) = x2/2, so that the force is the drift

term b(x) = −x. Let the domain D be the interval (−a, b), with a, b > 0. The well exerts a

force which constrains the particle to remain in the well. Since the solution of the above

BVP is finite for any ε > 0, τ is finite, so exit occurs in finite time. Alternatively, we can

let f = w = 1 in Ito’s formula. Thus, Lw = 0 in D, w = 1 on ∂D. Then, let t = T , take

the expectation and use the fact that the expectation of a stochastic integral vanishes.

We find that the probability of a particle starting at a point x in D reaching a point

on the boundary ∂D is 1, which states that exit occurs with probability 1. In fact, it is

known that the solution τ is O(e
1
ε ) [35]. Thus, even for a small (O(ε)) noise perturbation,

the particle will certainly exit, though it will take a long time to do so. Here, the MFPT

is exponentially large in ε, which is reasonable since it takes much longer to exit when

the particle has to overcome the constraining force of the potential. Another way to

characterize τ is to note that τ = 1/λ, where λ is the second eigenvalue of the stationary

Fokker–Planck (forward Kolmogorov) operator [36].

We next consider the probability distribution of exit points on the boundary v(x) for a

Brownian particle in a well. It is a solution of the stationary backward Kolmogorov BVP

with associated boundary conditions

Lv = 0 inD,

v = φ on ∂D,

where φ describes the boundary data. Now, we let f = v and let t = T in Ito’s formula,

as above. Following the derivation of the BVP for τ, we have that

v(xε(T )) = v(x) +

∫ T

0

Mvdw.

Again, taking the expectation of the equation, we arrive at

E(xε(T )) = v(x),
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where E denotes expectation. In general, therefore,

v(x) =

∫
∂D

φ(y)ρ(x, y)dSy,

where ρ(x, y) is the probability density of a particle starting at a point x in D, is obtained

as the Green’s function of the Dirichlet problem above. In our case, the integral reduces

to the sum of the contributions of the two boundary values, so that

v = P−aα+ Pbβ,

where P−a and Pb are the probabilities of exiting at −a and b, respectively. Intuitively,

we expect that P−a = 1 and Pb = 0, if a < b, i.e., if the point x = −a is closer to

the deterministically stable equilibrium point at the origin, so that x = −a will be the

exit point, while Pb = 1 and P−a = 0 if a > b. Finally, Pb = P−a = 1
2

if b = a, so

that both boundary points are equally likely to be the exit point. Intuitively, the exit

point should correspond to the shortest distance from the equilibrium to the boundary.

However, intuitive reasoning is not a mathematical demonstration. Below, we will see

that this result is in fact true, by explicit calculation of the solution of the appropriate

BVP. Thus, we will show that our intuitive expectation will be confirmed. We note that

in addition to escape from an equilibrium, we have considered escape from a stable limit

cycle [6], escape problems in higher dimensions [35–39,45] to name but a few and escape

due to different types of noise, e.g., coloured noise [22, 23], shot noise [3–5], Markovian

and non-Markovian noise [10–12, 24, 25, 40].

5 Probability distribution of exit points

In this section, we solve for the stationary probability distribution of the exit points on the

boundary for a particle in a potential well. In this case, the boundary points are x = −a
and x = b. Thus, we consider the BVP

Lu = εu′′ − xu′ = 0 inD,

u(−a) = α, u(b) = β.

We first employ the method of MAE. That is, we first consider the outer expansion,

which is to be valid in the interior of the domain −a < x < b, but not near at least

one, and possibly both, of the boundaries. We assume that the outer solution has the

asymptotic representation u ∼
∑N

j=0 uj(x)ε
j . We then insert this ansatz into the equation

and boundary conditions and equate to zero the coefficient of each power of ε separately,

thus obtaining a sequence of BVPs for the recursive determination of the coefficients uj in

the expansion. In this way, we find that each coefficient is constant, c0, c1, c2, . . ., with the

cj as yet undetermined. Note that since the reduced equation, i.e., the equation with ε = 0,

satisfied by the leading term of the expansion, is first order, it cannot possibly satisfy

both boundary conditions, in general. Thus, there must be a boundary layer at one or

the other boundary point, or possibly even at both. We next construct possible boundary

layer functions by stretching. Near x = −a, the stretched variable is ξ = x+a
ε

> 0
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and near x = b, it is η = b−x
ε

> 0. We find that the left boundary layer function is

A + Be−aξ and the right boundary layer function is C + De−bη , each of which rapidly

decays to a constant as we approach the interior of the domain. Applying the boundary

conditions and matching the boundary layer solutions to the outer expansion, we obtain

the leading term of the composite expansion, which is to be valid uniformly throughout the

interval as

u0 = c0 + (α− c0)e
−aξ + (β − c0)e

−bη.

But, what is c0? Going to higher orders in ε does not help to determine c0. Thus, though

the exact solution is unique, we have not obtained a unique asymptotic representation

of the solution. Rather, we have obtained a one parameter family of possible solutions,

with no way to pick the correct member of the family, though we have used all the

conditions of the MAE method. We note that if c0 = α the left boundary layer vanishes,

if c0 = β the right boundary layer vanishes and if c0 �= α, β neither boundary layer

vanishes. To summarize, we neither know what c0 is, nor do we know whether there

are one or two boundary layers, and if one, whether it is the left or right layer. The

inability to determine a unique asymptotic representation of the solution was interpreted

as a failure of the method of MAE. The class of problems to which this problem belongs

exhibits the so called boundary layer resonance phenomenon, i.e., the problem of ‘spurious

solutions’, originally described by Ackerberg and O’Malley [1]. In 1975, Matkowsky [34]

formally gave a sequence of condition for boundary layer resonance to occur, which were

then shown to be both necessary and sufficient. The phenomenon of MAE leading to a

one parameter family of possible asymptotic solutions has also appeared in non-linear

problems, e.g., [21].

To resolve the question of determining c0, a number of proposals have been introduced.

Here, we describe four such approaches. We note that all four approaches yield the same

values of c0. These methods are:

(i) In 1975, Matkowsky [34] employed a different way to construct the boundary layer

function than in MAE, specifically the JWKB method [7,20,28,49]. In this way, he was able

to find c0 and in one case found that a single boundary layer function sufficed to describe

two separate boundary layers. As above, the leading term of the outer expansion is c0,

which cannot possibly satisfy both boundary conditions (unless, as a special case, α = β).

Thus, it is necessary to construct a boundary layer function at one or the other end point,

or possibly two separate boundary layer functions. Rather than construct two separate

boundary layer functions as in the method of MAE, he employed the JWKB method

to construct a single boundary layer function. Thus, he sought a solution in the form

u ∼ A(x)e
−φ(x)
ε . He inserted this ansatz into the DE and equating to zero the coefficient of

each power of ε separately, to obtain the eikonal equation for φ as (φ′)2 + xφ′ = 0. There

are two solutions: φ′ = 0 and φ′ = −x. The former leads to the outer expansion, while the

latter corresponds to φ = K2−x2

2
, with the constant K chosen so that φ > 0 throughout the

interior of the domain, φ = 0 at the boundary in order that the boundary conditions are

satisfied and the boundary layer function decays rapidly away from the boundary. Thus,

he took K = max(a, b). To leading order, the function A(x) is a solution of the transport

equation xA′ + A = 0, whose solution is A = a0

x
(with the − sign incorporated into a0).
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Note that as x→ −a, φ→ a(x+ a), while as x→ b, φ→ b(b− x), i.e., the standard MAE

construction.

He then constructed the uniform expansion, valid throughout the interval −a � x � b

as

u ∼ c0 +
a0

x
e−

(K2−x2)
2ε .

He considered the three cases separately.

In case 1 (a < b) so that K = b, the uniform expansion is given by

u ∼ c0 +
a0

x
e−

(b2−x2)
2ε .

Applying the boundary conditions, and ignoring transcendentally small terms, he obtained

two equations for the constants c0 and a0

c0 = α,

c0 +
a0

b
= β.

Here, the left boundary layer vanishes, and only one boundary layer remains at x = b. In

case 2 (a > b) so that K = a, the uniform expansion is

u ∼ c0 +
a0

x
e−

(a2−x2)
2ε .

Applying the boundary conditions, and ignoring transcendentally small terms, he obtained

c0 −
a0

a
= α,

c0 = β.

Here, the right boundary layer vanishes, and only one boundary layer remains at x = −a.
Finally, in case 3 (a = b), the uniform expansion is the same as either of the above so

that using the boundary conditions he obtained

c0 −
a0

a
= α,

c0 +
a0

a
= β.

Thus,

c0 =
α+ β

2
,

so that both boundary layers remain. These results agree with those predicted intuitively

above.

Note that the construction with a single boundary layer function suffices to describe

two separate boundary layers when a = b. We also note that A has a singularity that, in

fact, has no effect on the solution since the boundary layer function has an effect only

near the boundary or boundaries, and not in the interior of the interval. We can introduce

a mollifier, a la Friedrichs. That is, in the immediate neighbourhood of the origin, we
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can replace the singularity by any smooth extension of the behaviour on either side of

the singularity, thus getting rid of the singularity. In any case, it has no effect on the

behaviour at the origin, since it is asymptotically negligible in the interior of the domain.

(ii) In 1975, Grasman and Matkowsky [17] introduced a variational problem whose

Euler–Lagrange equation is the given DE, and used the family of functions determ-

ined by MAE, as the class of admissible functions for the variational problem. By

equating the first variation to zero and then asymptotically expanding the resulting

integrals, they found that c0 = α if a < b, c0 = β if a > b and c0 = α+β
2

if a = b,

which is exactly what was predicted intuitively, and agrees with the result obtained

in approach (i).

(iii) In 1977, Matkowsky and Schuss [35] introduced an extension of the method of Gras-

man and Matkowsky to consider both problems having a variational formulation as

well as those not having a variational formulation. In addition, they considered the

problem not only in one dimension, but in higher dimensions as well. After employ-

ing MAE to determine the one parameter family of possible asymptotic expansions

of the solution of the BVP for u as above, they employed the following condition

to determine c0, rather than the variational condition. Specifically, they used the

condition

(ps, Lu) = 0,

where L∗ps = 0 is the stationary Fokker–Planck (forward Kolmogorov) equation,

so that for our problem the stationary distribution ps = Ce−
x2

2ε , where C is a

normalizing constant. They next integrated by parts, employed Green’s second

identity and asymptotically evaluated the integral. The condition above involves the

inner product (f, g) =
∫ b
−a fgdx for the functions f and g. It may be thought of as

that employed in the Galerkin method, whereas the variational condition may be

thought as that employed in the Ritz method. Retaining only the leading term in the

expansion and employing this function ps and the one parameter family determined

by MAE for u in the condition above, they derived the very same values for c0 as in

the two methods above.

(iv) Finally, Chapman and Matkowsky [9] in unpublished work in 2013, considered the

method of asymptotics beyond all orders (exponential asymptotics) to determine c0.

After the completion of this work, they learned of the work of MacGillivray [32]

which proposed essentially the same idea for a related problem. We next describe

our approach, after a short introduction.

Poincare in 1886 [43] defined an asymptotic series expansion with respect to an asymp-

totic sequence {φn(ε)}, e.g., {εn}, with φn+1 = o(φn). Often the sequence, and corresponding

expansion are sufficient to provide an accurate approximate solution of the problem under

consideration. However, the question naturally arises: are there enough elements in the

sequence for this strategy to succeed? That is, are they complete, i.e., does the sequence

span the solution space for the problem, just as we ask in Fourier series? For many

problems, the answer is affirmative. However, if we encounter a problem where the answer

is negative, it will then be necessary to include additional term(s) to the sequence which
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are beyond all orders in ε, e.g., terms which are exponentially small, (O(e
−k
ε )). Thus, the

terms asymptotics beyond all orders and exponential asymptotics were born. Here, our

problem is just such a problem. Of course, we note that we have already encountered the

need to include exponentially small terms when introducing boundary layers.

Since we were not able to determine c0 above by MAE, we see that the asymptotic

sequence {εn} does not appear to be sufficient to span the solution space. We suspect

that it is necessary to consider asymptotics beyond all orders, otherwise referred to as

exponential asymptotics. Thus, in the outer region (interior of the domain), we include

terms not yet included in the asymptotic expansion, i.e., which are O(e−1/ε). Then, together

with the original asymptotic series, they must match the existing boundary layer series.

Thus, we employ the JWKB method to construct an exponentially small solution in the

interior of the domain. This is in contrast to introducing the JWKB construction in the

boundary layer(s) in approach (i). We seek such a solution in the form u = we
φ(x)
ε , with

w ∼ w0 + εw1 + · · · . After inserting the ansatz into the equation and equating to zero, the

coefficient of each power of ε separately, we find that φ satisfies the eikonal equation

(φ′)2 − xφ′ = 0,

and the leading term w0 satisfies the transport equation

(2φ′ − x)(w0)′ + φ′′w0 = 0.

The eikonal equation has two solutions: φ′ = 0 and φ′ = x. The former is constant and

can be ignored. The solution of φ′ = x corresponds to φ = x2

2
+ C , and we can take

C = 0. Then, using φ′ = x, we find that w0 = K
x
, with K constant. We note that w0 has a

singularity at x = 0. Therefore, we construct an internal layer at x = 0. Thus, the JWKB

solution will be valid separately in each of the two regions, x < 0 and x > 0, but not at

x = 0. We write these as u0
− =

K−
x
e(

x2

2ε ) and u0
+ = K+

x
e(

x2

2ε ), respectively. These appear to be

exponentially large, but we shall see, after calculating K− and K+, that they are actually

asymptotically small. To construct the internal layer solution, we introduce the stretching

transformation ξ = x√
ε
, and let u(x) → U(ξ), to obtain the leading order internal layer

equation

U0
ξξ − ξU0

ξ = 0, −∞ < ξ <∞,

whose solution is

U0 = γ1

∫ ξ

0

e
s2

2 ds+ γ2,

with γ1,2 constant. Multiply and divide by s, then integrate by parts to obtain

U0 = γ1
e
ξ2

2

ξ
+ γ1

∫ ξ

0

e
s2

2

s2
ds+ γ2.

Note that as ξ → ∞, the first term clearly dominates the others.
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This internal layer solution as ξ → ∞ must match the right outer solution u0
+(including

its exponentially small part) as x→ 0, so that

√
εγ1

x
e
x2

2ε =
K+

x
e
x2

2ε .

Thus, K+ =
√
εγ1. Similarly, matching the internal layer solution as ξ → −∞, to the

exponentially small left outer solution u0
− as x → 0, we have that K− = −√

εγ1. Thus,

K− = −K+.

Next, we match the outer solution (including its exponentially small part) to the left

boundary layer solution. The outer solution is given by

c0 +
K−
x
e
x2

2 ,

written to leading order in terms of ξ near the left boundary as

c0 −
K−
a
e
a2

2ε e−aξ.

The left boundary layer solution is given by

c0 + (α− c0)e
−aξ.

After matching, we obtain

K− = a(c0 − α)e−
a2

2ε .

Note that K− is indeed exponentially small in ε, which implies that u0
− is exponentially

small.

Similarly, matching the right outer solution (including its exponentially small part) to

the right boundary layer solution , and using K− = −K+ , we obtain

K− = b(β − c0)e
− b2

2ε .

Equating the two expressions for K−, we have that to leading order

c0 =
aαe

−a2

2ε + bβe
−b2

2ε

ae
−a2

2ε + be
−b2

2ε

.

We now analyse this expression for each of the three cases: a < b, a > b and a = b.

case 1: ignore e
−b2

2ε terms since they are asymptotically smaller, so that c0 = α,

case 2: ignore e
−a2

2ε terms since they are asymptotically smaller, so that c0 = β, finally

case 3: keep all terms, so that c0 = α+β
2

, exactly as intuitively predicted, and obtain the

same results as in (i), (ii) and (iii).

Again, as in approach (i), there is an apparent singularity at the origin, which can be

taken care of by the introduction of a mollifier, as above. Since the exponentially small

term introduced into the interior of the domain is only needed near the boundaries, in
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order to match to the boundary layer expansion(s), it is asymptotically ignorable at the

origin, as above.

There is one more item to take care of. The solution is expected to depend continuously

on the data of the problem, in this case a and b. However, it does not appear to do so,

since for a �= b, c0 = α or β, according as a < b or a > b, whereas for a = b, c0 = α+β
2

. As

it now stands a very small change in the boundary locations can cause an O(1) change in

the solution. This is due to the fact that we only considered b− a to be an O(1) quantity.

Thus, we now consider a and b to differ by only a small amount. Specifically, we let

b = a+ εd to derive a formula which does depend continuously on the data and bridges

the gap between the various results for c0. We employ b = a + εd in the formula above

involving the exponentials e
−a2

2ε and e
−b2

2ε to get

c0 =
α+ βe−ad

1 + e−ad
=
α+ βe−a

b−a
ε

1 + e−a
b−a
ε

.

Clearly, as d → ∞, we get c0 = α, as d → −∞, we get c0 = β and finally, if d = 0,

we get c0 = α+β
2

. Thus, the formula depends continuously on the data, and serves as a

bridge between the various cases. Note that this indicates that exit does not correspond

to the isolated value c0 = α+β
2

, but rather to a narrow distribution about that value.

The considerations above were for one dimension. Extensions to higher dimensions as

well as to various types of noise and to applications were considered by Matkowsky and

colleagues.

We note that there is another approach to the problem [30] which, motivated by the

discussion in [21], involves projection onto the eigenspace associated with the exponentially

small eigenvalue that appears in the problem.

6 Kramers model of chemical reaction rates: Brownian particle in a field of force

As an application of the above theory, consider the following. In 1940, Kramers [27]

considered Brownian motion in a field of force, e.g., in a potential well, which, due to

collisions with the particles in the medium in which it exists, escapes the well. He used

this as a model for studying chemical reaction rates. Reaction occurs when the particle

overcomes the potential barrier, whose height is E, and leaves the well.

Kramers studied the forward Kolmogorov equation to derive a formula for the reaction

rate. In contrast to Kramers, we consider the backward Kolmogorov equation. The rate

of escape κ from the well is inversely proportional to the time to escape the well. Thus, κ

is given by

κ =
1

2τ
,

where τ denotes the MFPT, i.e., the mean time to reach the top of the potential barrier

and the factor 1
2

is due to the fact that it is then equally likely to escape or return to

the well. Therefore, by calculating the MFPT from the well, we have the escape rate.

Employing his approach, Kramers derived the Arrhenius law [2] in its simplest form (also

referred to as van’t Hoff–Arrhenius, since Arrhenius built on the work of van’t Hoff) for

https://doi.org/10.1017/S0956792518000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000025


586 B. J. Matkowsky

the reaction rate of a chemical reaction as

κ = A exp (
−E
kT

),

where E is the activation energy (a term introduced by Arrhenius) and T is the temperat-

ure. E is given by V (b)−V (a), where V denotes the potential, a denotes the bottom of the

well, b denotes the top of the well and A is the pre-exponential factor, which depends on

V ′′(a) and |V ′′(b)|, which are related to the particle’s oscillation frequency at the bottom

and top of the well, respectively. Note that the Arrhenius law merely states that the MFPT

τ is O(e
1
ε ), where ε = kT

E
. We also note that large deviation theory merely estimates the

exponent in this type of law, and gives no results for the pre-exponential factor. Clearly,

the higher the temperature the higher the reaction rate. Thus, milk sours faster at room

temperature than in the refrigerator. More recently, there are more accurate formulas with

A not constant but rather dependent on temperature. The reaction process is thermally

activated. The Brownian particle loses energy (e.g., via viscous drag) to the medium

through which it travels (so it slows down), and the medium heats up, and vice versa. As

the medium heats up, it transfers heat to the Brownian particle so that the situation is in

thermal equilibrium. Since both processes stem from the collision process, it is no surprise

that they are related. Thus, the coefficients of the random term in the Langevin equation

(
√

2kT ), and of the diffusion term in the Fokker–Planck equation (kT ), are related, due

to the fluctuation–dissipation relation. The relation must hold in order for the system to

be in thermal equilibrium. Additional applications of activated processes include atomic

migration in crystals, ionic conductivity in crystals, thermal fluctuations and transitions

between equilibrium states in Josephson junctions, and nucleation, to name but a few.

The rate κ then appears in the equation

dC

dt
= −κC,

where C is the concentration of a reaction component, say the limiting component.

7 Diffusion approximation in neutron transport theory

Above, we employed SP methods (MAE) in noisy systems. We found that the phenomenon

of collisions was modelled by noise, and thus by diffusion. We now use MAE in a collision

system to describe the large time approximation of the microscopic model of neutron

transport by a macroscopic model – the diffusion model. It is not surprising that, as

above, we obtain a diffusion equation in a collision process.

Neutron transport theory studies the evolution of a neutron population in which the

neutrons can collide with the nuclei of the medium, e.g., uranium, through which they

travel, and can be annihilated or can give birth to secondary neutrons upon collision.

It is a subject of interest to nuclear reactor designers. The microscopic model governing

neutron transport is the linear Boltzmann equation (LBE), which is a complicated model

with few solutions available. Small wonder then that reactor designers would prefer to deal

with simpler models, that are more amenable to analysis and whose results provide good

approximations to those of LBE. One such ‘approximation’ in use is the diffusion model,
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though different approaches to its ‘derivation’ have led to different diffusion models, so

that the situation is less than clear. Here, we employ SP methods to actually derive a

diffusion model as an asymptotic approximation to the LBE model and bring clarity to

this issue.

The nuclear age began with the discovery of the neutron by Chadwick in 1932, followed

by the discovery of fission by Hahn and Meitner in 1939, and finally in 1942, with the

first nuclear chain reaction in the first nuclear reactor by Fermi et al., beneath the stands

of the U. Chicago’s abandoned football field, as part of the Manhattan project.

The situation of interest is when there are many neutrons (O(107)) per cubic cm, and

far many more (O(1023)) particles, e.g., nuclei, comprising the medium (the uranium). Due

to the former, it is reasonable to employ a continuum theory to describe the neutron

population. Due to the latter, it is important to account for neutron–nucleus collisions

though safely ignoring neutron–neutron collisions, clearly because neutrons are far more

likely to collide with a nucleus than with another neutron. Thus, the equation(s) governing

neutron transport are linear and are referred to as the neutron transport equation or as

the LBE model, in contrast to the non-LBE governing gas dynamics, which accounts for

particle–particle interactions.

As a neutron travels through the medium, it suffers collisions and is likely to change

direction, or it may be annihilated (absorbed), or it may result in fission, i.e., the birth of

new neutrons, called secondary neutrons. In certain media, e.g., uranium, many secondary

neutrons are born in the fission process. Finally, when fission occurs, a large amount of

heat energy is released. This energy is then injected into a fluid which is employed for

whatever desired purpose, e.g., to flow into a generator to generate electricity.

The microscopic model we employ to study the neutron population is based on the

LBE integrodifferential equation

1

v
Ψτ + μΨx + σ(x)Ψ − σ(x)c(x)

2

∫ 1

−1

Ψ (x, μ′, τ)dμ′ = 0, 0 < x < d,−1 � μ � 1, τ > 0,

subject to the boundary conditions

Ψ (x = 0) = f1(μ, τ) for μ > 0,

Ψ (x = d) = f2(μ, τ) for μ < 0,

and an appropriate initial condition. Here, Ψ (x, μ, τ) denotes the neutron distribution

function, or the neutron density function, in a slab geometry, i.e., the probable number

of neutrons at point x, at time τ, travelling with constant speed v in direction μ = cosθ,

where θ is the angle that the velocity vector makes with the horizontal. The function

σ(x) denotes the scattering cross-section, which describes the likelihood that a neutron

incident on a nucleus will actually result in a scattering event (in which the direction

of travel will change from μ′ to μ), and whose average is inversely proportional to the

mean free path l, i.e., the average distance travelled by a neutron between successive

collisions. The function c(x) denotes the average number of secondary neutrons born in a

collision. The case c = 1, referred to as critical, corresponds to the situation in which the
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neutron population is just sustained by the reactor. The cases c > 1 (c < 1) are referred

to as supercritical (subcritical), where the neutron population grows (decays). In order to

control the growth of the neutrons for safety reasons, control rods are inserted into the

reactor, which absorb neutrons.

The model is based on the assumptions that (i) all neutrons travel with the same

constant velocity v, (ii) scattering upon collision is isotropic, that is, it has no preferred

directions, i.e., it is the same for all directions and (iii) the medium is source free.

The first two terms in the equation correspond to the material derivative, while the

third term accounts for losses due to collisions, e.g., scattering from angle μ to angle μ′.

Finally, the fourth term accounts for gains due to collisions, i.e., scattering from angle

μ′ to angle μ. Since we are describing the neutron density travelling in direction μ, the

loss term which accounts for those scattered into some other angle, we do not care about

where they are scattered to, and there is only a single contribution to the loss term. In

contrast, the gain term accounts for neutrons scattered from angle μ′ into angle μ, and we

must account for the sum of the contributions of all angles μ′, so that that term contains

an integral.

Note that half a boundary condition is prescribed at each end point, corresponding

to the fact that the equation contains only a first derivative in x so that a total of

one boundary condition should be prescribed, though there are two boundary points.

Thus, we only prescribe the incoming (injected) neutrons, not those outgoing, over which

we have no control. It should also be noted that the operator in the equation involves

a continuous spectrum, and only a few special solutions of the problem are known.

Two such approaches are the Wiener–Hopf method, and the use of so-called singular

eigenfunctions (which are in fact not functions, but rather distributions). No wonder then,

that engineers and scientists, interested in reactor design, say, prefer simpler theories for

that purpose. The diffusion ‘approximation’ is such a simpler theory and has been used

for design purposes.

There have been previous attempts to derive a diffusion approximation. We briefly

describe two such attempts. They are referred to as the P1 diffusion approximation and

the asymptotic diffusion approximation, respectively. In the P1 diffusion approach, the

solution is first expanded in Legendre polynomials, Pn(μ), with the argument made that if

n is taken to be sufficiently large, the expansion should converge. The expansion, truncated

at n = N, is called the PN approximation. In particular, if N = 1, i.e., truncating after two

terms, P0 = 1 and P1 = μ, a diffusion equation results. Note that the angular dependence

of the solution is assumed, rather than derived. Of course, the question remains as to why

we are allowed to truncate after only two terms. In the asymptotic diffusion approach,

we are told to replace the problem posed in a finite domain by the problem posed in

an infinite domain, and that rather than considering the problem originally posed with

variable coefficients, we are to consider the problem with constant coefficients. Finally,

we are told to consider the behaviour of the solution of this modified problem at infinity,

which also leads to a diffusion equation. However, the coefficients in the two diffusion

equations differ from one another, though for c approaching one they approach one

another. Again, questions remain why are we allowed to replace the problem originally

posed in a finite domain by one in an infinite domain and why are we allowed to replace

the variable coefficient problem by a constant coefficient problem? Furthermore, boundary
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conditions for both of these equations are not derived, but rather postulated in various

ways.

We now present a different approach to the derivation a diffusion approximation in

neutron transport theory [18,33]. We note that if it is to make sense as an approximation,

we must be able to answer the questions: in what sense is it is an approximation, what are

the conditions under which the approximation is valid, how good is the approximation

and how may one provide corrections to the approximation? These questions are not

answered in either approach described above.

In light of our earlier discussion of Brownian motion, it is not unreasonable to expect

that the collision process in the reactor should be mathematically modelled by diffusion.

However, here there are additional effects which must be accounted for, e.g., the fission

and absorption processes. Finally, expectation is not equivalent to derivation.

Rather than employ a stochastic approach to a derivation of the diffusion approx-

imation, we will only employ scaling arguments (leading to the introduction of small

parameters into the problem), elementary calculus and simple SP theory, specifically,

MAE.

Thus, we first non-dimensionalize the problem and introduce small parameters for the

ensuing perturbation analysis. Specifically, we introduce non-dimensionalized spatial and

temporal variables by

y ≡ x

d
, t ≡ v̄τ

d
,

where v̄ is a reference macroscopic velocity, and introduce a non-dimensional scattering

cross-section a(y) by

a(y) =
σ

σ̄
,

where σ̄ is a reference scattering cross-section. Finally, we introduce the small parameters

ε ≡ l

d
	 1, δ ≡ v̄

v
	 1,

where the former states that the mean free path l is much smaller than a typical

macroscopic length of the problem, e.g., the size of the reactor, and the latter states that

the macroscopic velocity is much smaller than the microscopic velocity. Finally, Ψ is

transformed into ψ and we note that the definitions above imply that t = εδτ, which is

a long time scale. We assume that ε and δ are of the same order of magnitude and set

ε = δ, to get

ε2ψt + εμψy + a(y)ψ − a(y)c(y, ε)

∫ 1

−1

ψdμ
′
= 0.

This equation is clearly of SP type. We expand both ψ and c in asymptotic series in powers

of ε, as in the Lindstedt–Poincare method for non-linear oscillations, or bifurcation theory

for non-linear BVPs. Thus,

ψ ∼
∑
n

ψn(y, t, μ)εn, c ∼
∑
n

cn(y)ε
n.

We insert the expansions into the model and equate each order of ε separately to zero,

to obtain a recursive set of equations for the coefficients ψn and cn. Thus, we derive
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an outer expansion, valid only in the interior of the spatial domain, away from the

boundaries. Near the boundaries, boundary layer expansions will need to be constructed.

Then, by matching the outer and boundary layer expansions, we can derive boundary

conditions for the derived outer equations, which will complete the derivation of the

diffusion approximation. Further, the outer expansion is not expected to be valid for

early times. Thus, rather than solve an initial layer problem, we note that during start-up

of the reactor, additional considerations, not accounted for in the LBE model, must be

accounted for. Specifically, when the power is low, c(x) changes in time and that statistical

fluctuations must be accounted for. Finally, they are not needed to derive the boundary

conditions.

We thus obtain a sequence of equations for the recursive determination of the coefficients

ψj and cj , given by

Lψj ≡ a

[
ψj − c0

2

∫ 1

−1

ψjdμ′

]
= rj , j = 0, 1, 2, . . .

with

r0 = 0,

r1 = −μψ0
y + a

c1

2

∫ 1

−1

ψ0dμ′,

r2 = −μψ1
y + a

c2

2

∫ 1

−1

ψ0dμ′ + a
c1

2

∫ 1

−1

ψ1dμ′ − ψ0
t .

We will now show that the leading term in the expansion, ψ0, will satisfy a diffusion

equation. From the equation for ψ0, we learn that ψ0 is independent of μ, i.e., ψ0 =

ψ0(y, t) and c0 = 1. From the equation for ψ1, we learn that ψ1 is linear in μ, i.e.,

ψ1 = ψ11(y, t)μ + ψ10(y, t), that c1 = 0, ψ11 = − 1
a
ψ0
y and ψ10 can be shown to satisfy

an inhomogeneous version of the diffusion equation for ψ0. From the equation for ψ2,

we learn that ψ2 is quadratic in μ, i.e., ψ2 = ψ22(y, t)μ2 + ψ21(y, t)μ + ψ20(y, t), that

ψ22 = − 1
a
ψ11
y , and that ψ22 + 3c2ψ

0 − 3
a
ψ0
t = 0.

Collecting these results, we have the diffusion equation

ψ0
t = (

1

3a
ψ0
y)y + ac2ψ

0.

Note that the angular dependence of the solution (dependence on μ) was here derived,

not assumed as in the P1 diffusion approximation.

Clearly, for c2 < 0 (subcritical), the solution decays to the steady state 0, since both

terms on the r.h.s. are negative (the first term since diffusion is a negative operator), so

that reaction cannot be sustained. In contrast, for c2 > 0 (supercritical), the solution can

approach a non-zero steady state and the reaction can be self-sustaining, as expected.

To complete the derivation of the diffusion approximation, as mentioned above, it is

necessary to solve the boundary layer problem near each of the two boundary points.

That is, we first stretch the spatial variable near each end point, freeze the coefficients near

the relevant boundary point and solve the resulting problem on the stretched (infinite)
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domain. Then, we match the boundary layer expansion to the outer expansion, thus

deriving boundary conditions for the diffusion equation. We do not carry out this exercise

here, as it involves too much technical detail and is not considered in this presentation.

Rather we refer the reader to the paper by Habetler and Matkowsky [18], where the

boundary layer analysis and matching is carried out. By the way, our approach provides

motivation for the asymptotic diffusion approach, since the boundary layer problem

involves the constant coefficient problem in an infinite domain. Note too that we also

derived the results that the conditions for the diffusion approximation to be valid are that

ε must be small, i.e., the mean free path must be much smaller than all other lengths

in the problem, the system must be near critical (c ∼ 1), and that it is valid on a long

time scale.

Finally, we note that we have successfully answered the questions posed above: (i) in

what sense is the approximation approximate? it is an asymptotic approximation; (ii)

when is it valid? when the parameter ε is small, i.e., when the mean free path is much

smaller than any typical macroscopic length, e.g., the size of the domain; (iii) how good is

the approximation? the error is O(ε); (iv) how does one improve on the approximation?

by including higher order terms.

8 Conclusion

We employed SP methods, in particular, the method of MAE and generalizations thereof,

as well as the JWKB method, variational calculus and asymptotics beyond all orders, for

the exit problem. The problem arises due to the effect of small random perturbations of

deterministic dynamical systems, which lead to dramatic changes in the behaviour of the

system. We introduced a physical argument and four different mathematical arguments

to solve the exit problem, thereby resolving a long-standing problem in SP theory, namely

the indeterminacy of the asymptotic expansion of the solution, sometimes referred to as

the phenomenon of spurious solutions, by the standard method of MAE. We do so by

either modifying or augmenting the standard method, overcoming the problem. Though

results have been obtained in higher dimensions, we restricted attention to one dimension,

thereby dealing with ordinary DEs, for ease and clarity of presentation so that all the

ideas are clear to all.

Dedication. This lecture is dedicated to my teacher, role model, colleague and friend,

Joe Keller, of blessed memory.
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