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SECOND-ORDER GÂTEAUX 
DIFFERENTIABLE BUMP FUNCTIONS 

AND APPROXIMATIONS IN BANACH SPACES 

D. MCLAUGHLIN, R. POLIQUIN, J. VANDERWERFF AND V. ZIZLER 

ABSTRACT. In this paper we study approximations of convex functions by twice 
Gâteaux differentiate convex functions. We prove that convex functions (respectively 
norms) can be approximated by twice Gâteaux differentiate convex functions (respec
tively norms) in separable Banach spaces which have the Radon-Nikody m property and 
admit twice Gâteaux differentiable bump functions. New characterizations of spaces 
isomorphic to Hilbert spaces are shown. Locally uniformly rotund norms that are limits 
of C^-smooth norms are constructed in separable spaces which admit C^-smooth norms. 

1. Introduction. It is known that the existence of a twice Fréchet differentiable 
bump function on a Banach space X has a profound impact on the structure of X and thus 
is a very restrictive condition on X. For example the space (E^Li 4̂)2 has a norm with 
modulus of smoothness of power type 2 yet admits no twice Fréchet differentiable bump 
function; see e.g. [DGZ2, Chapter V]. It is also known that there is a norm on l2 which 
cannot be approximated uniformly on bounded sets by functions with uniformly contin
uous second derivatives ([Vi]). However, it seems to be unknown whether every norm 
on I2 can be approximated uniformly on bounded sets by twice Fréchet differentiable 
convex functions. 

In Section 2, it is shown that the situation is different in the case of second-order 
Gâteaux differentiability. Motivated by a recent paper of Borwein and Noll ([BN]), we 
show that if a separable Banach space admits a norm with modulus of smoothness of 
power type 2, then convex functions (respectively norms) can be approximated by twice 
Gâteaux differentiable convex functions (respectively norms). Thus, such approxima
tions are valid, for example, in (X^li 4̂)2- Moreover, using techniques of [BN] and 
[DGZi], it is proven that a space with the Radon-Nikodym property (RNP) admits a 
norm with modulus of smoothness of power type 2 provided it admits a continuous twice 
Gâteaux differentiable bump function; see [Bou] for properties of RNP spaces. As an ap
plication of this, the isomorphic characterizations of Hilbert spaces in [DGZi] and [F] 
are improved. 

The third section shows that a separable Banach space X admits a locally uniformly 
rotund norm which is a limit of C^-smooth norms provided X admits a C^-smooth norm. 

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada 
under grant OGP41983 for the second author and grant OGP7926 for the fourth author. 

Received by the editors September 30, 1991 . 
AMS subject classification: Primary: 46B20; secondary: 46B22, 46C05. 
© Canadian Mathematical Society 1993. 

612 

https://doi.org/10.4153/CJM-1993-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-032-9


SECOND-ORDER GÂTEAUX DIFFERENTIABLE FUNCTIONS 613 

All Banach spaces (in short spaces) considered here are over the real field. We will 
say a function <j>:X —> R is twice Gâteaux differentiable at x E X provided that </>'(y) 
exists for y in a neighborhood of x, and that the limit 

(j)"(x)(h,k) = lim - ( V O + tk) - <j>'(x))(h) 

exists for each h,k G X, and that </>"(•, •) is a continuous symmetric bilinear form. A 
function/: X —>R has a second-order directional Taylor expansion at xo if 

f(x0 + th) = /(xo) + f ( / , ft) + (t2/2)(TK h) + *(f2) (t — 0) 

where 7: X —» X* is a bounded linear operator and y*: X —• 1R is continuous and linear; 
c/ [BN]. 

Recall that a C*-smooth function is a real-valued function which is continuously k-
times Fréchet differentiable. A norm || • || is locally uniformly rotund (LUR) if ||JC—xn \\ —> 
0, whenever 2||x||2 + 2||xn||

2 — \\x + xn\\
2 —-> 0. A norm is uniformly rotund (UR) if 

ll-Xn — }Vz|| —* 0, whenever {xn} is bounded and 2||xn||
2 + 2||-y„||2 — ||jcn + j w | | 2 —* 0. We 

will use the notation #x = {x : ||JC|| < 1}, Sx = {x : ||*|| = 1}, Br = {x : ||JC|| < r} and 
B(x0,e) = {x: \\x-x0\\ < e}. 

The modulus of smoothness px(j) of (X, || • ||) is defined for r > 0 by 

Px(r) = sup{^(||Jr + 3'|| + | | j r - 3 ' | | - 2 ) : |W | = l , | M | < r } ; 

PX(T) is of power type p, for 1 < /? < 2, if there exists a C > 0 such that p^Cr) < Cr77. 
In particular, such a norm is uniformly smooth, that is lim^o p{r)/r = 0. Recall that X 
admits a uniformly smooth norm if and only if X is super-reflexive and admits a UR norm 
([En, p. 287]); in addition, the UR norms are dense among all norms on X (see e.g. [B, 
Exercise 1, p. 211]). From the proof of [FWZ, Lemma 2.4] it is easy to see that a norm 
|| • || on X with modulus of smoothness of power type 2 has Lipschitz derivative on its 
sphere. Moreover, a direct computation then shows that || • ||2 has Lipschitz derivative on 
all of X; the details are in [DGZ2, Chapter V]. Finally, a norm || • || is Lipschitz smooth 
atx ^ 0 if there exists a C > 0 so that ||JC + /I|| + \\x - h\\ - 2\\x\\ < C\\h\\2 for all h eX 
(cf. [FWZ, Lemma 2.4]). 

2. Second-order Gâteaux differentiability and approximation. The following 
theorem summarizes our main results. 

THEOREM 2.1. For a separable Banach space X, the following are equivalent. 
(a) X has the RNP and admits a continuous twice Gâteaux differentiable bump func

tion. 
(b) X has the RNP and admits a continuous bump function with second-order direc

tional Taylor expansion at each point. 
(c) X admits a norm with modulus of smoothness of power type 2. 
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(d) Every norm on X is a limit ofUR norms which are twice Gâteaux differentiable 
onX\ {0} and have moduli of smoothness of power type 2. 

(e) Every convex function which is bounded on bounded subsets of X can be ap
proximated uniformly on bounded sets by twice Gâteaux differentiable convex 
functions whose first derivatives are also Lipschitz. 

REMARK. Notice that (a) does not follow trivially from (b). Indeed, there are bump 
functions that have second-order Taylor expansions and yet do not possess a second-order 
Gâteaux derivative; consider the function r3cos(l/0 {cf. [BN, Section 3, Remark 2]). 
However, this cannot occur for convex functions as was demonstrated in [BN, Theo
rem 3.1]. Also, it is relatively easy to obtain any of the first three conditions of the above 
theorem from either of the last two. The main effort will involve showing that (b) implies 
(c) and that (d) and (e) can be obtained from (c). 

Some preliminary définitions and results will be given before proving Theorem 2.1. 

DEFINITION. For 1 < p < 2 a real-valued function <j> defined on a Banach space X 
has directional modulus of smoothness of power type p at x G X if for each h G Sx there 
exist C > 0 and 8 > 0 such that 

(2.1) \(j>(x + th) + (j){x - th) - 2(j)(x)\ < Cf whenever t G [0,<5]. 

If this happens for all x G X, we say that <f> has pointwise directional modulus of smooth
ness of power type p. If the constant C in (2.1) does not depend on h, we say that </> has 
pointwise modulus of smoothness of power type p at x. 

The function </> is said to be directionally Lipschitz at JCO if there exists a 8 > 0 such 
that given h G Sx there is a Ch > 0 for which \4>(xo + th) — </>(*o)| < Ch\t\ whenever 
\t\<6. 

FACT 2.2. Suppose <j> is continuous and pointwise directionally Lipschitz at xo. If 
(j) has directional modulus of smoothness of power type p at XQ, then so does ip = <j)~2 

provided <J>{XQ) ^ 0. 

PROOF. Let/Qt) = <t>~1 (*)• Choose 8 > 0 and K > 0 so that \f(x)\ < K whenever 
II* — -̂ "o|| < Ô- Fix h G Sx, then for 0 < t < 8, we have: 

[f(x0 + th) +/(*Ô - th) - 2f(x0)\ 

< K3\(j)(xo + th)<j)(xo) + <t>(xo ~ th)(f)(x0) - 2<f>(xo + th)<f)(xo - th)\ 

= K3\(t)(x0 + th)[2(j)(xo) - </>Oo + th) - </>(xo - th)] 

+ [</>Oo - th) - (j)(x0 + th)] [(/>Oo) - <K*o + th)]\ 

= 0(f). 
By the above inequality and the fact that/ is directionally Lipschitz at xo, for 0 < t < 8 

we obtain: 

\f\x0 + th) +/2(xo - th) - 2f\x0)\ 

= | \f(x0 + th) +f(xo - th) - 2f(x0)] \f(x0 + th) +/(*))] 

+ \f(x0 - th) ~f(x0)] \f(x0 - th) -f(x0 + th)]\ 

= 0(f). 
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The following proposition shows that the bump function in [DGZi, Theorem III. 1] 
need only have a pointwise directional modulus of smoothness. 

PROPOSITION 2.3. Assume that X has the RNP. IfX admits a continuous pointwise 
directionally Lipschitz bump function <\> with pointwise directional modulus of smooth
ness of power type p> then X admits an equivalent norm with modulus of smoothness of 
power type p. 

PROOF. We essentially follow the proof of [DGZi, Theorem III. 1 ]. 
First define $: X —• RU{oo} by ip(x) = </r2(;t) if </>(JC) ^ Oand^O) = ooif <£(*) = 0. 

Let I/J* be the Fenchel conjugate function of I/J i.e. for y E X* 

-0*00 = sup{(y,x) - $(x) :xeX}. 

Because \j)(x) — oo outside a bounded set, the function ^ is finite, convex and w*-lower 
semicontinuous on X*. Because X has RNP, the function ijj* is Fréchet differentiable at 
each point of a norm dense G$ subset Q. of X* (cf. [C]) with derivative in X (x* is in the 
subdifferential of -0 at x if and only if x is in the subdifferential of 0* at x*; see [ET, 
Corollary 5.2, p. 22]). Let $ denote the Fenchel conjugate of ip* on X. It is shown in the 
proof of [DGZi, Theorem III.l] that if y0 G Q and x0 = (VO'Oo), then (JC0, $(x0)) is 
a strongly exposed point of the epigraph of $ (exposed by (yo, — 1)). Because of strong 
exposedness, the point (*o, $(*o)) actually belongs to the epigraph of 0 and this means 
that V'fro) = $(jto) < °°. By F a c t 2.2, 0 has directional modulus of smoothness of 
power type p at xo. Because $ is convex, majorized by t/; and agrees with 0 at JCO, it is 
straightforward to verify $ has directional modulus of smoothness of power type/? at xo. 

We can now use the argument in [BN, Proposition 2.2] to show that $ has modulus 
of smoothness of power type p at JCO. Indeed, choose 6 > 0 so that $ is bounded and 
continuous on B(xo,S). Define Fw by 

Fn = {he Bx : $(JC0 + th) + ^Oo - fA) - 2-0(JCO) < «INI'7 for 0 < / < <S}. 

Now F„ is closed; moreover {J%LxFn — Bx because t/S is bounded on #(xo><$) and has 
directional modulus of smoothness of power type/? at *o- According to the Baire Category 
Theorem, there is a neighborhood V of a point ho, in the interior of Bx, and n an integer, 
such that 

V<jt0 + th) + $(x0 - tfz) - 2</i(jco) < «INI^ for all A G V, 0 < / < <S. 

Consider the cone generated by taking the convex hull of — ho and V. This cone contains 
# r for some r > 0. For some k > n, by convexity one has, 

(2.2) $(;co + th) + Vi(jc0 - th) - 2$(x0) < k\\th\\p for all \\h\\ < r, 0<t<S. 

Because $ is convex, from (2.2) it follows that ^'(xo) exists and equals yo a nd that 

\fa0 + h)-fax0)-{y0,h)\<n\\h\\pfor\\h\\ <5r. 
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To complete the proof of Proposition 2.3, one need only reproduce (word for word) 
the proof of [DGZi, Theorem III. 1] starting form equation (4). The argument shows that 
using the Baire Category Theorem we can produce an equivalent norm on X* which 
has modulus of rotundity of power type (1 — p"1)^1. By duality X admits a norm with 
modulus of smoothness of power type/?; see [B, Lemma 3, p. 208]. • 

REMARK. It is immediate that any function with a second-order directional Taylor 
expansion at xo is directionally Lipschitz at xo and has directional modulus of smoothness 
of power type 2 at JCO. In particular, Proposition 2.3 (with p = 2) is valid for RNP spaces 
admitting continuous twice Gâteaux differentiable bump functions. 

We now develop some results concerning the approximation of convex functions. In 
what follows/• g denotes the infimal convolution of the convex functions/ and g on a 
Banach space X. In other words, fng(x) = inf{/(y) + g(x — v) : y G X}. 

LEMMA 2.4. Suppose X is a Banach space and letf be a convex function on X which 
is bounded on bounded sets. If{gk} is a sequence of convex functions such thatgk(0) < | 
andgk(x) > k\\x\\ — \ for all x G X, thenfngk —>/ uniformly on bounded subsets ofX. 

PROOF. Let r > 0 and suppose that/ has Lipschitz constant K on Br+\. For xo G Br 

fixed and for each k we can choose yk so that/ng^jco) >/(y*) +gk(*o — yk) ~~ \- F° r a n v 

k > K + 1 with k > 3 we have 

/(*>) + } > / f o ) + S*(0) >fngk(xo) 
k 

(2-3) >f(yk)-^8k(xo-yk)--

2 
>f(yk) + k\\xo-yk\\ - - . 

Let A0 G 3/(JCO), then ||Ao||* < K since/ has Lipschitz constant K on Br+\. Because 
f(yù ~f(xo) > A0(v^) - Ao(x0), we have 

/ ^ o ) - / ^ ) < | | A o | | * l k - ^ o | | <K\\yk-xo\\. 

Thus it follows from (2.3) that 
3 

^ l l ^ - x 0 | | + - >k\\xo-yk\\. 

In other words, 

In particular, yk G Br+\ and so \f(yk) ~ fixo)\ ^ "̂Ilvit — -̂ o||- From this we obtain 
2 2 

f(yk) + k\\x0 - yk\\ - - >f(x0) - K\\x0 - yk\\ + k\\x0 - yk\\ - -
(2.4) 2 

>f(xo)-v. k 
Clearly the lemma follows from (2.3) and (2.4). • 

In the following proposition, part (a) generalizes [BN, Theorem 5.2(1)] while part (b) 
is well-known (see e.g. [B]) and is given here for the reader's convenience. 
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PROPOSITION 2.5. Let X be a Banach space which has a norm with modulus of 

smoothness of power type 2. 

(a) Any convex function f which is bounded on bounded subset ofX can be approxi

mated uniformly on bounded sets by convex functions with Lipschitz derivatives. 

(b) Every norm on X can be approximated by norms with moduli of smoothness of 

power type 2. 

PROOF. Let || • || have modulus of smoothness of power type 2. Then || • ||2 has 

Lipschitz derivative on all of X; hence so does gk where gk(x) = k4\\x\\2. Easily gk(x) > 

k\\x\\ — | for all k and gk(0) = 0, therefore fngk —• / uniformly on bounded sets by 

Lemma 2.4. 

To see that / t — fugk has Lipschitz derivative for each k we use the Mean Value 

Theorem to choose Q > 0 such that 

(2.5) gk(x + h) + gk(x-h)-2gk(x)<Ck\\h\\2 

for all JC, h G X; cf. [FWZ, Lemma 2.4]. Fix an arbitrary xo G X. Since X is reflexive we 

choose yk so that/fc(jco) = f(yk) + gk(*o — yk)- Then, using (2.5), for any / ? G l w e have 

fk(x0 + h) +fk(x0 -h)- 2fk(xo) <f(yk) + gk(*o + h-yk) +f(yk) + gk(*o ~h-yk) 

- 2(f(yk) + gk(xo ~ yk)) 

= gk(*o -yk + h) + gk(x0 -yk-h)- 2gk(x0 - yk) 

<Ck\\h\\2. 

Since Ck does not depend on JCO, it follows from the proof of [FWZ, Lemma 2.4] (see 

[DGZ2, Chapter V]) that/ / is Lipschitz. This proves (a). 

To see (b), for a given norm | • | l e t / = | • |2. Then by (a) the norms | • |* = (fugk)
1 

have moduli of smoothness of power type 2 and converge to | • | uniformly on bounded 

sets. • 

To obtain approximating functions which are twice Gâteaux differentiable we need a 

lemma whose proof is almost identical to the proof of [FWZ, Theorem 3.1]. 

LEMMA 2.6. Let X be a separable Banach space and let e > 0 and r > 0 be given. 

(a) Iff is a convex function whose first derivative is Lipschitz, then there is a convex 

function g such that \g(x) — f(x)\ < e for all x G Br and g is twice Gâteaux 

differentiable with Lipschitz first derivative. 

(b) If\\-\\isa norm with modulus of smoothness of power type 2, then there is a norm 

|| • ||i such that (1 —e)||x|| < ||x||i < (l+e)\\x\\forallxand || • ||i is twice Gâteaux 

differentiable onX\ {0} and has modulus of smoothness of power type 2. 

PROOF. TO begin the proof we fix e > 0 and r > 0. Let C e R be such that / 

is Lipschitz with constant C on #r+i, and select a set {hi}™0 dense in Sx- Next, fix a 

C°°-smooth function </>o: R —» R such that 0o is nonnegative and even, vanishes outside 

https://doi.org/10.4153/CJM-1993-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-032-9


618 D. MCLAUGHLIN, R. POLIQUIN, J. VANDERWERFF AND V. ZIZLER 

tic» ic\ a n d s a t i s f i e s k 0o = 1. Setting/o = / and <f>n = 2n^{2nt) for t G R, w > 1, we 
define a sequence of functions {fn: X —> IR}^ by 

/«W = £ ,/o (* - È ^ ) A <M'/) *o • • • dtn. 

As in the proof of [FWZ, Theorem 3.1] there is a function g: X —-> R such that/n —> 
g uniformly on bounded sets and g is twice Gâteaux differentiable with Lipschitz first 
derivative. 

Moreover, for x G Br we have 

[/•(*) - g « | = lim £ [/bW -/o (* - £ ^ ) 1 ft <M'/) dto'" dtn 
i = 0 i=0 

< / c\ Ë ^ i \î[<t>i(ti)dt0--dtn 
i=0 " i=0 

^ c c 

In case (b) where the function/ is a norm we set/o(jc) = ||JC||2. It follows that the func
tion g as obtained above is convex and even. By (a) choose g so that g(x) G 
[||*||2 — e, ||x||2 + e] whenever ||JC|| < 5. If we set B = {x G X : g(x) < 16} then 
as in [FWZ] the Minkowski functional of B is an equivalent norm | • | which is twice 
Gâteaux differentiable o n I \ {0} and has modulus of smoothness of power type 2. Let 
||-||i = 4|-|.NOW||JC||I = 4 ifand only if g(jt) = 16 which implies 16—e < ||JC||2 < 16+e. 
Therefore, ( l -e) | | j t | | < \\x\\x < (1 + e)||jc|| for all JC G X. m 

PROOF OF THEOREM 2.1. It is obvious that (a) => (b), while (b) => (c) follows from 
Proposition 2.3. Next it is shown that (c) => (d). 

STEP 1. If X admits a norm with modulus of smoothness of power type 2, then every 
UR norm is a limit of UR norms with moduli of smoothness of power type 2. 

Let | • | be UR and let e > 0. By Proposition 2.5(b) choose norms | • \n with moduli 
of smoothness of power type 2 so that (1 — e)\x\ < \x\n < \x\ and | • \n —-> | • |. Choose 
Cn > 2 so that |JC + /Z|2 + | J C - / I | 2 - 2 | J C | 2 < Cn\h\2

n for all JC,/i G X and define ||| • ||| by 

2-\ 

Easily |||JC+ /z|||2 + |||JC - /*|||2 - 2|||x|||2 < (d + •for all A:,/i GXand( l - e)\x\ < 
\\x\\\ < (l + e)|jc|.Toseethat | is UR, suppose that 

2|IW||2 + 2|W|2-

From this it follows, for each /c, that 

\\Xn+yn\\ 0. 

2|xn|^+2|_y„|^- \xn+yn\
2
k 0. 
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Thus, 
2\xn\

2 + 2\yn\
2-\xn+yn\

2-

Therefore \xn — yn\ —* 0 which implies that \\\xn — yn\\ 

0. 

* 0. That is, I isUR. 

STEP 2. If the initial norm in Lemma 2.6(b) is UR, then so is the norm in the con
clusion. 

Let | • | be UR with modulus of smoothness of power type 2. By uniform rotundity, for 
a fixed r > 0, given 6 > 0 there exists e > 0 so that 2|JC|2 + 2|y|2 > |x+y|2+4e whenever 
|*| < r + 1> \y\ < r + 1 and \x — y| > b. Hence using | • | to construct the functions/^ as 
in the proof of Lemma 2.6, for |JC — y\ >6 and |JC| < r, |y| < r, we have 

'•(*¥)-L 
i2 n 

^T ~ è * M II <t>(!i)dt0...dtn 
^ i=(\ ' i=0 

< 
i=0 

H<Kti)dt0...dtn 
i=0 
|2 

x-Y^Uhi\ + ^ly-Y^tM -e)Yl<l>(tï)dto...dtn 
i=0 i=0 

= -jfntx) + -fn(y) - 6. 

Now/„ —>/ for some/, therefore 

(x + y 
/ ( • 

2 ; £ 5 / W + > - -
Let B — {x : /(JC) < M} be the unit ball of some norm || • || we will show that || • || i; 

UR. Now B C {x : |JC| < r} for some r > 0. Given 6 > 0, there exists an e > 0 so that 

,(*-±Z) <->->- ,< M 

whenever ||JC — y|| > è and x, y G 5. Since/ is convex and bounded on bounded sets, it 
is certainly uniformly continuous on B. Thus there is an rj > 0 such that \\u — v|| < ry 
and «, v £ # imply |/(w) — /(v)| < e. Hence 

/(d+*7)( 
x + y 

This implies 
x + y 

<A 

< 

x + y + e < M . 

1 + rj 

whenever x,yeB and ||JC — y|| > 6. Thus || • || is UR. This finishes Step 2. 
Finally, since the UR norms are dense among all norms in X, Step 1, Step 2 and 

Lemma 2.6(b) show that (c) => (d). 
One obtains (d) => (e) immediately from Proposition 2.5(a) and Lemma 2.6(a). To see 

that (e) => (a), notice that (e) easily implies that X admits a continuous twice Gâteaux 
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differentiable bump function with Lipschitz Fréchet derivative and therefore is super-
reflexive; see [FWZ, Theorem 3.2]. It is also easy to directly construct a norm with mod
ulus of smoothness of power type 2 using (e) and the Implicit Function Theorem. • 

REMARK, (a) If/ is globally Lipschitz with Lipschitz constant K and gk is as in 
Lemma 2.4, then arguing as in inequalities (2.3) and (2.4) for any XQ G X we have 

1 2 
/(*))+£ >/Dg(*o) >f(x0) + (k-K)\\x0-yk\\ - - . 

Thus the approximation is uniform on all of X. Moreover in Lemma 2.6(a) the approxi
mation is uniform on all of X provided the given function/ is globally Lipschitz. There
fore the approximation in Theorem 2.1(e) will be uniform on all of X provided the initial 
function is globally Lipschitz. 

(b) Variants of Proposition 2.5 are also valid, for example, in spaces which admit 
uniformly smooth norms or norms whose derivatives are a-Holder on the sphere and for 
C1-smoothness in reflexive spaces. 

(c) Given / a convex function bounded on bounded sets of X, we construct in The
orem 2.1(e), Lemma 2.4, and Proposition 2.5 a sequence of convex functions {fk} con
verging uniformly t o / on bounded sets (in Theorem 2.1(e) the/^'s are twice Gâteaux 
differentiable and in Proposition 2.5 they have Lipschitz derivative). It is easy to show 
that uniform convergence on bounded sets implies Moscoconvergence of the sequence 
{fk}. Recall that {fk} Mosco-converges t o / if for every x G X w e have 

(2.6) V** — x (weakly), /(*) < lim inffk(xk) 

3xk —> x (in norm), f(x) > lim supfk(xk) 

In our case, to establish thatfk Mosco-converges t o / we need only verify (2.6). To 
this end let {xk} be a sequence weakly converging to x. Because the sequence is norm 
bounded, for a fixed e > 0 we have that/*(**) >f(xk) — e for all large k. Thus 

\immffk(xk) > liminf/(**); 

moreover, because the function/ is weakly lower semicontinuous, it follows that 

liminf/*(**) >/(*). 

Since the spaces X we are dealing with are reflexive, the fact that the sequence {fk} 
Mosco-converges t o / has many interesting and valuable properties, for example 

fj* Mosco-converges to/*, and 

if xk G argmin/t with xk —> x then x G argmin/, 

where h* is the conjugate of h (see [ET]) and argmin h is the set of minimizers of h. For 
a complete survey on Mosco-convergence we refer the reader to [A]. 

We conclude this section with some isomorphic characterizations of Hilbert spaces. 
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COROLLARY 2.7. Assume either X or X* has the RNP. Ifboth X andX* have contin
uous pointwise directionally Lipschitz bump functions with pointwise directional moduli 
of smoothness of power type 2, then X is isomorphic to a Hilbert space. 

PROOF. From Proposition 2.3 it follows that that X is super-reflexive. Therefore we 
are in a situation where bothX and X* satisfy the hypothesis in Proposition 2.3. Applying 
Proposition 2.3 to both X and X*, we conclude that both X and X* have equivalent norms 
with moduli of smoothness of power type 2. If y is a separable subspace of X, then 
F* admits a twice Gâteaux differentiable norm by [FWZ, Theorem 3.1]. Thus [FWZ, 
Theorems 2.7 and 2.8] show that Y is isomorphic to a Hilbert space. It follows that X 
is isomorphic to a Hilbert space because Hilbert spaces are separably determined—this 
can be shown directly or one can use Kwapien's theorem ([K]). • 

It has recently been shown that a Banach space which admits a continuous twice 
Gâteaux differentiable bump function is an Asplund space, therefore the assumption that 
X or X* has the RNP is redundant in Corollary 2.7 in the case that one of the bump 
functions is twice Gâteaux differentiable; the details are in [V2]. 

Recall that in [F], Fabian defined an LD-space to be a Banach space on which every 
continuous convex function has a dense set of Lipschitz smooth points. Proposition 2.3 
can be used to obtain the following improvement of [F, Theorem 3.3]. 

COROLLARY 2.8. If X (X*) admits a continuous bump function with pointwise di
rectional modulus of smoothness of power type 2 andX* (X) is an LD-space, then X is 
isomorphic to a Hilbert space. 

PROOF. First the nonparenthetical assertion: because X* is LD, X has the RNP (see 
[Bou, Theorem 5.2.12]). According to Proposition 2.3 X admits a norm with modulus of 
smoothness of power type 2. Now let y be a closed separable subspace of X. Invoking 
[FWZ, Theorem 3.1] yields a norm ||| • ||| which is twice Gâteaux differentiable on Y\ {0}. 
The proof is completed exactly as the proof of [F, Theorem 3.3]. 

For the parenthetical assertion: X* has the RNP since X is an LD-space. Thus by 
Proposition 2.3 X is reflexive and the nonparenthetical assertion applies. • 

3. Approximating LUR norms by C^-smooth norms in separable spaces. The 
following remark illustrates the power of combining higher order smoothness with ro
tundity. 

REMARK. Suppose X admits an LUR norm || • || that is Lipschitz smooth at each 
point of Q a dense Gè subset of X. Then X admits a norm with modulus of smoothness 
of power type 2. 

To prove this, set Fn = {x : ||* + h\\ + ||* - h\\ - 2\\x\\ < n\\h\\2 for all h G X}. 
Then Fn is closed and Q C UFn. By the Baire Category Theorem, for some no, FnQ has 
nonempty interior, say, 2?(jco,2e) C Fno for some e > 0 and xo G X. Therefore, || • \\' 
is Lipschitz on B(xo,e). We now proceed as in the proof of [FWZ, Theorem 3.3]. Let 
H= {heX: \\x0\\

f(h) = 0}. Since || • || is LUR, there is a 6 > 0 such that for h G //and 
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\\h\\ > e, we have ||;to + /z|| > ||JCO||+6. For/z G //, let </>(/i) = ||JCO + /Z|| + ||*o — h\\ —2||JCO||. 

Set Q = {h e H : (/>(/z) < §}. Let g be the Minkowski functional of Q. The Implicit 
Function Theorem asserts that as an equivalent norm on H, q has Lipschitz derivative on 
its sphere. Thus there is a norm with modulus of smoothness of power type 2 on X. 

Notice that the above remark shows that the norm constructed in the next proposition 
cannot, in general, be Lipschitz smooth (in particular twice Gâteaux differentiable by 
[BN, Proposition 2.2]) at each point of a dense G^ set. See [PWZ, Proposition 2] for a 
construction on CQ(T) which is similar to the following. 

PROPOSITION 3.1. Let X be a separable Banach space which admits a norm that is 
Ck-smooth onX\ {0}for some k G N U {oo}. Then there is an LUR norm on X which 
is C1 -smooth on X\ {0} and is limit of norms which are Ck-smooth onX\ {0}. 

PROOF. Let the norm || • || be C^-smooth X\ {0} and {hn}™=x be dense in Sx. Choose 
fn £ Sx* such that fn(hn) = 1 and define the projections Pn by Pnx = fn(x)hn. For 
m — 1,2,... let </>m be even, convex and C°°-smooth functions on R such that 4>m(t) — 0 
if M < ^ and 4>m(t) > 0 if \t\ > ^; suppose also that </>m(2) < \ for all m. Now set 

Observe that 0„>m is C^-smooth, even, convex and uniformly continuous on bounded 
subsets of X. If Vn?m = {x : 9n,m(x) < 1}, then V„>m is the unit ball of an equivalent norm 
|| • ||n?m. Because Qn,m(x) < 1 whenever ||JC|| < 1, one has || • \\n/n < || • ||. Moreover, 
On,m(Q) — 0 and 6n,m(x) — 1 whenever ||jt||n>m = 1; thus the convexity of Qn,m implies 
6f

nm(x)(x) > 1 whenever |\x\|n>m = 1. According to the Implicit Function Theorem, ||-||n,m 

isC*-smoothonX\{0}. 
Consider the norm ||| • ||| defined by 

/ 1 °° 1 \ \ 

INII = (lWI2 + E ^ I W I ^ + E^ / -w)" -
v n,m L

 n=\ L ' 

Notice that ||| • |||2 is C1-smooth because the sum of the derivatives of the terms in its 
definition converge uniformly on bounded sets. In addition, the norms 

IIWIl/=(lWI2+E 2^IMIl, + È i / ? w ) i 

v n,m<j z n=\ L J 

are Ck-smooth on X \ {0} and ||| • |||7- -> ||| • |||. 
We will show that the norm ||| • ||| is LUR. For this, suppose that |||x||| = 1 and 

(3.1) 2|||JC|||2 + 2|||jt/|||
2 - |||JC +Jt/IH2 —> 0. 

We now show, for every n, that ||JC,- — Pnxi\\ —-» ||JC — Pnx\\. To do this, we first assume 
that lim sup, ||x; — Pnxl• || > ||JC — Pnx\\ for some n. Thus there is a subsequence {xi } such 
that ||x; — PnXi\\ > ||* — Pnx\\ + 6 for some 6 > 0 and for ally. Now fix m so that ^ < f. 
Because ||jc||n,m < ||x|| < |||JC||| = 1, we choose a > 1 so that 

<t)m(a\\x\\) + c/)m(a\\x - Pnx\\) = 1. 
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The definition of ||| • ||| and (3.1) imply ||JC/|| —> \\x\\. Since <\>m is continuous and nonde-
creasing on (0, oo), we have 

liminf0m(a||x/.||) + (/)m(a||x/. -/>„*;. ||) > <l>m(a\\x\\) + <f>m(a\\x-Pnx\\ + <5). 
j j J 

Because <f>m is a convex function, it follows that 

< / > m ( ~ ) - (t>m(0) < <t>m[oc\\x ~ Pnx\\ + ~ ) ~ <t>m(<A\x ~ PnA\)-

Let À = </>m(̂ ) — <t>m(0) — <t>m(^) > 0. Because </>m is nondecreasing on (0, oo) and 
<5 > ^, the above inequality implies 

</>m(a||x||) + (t>m(a\\x - Pnx\\ + <5) > 0m(a||x||) + 0m(a||* - Pw*||)+ 

+ (/)m(a||x-Pnx|| + —) - ^ ( a l l x - P ^ H ) 

> (j)m(a\\x\\) + (j)m(a\\x - Pnx\\) + A 

= 1+A. 

Hence for somejo G N, ^m(a||^.||) + (/>m(a||̂ } - Pmx^\) > 1 + f for; >y0. Since </>m is 
uniformly continuous on bounded sets, there is an e > 0 so that 

0 m ( ( l - e ) a | | ^ | | ) + 0w(( l -6)^11^.-PW^. | | ) > 1 for ally > jo. 

Hence liminf}(l — e)||jc .̂||w>m > ||x||n?m. However this leads to a contradiction since (3.1) 
and the definition of ||| • ||| imply that ||x/||„m —-> ||jc||„,m. Therefore, lim sup, ||jt; — PnXi\\ < 
\\x — Pnx\\ for each n. 

Similarly we see that liminf/ \x[— PnXi\ > ||* — Pnx\\ for each n. Therefore, 

(3.2) ||JC/ - Pnxt\\ —> \\x - Pnx\\ for all n. 

We now show that ||| • ||| is LUR. Let e > 0 and recall that Pnv = fniy)hn where 
\\fn\\* ~ \\hn\\ —fn(hn) = 1. Since {hn}^Ll is dense in Sx, we choose and fix n such that 

(3.3) \\x-Pnx\\<e. 

According to (3.2) and (3.3) there is an /o such that 

(3.4) ||jt/ — PnXi\\ < e for all / > i'o-

Because of (3.1) and the definition of ||| • ||| it follows that limt fn(xi) = fn(x). Thus replac
ing io by a larger number if necessary we also have: 

(3.5) \fn(Xi)-Mx)\<e for all i>i0. 

Finally, for / > i0 (3.3), (3.4) and (3.5) imply 

| |x-x/ | | < ||*/ -PnXi\\ + \\PnXi — Pnx\\ + \\Pnx-x\\ 

= \\X( - PnXi\\ + \\(fn(Xi) -fn(x))hn\\ + \\PnX - x\\ 

<3e. 

Since ||| • ||| is equivalent to || • ||, |||x-.*/||| —> 0. Therefore ||| • |||isLUR. • 
It is not known if any norm on a space admitting a C^-smooth norm can be approx

imated by Ck-smooth norms. However, approximations of LUR norms as in Proposi
tion 3.1 are particularly useful for structural reasons: for example, they can be used to 
construct smooth homeomorphic maps of spaces into CQ or /2;see [DGZ2, Chapter V]. 
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PROPOSITION 3.2. IfX is a separable Banach space with a norm whose k-th Fréchet 
derivative is uniformly continuous on its sphere for some k G N, then X admits an LUR 
norm which has uniformly continuous k-th Fréchet derivative on its sphere. 

PROOF. Essentially the same proof as in Proposition 3.1 works. As before for 
\\A\n,m — 1, we have d'nm{x)(x) > 1, thus the Implicit Function Theorem asserts that 
|| • \\n/n has uniformly continuous k-th derivative since 9n^m has uniformly continuous 
k-th derivative. Now define the norm ||| • ||| by 

/ 1 °° 1 \ \ 

IIWII = IWI2 + E w-^\\4l,m + E # ) " 
v n,m ^n,mL

 n=\ L J 

where Cn^m > 1 is chosen so that the k-th derivative of -^—1| • \\2
n m has norm < 1 if x ^ 0. 

The rules for differentiating an infinite sum show that |j| • ||| has uniformly continuous 
k-th derivative on its sphere. • 

Note that even in h there is an LUR norm which is not a limit of functions with 
uniformly continuous second derivatives (see [Vi]). However, it seems to be unknown 
whether there is a UR norm which is a limit of norms with uniformly continuous k-th 
derivative on the sphere under the hypothesis of Proposition 3.2. 

REMARK. Suppose X does not contain a subspace isomorphic to co(N). If X admits 
a norm whose k-th derivative is locally uniformly continuous on X \ {0}, then X admits 
a norm with uniformly continuous k-th derivative on its sphere. 

This remark was not included in the paper [FWZ] but follows easily from the results 
therein: by [FWZ, Theorem 3.3(i)], X is super-reflexive. Therefore there exists a strongly 
exposed point on Bx- The proof of [FWZ, Theorem 3.3(ii)] then shows that the conclusion 
of the remark is valid. 

From the above remark and Proposition 3.2 we obtain 

COROLLARY 3.3. Suppose that X is separable and admits a norm which is Ck+l-
smooth on X \ {0} for some k > I. If X does not contain a subspace isomorphic to 
co(N), then X admits an LUR norm which has uniformly continuous k-th derivative on 
its sphere. 
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