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1. A b s t r a c t a n d I n t r o d u c t i o n 

The internal structure of stars is governed by hydrostatic support, the distribution 
of the chemical elements, the transport of energy by radiation and convection, and 
the liberation of energy by nuclear reactions. The evolution of stars is primarily de-
termined by the changing composition due to the nuclear burning of elements in the 
central parts of the star, and the redistribution of the products of these reactions by 
mixing processes. The dominant mixing process is convection: it governs the extent of 
the mixed cores in moderate and large mass main sequence stars and their subsequent 
evolution, it mixes nuclear processed material into the envelopes of giants affecting 
the composition of material ejected into the interstellar medium, thereby affecting the 
chemical (and luminosity) evolution of galaxies. Understanding convection is essential 
if one is to understand the evolution of stars. Here I am concerned with convection in 
stellar cores and in particular with the extension of these cores by the penetration of 
convective motions into the surrounding stable layers affecting the internal structure 
and enlarging the chemically mixed region, which in turn affects the subsequent evo-
lution. I briefly discuss a number of approaches to this problem: isochrone fitting of 
clusters and binary stars; simple theoretical models, the integral constraint, numeri-
cal simulation and what we can hope to get from asteroseismological observations of 
individual stars and of clusters and stellar groups. 

2. I s o c h r o n e fitting to b inary stars a n d stellar c lusters 

Since the structure and evolution of a star is affected by the extent of its convective 
core so too will be the isochrone (or locus at constant age) of a group of stars in the 
H-R diagram. One way to seek to quantify overshooting is therefore to seek the best 
fit to both the H-R diagram of individual clusters and the width of the main sequence 
band for a collection of clusters with differnt assumptions on convective overshooting. 

In studies by Maeder and Mermillod (1992) and Meynet et al. (1993), overshooting 
was parametrised by taking the radius of core to be enlarged by a multiple a of the 
local pressure scale height Hp = P/\dP/dr\. These authors found that the best fit 
to isochrones of a large number of clusters indicated that α « 0.2 - 0.3HP. In a 
more recent study Dowler and VandenBerg (1995, private communication) found that 
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cluster isochrones could be well fitted if core overshooting was as given by the integral 
condition I derived some years ago (Roxburgh 1978,89, see section 5) . Figure 1 shows 
their results for the Cluster IC 4651. Similar results were found for the range of clusters 
they analysed. These authors also found that the same model of core overshooting 
improved the fit of theoretical evolutionary models with the observations of binary 
stars. 

3 . T h e classical m i x i n g l ength m o d e l of convect ion 

The usual approach to modelling convection is to use the mixing length model, or 
some presumed refinement thereof, but at best such models only give an indication of 
the magnitude of the effects being studied, and their quantitative predictions should 
not be taken seriously. Unfortunately not all astronomers exercise such restraint! In 
this "classical" mixing length model of convection, turbulent eddies are imagined to 
rise or sink under the action of bouyancy, travelling a distance ί, the mixing length, 
conserving entropy and in pressure equilibrium with their surroundings, and then to 
mix into their surroundings. The mixing length t is taken as aHp where Hp is the 
pressure scale height and a is an unknown parameter adjusted so that a solar model 
has the observed solar radius, or by some other empirical fitting condition. 

In this simple model the temperature excess JT, density excess δρ, velocity ν and 
fluxes Frad,Fconv are given by 

Deep inside the convective zone with Fconv « F, A V « 1 0 - 8 . At the boundary 
(ζ = 0 ) , ν = 0, A V = 0, Frad = F = χ ο V a d , Fconv = 0. On the unstable side of the 
boundary (z < 0 ) , Frad « (1 - x)F, Fconv « xF, A V « x 2 / 3 A V 0 where χ = -z/Hx 

and A V o is the value well inside the stable layer In the stable region Fconv = 
0, Frad = F = (χο + x'z)(Vad + A V ) and A V « -(z/Hx)Vad decreases to a value of 
about —Varf/2 in a distance of order Hx/2. There is no convective penetration into 
the surrounding stable region in this simple model. 

However since A V > 0 in the unstable region eddies are accelerated up to the 
boundary and therefore continue into the stable layers. With A V « (-z/Hx)

2/3AVo 
an eddy starting from ζ = —h with υ = Ο,δΤ = 0 accelerates under gravity and 
arrives at the boundary ζ = 0 with 

(1) 

(3) 

where Vad — (Γ — 1 ) / Γ with Γ = cp/cv the ratio of specific heats. The kinetic energy 
flux is neglected on the (weak) argument that upward and downward moving eddies 
occupy equal areas and the viscous energy flux is asssumed negligibly small. Taking 
Δ ν , ρ , Η ρ , ρ , Γ constant and integrating over the mixing length t = aHp gives 

(2) 
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The eddy continues into the stable layer where A V « —(z/Hx)\7ad and for ζ > 0 has 
a temperature excess δΤ and velocity ν given by 

where ν% = 0 . 8 c p T A V o , £ = z / f /p and we have taken Hx = Hp. The penetration 
distance d is given by ν = 0 which with A V o ~ 1 0 ~ 8 gives χ = d/Hp & 0.004, a very 
small distance. 

This calculation is essentially the same as that in Roxburgh (1965), which was like-
wise based on an eddy picture, and closely related to that of Saslaw and Schwarzschild 
(1965) in which they calculated the eigenfunction of the lowest unstable eigenmode. 
In both cases the variation of A V was taken as given by a model with no overshooting 
as in the above analysis. 

4. N o n - l o c a l m o d e l s of convect ive overshoot ing 

The error in these analyses was to ignore the feedback of the overshooting on the ther-
mal structure. Even a small amount of penetration disturbs the structure of the thin 
overshooting region, mixing matter from the convective layer and therefore sharing 
entropy and making the layer slightly less stable. With a slightly less stable layer the 
next eddy or convective cell can penetrate that little bit further, increasing slightly 
the region that is mixed with the unstable layer. Since the convective turnover times 
are very short compared with the thermal relaxation time of a star these successive 
mixings change the entropy gradient in the overshoot layer making it almost adia-
batic. It is necessary therefore to determine the equilibrium structure after many such 
mixings. 

A number of non-local models have been developed to seek to incorporate this 
feedback; Shaviv and Salpeter (1973), Maeder (1975), Roxburgh (1978,1985), Schmitt 
et al. (1984) and Zahn (1991). Whilst these models incorporate some measure of 
feed back they still consider convection as an extended local phenomenon. It is the 
authors view that since the "mixing time" in a convective region is small compared 
with the thermal relaxation time the mean equilibrium structure of a convecting 
region is a global rather than a local property. Many years ago I developed (but never 
published) a global model in which the structure of a convective core and surrounding 
layers was determined by the condition that the mean convective flux, calculated 
with the properties of the lowest unstable eigenmode, exactly balanced the difference 
between the total and radiative fluxes (cf. Roxburgh 1994). This model gave similar 
results to the integral constraint on convective overshooting discussed in section 5, not 
surprisingly since these models, and indeed the non-local models referred to above, 
all neglect viscous dissipation. 

In a non-local model we take the boundary of the classical convective core to be 
at the place where Frad = F. Neglecting the kinetic energy flux this requires Fconv to 
be zero so we consider eddies arriving at the boundary ζ = 0 with δΤ = 0, VQ > 0. For 

(5) 

(4) 
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simplicity we also take A V = 0 at the boundary but there is no difficulty in extending 
the analysis to non zero values. 

The equilibrium of the overshoot region is given by exactly the same equations (1) , 
(2) , as the standard mixing length model. These equations can be integrated (numeri-
cally) to give υ(ζ),δΤ(ζ), A V ( z ) in the overshoot region given δΤ(0) = 0, υ(0), A V ( 0 ) 
at ζ = 0 Since dv2/dz = 0 at ζ — 0 and v(z) is a slowly varying function of z, with 
A V ( 0 ) = 0, equations (1) and (2) can be integrated to give 

(9) 

where Σ is the surface of V. For a stationary or statistically steady state the first term 
on the left hand side is zero, and with ν = 0 on Σ the second term also vanishes so that 
the right hand side is zero. The total flux F is given in terms of the energy generation 
by divF — ep, and on integrating by parts, using Gauss's theorem to convert to a 
surface integral, and noting that F r = F on Σ , we find 

(6) 

Δ V remains small in the overshoot region as long as Λ > 1 or υ > v0 Δ Vo / Vad where 
^ο ,Δνο , are typical values inside the convectively unstable region. The variation of 
ν and the penetration distance d where ν = 0 can be estimated by multiplying the 
second of equations (1) by v, using Fconv = cppTv5T to eliminate υδΤ, noting that 
Fconv = F — Frad « —Fz/Hx and integrating to give (cf. Zahn 1991) 

(7) 

These results should not be taken too literally, but they show that inclusion of 
the feedback of the convective overshooting on the thermal structure gives a large 
slightly subadiabatic region out to a distance of the order of (say) 0.3 of a scale 
height. The mass of the convectively mixed region is then substantially greater than 
that of the unstable convective core, with considerable consequences for the structure 
and evolution of the star. 

5 . T h e Integra l C o n s t r a i n t on convect ive overshoot ing 

An alternative approach is to seek analytical constraints on the maximum extent of 
convective overshooting (Roxburgh 1978,89,92). On using the equation of continuity 
dp/dt + div(pv) = 0 the thermal energy equation (dS — dQ/T) can be expressed as: 

(8) 

where S is the entropy per unit mass, ρ the density, ν the velocity, F r the radiative 
flux, e the energy generation per unit mass and Φ the viscous dissipation per unit 
volume. 

On integrating this equation over a volume V containing both the convective core 
and any overshoot region such that the convective vélocités ν = 0 outside V then on 
using Gauss's theorem this can be expressed as 
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where the last inequality comes from the fact that the viscous dissipation Φ is positive 
definite. If the viscous dissipation is neglected, (as is done in the simple non-local 
models described above) then since Fr < F inside the unstable layer it follows that 
there must be a penetration region where Fr > F the integral condition allowing one 
to determine the extent of this region, quantifying the earlier estimates derived using 
the eddy/plume mixing length models. But there is a major conceptual difference 
between the integral condition and other analyses which, in the author's opinion, 
is of major importance. The integral condition is a global condition on the whole 
convective region not just a condition in the neighbourhood of the boundary, that is 
the whole convecting region has to adjust to satisfy this constraint (including viscous 
dissipation). This is entirely reasonable since we impose the condition of statistical 
stationarity. 

It should be stressed that the viscous dissipation is not zero, indeed is necessarily 
positive. In Roxburgh (1978) Φ was set zero to give an estimate of the upper limit 
on the extent of convective penetration, in contrast to the classical model where 
the kinetic energy flux is set to zero and there is no overshooting. Simple stellar 
models using this condition give an enhancement of the core mass of the order of 50% 
(Roxburgh 1978). It is this condition (with Φ neglected) that was used in the work of 
Dowler and VandenBerg described in section 2 and Figure 1. 

However 2-D and 3-D resolved numerical simulations of convection in an unstable 
layer surrounded by stable layers (Roxburgh and Simmons 1993, Roxburgh 1998) 
demonstrated that, within their assumptions, the contribution of viscous dissipation 
to the integral condition decreased as the Prandtl number was decreased, and for 
Prandtl numbers less than 0.1 the mean properties of the solution were adequately 
described by the integral condition with Φ = 0 (Figure 2) . 

6. N u m e r i c a l s imulat ion of convect ion 

There are several groups undertaking 2-dimensional and 3-dimensional numerical sim-
ulation of convection in the sun and stars, mostly for plane parallel geometries rather 
than for convective cores. I am currently developing my 3-D code for studing over-
shooting from cores but unfortunately this has not yet been completed. Whilst such 
simulations can advance our understanding of convection it is important to remember 
that they do not simulate the real astrophysical conditions. These calculations fall 
into two categories: laminar calculations in conditions of very high viscosity, "convec-
tion in treacle", and large eddy simulations with some sub-grid scale modelling of the 
turbulent flow. Sub-grid modelling approximations is an area that requires much de-
tailed study, Canuto (1996) has recently claimed that many schemes in current use are 
inconsistent as they do not satisfy Galilean invariance - this criticism (fortunately!) 
does not apply to the Smagorinski scheme used by myself and colleagues Kwing Chan 
and Harinder Singh. 

3-D simulations by Nordlund and Stein (eg 1997) of the solar convective envelope 
are most impressive in that they include radiative losses at the upper boundary. Their 
results on overshooting at the base of the layer do not give a sharp transition between 
the convective region - which includes a large marginally stable zone - and the radiative 
interior, the sharp transition being smoothed out by averaging over many pénétrât-

(10) 
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Figure 1. The best isochrone fit. to Cluster IC 
4651 is with core overshooting using the In-
tegral Constraint and t = 2.3 109 yrs. Stan-
dard models give a worse fit and a younger age 
(Dowler and VandenBerg) 
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Figure 2. Variation with Prandtl number σ of 
the ratio of the contributions to the integral 
constraint from the overshoot region I0 and 
the total viscous dissipation Vx, to the contri-
bution from the unstable region Iu 

Figure 3. Variation of the superadiabatic gra-

dient A V at the boundary of a convective 

layer: numerical solution with σ = 0 (dotted 

line) and mixing length model (solid line). 
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Figure 4. Error estimation on the determi-

nation of core overhooting parameters ßi(M) 

and mixing length parameters CXi(M) for a set 

of 6 stars in a model Hyades cluster. 
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ing plumes. 2-D resolved laminar simulations by Roxburgh and Simmons (1993) do 
however find such a penetration layer that is at least similar to that predicted by 
simple analytical models (Figure 3) . Likewise 3-D laminar simulations by Roxburgh 
(1998) and turbulent simulations by Singh, Roxburgh and Chan (1994,95,97) using 
Smagorinski sub-grid modelling, find such a transition. Much remains to be done! 

7. Asteroseismology and convection 

A major advance in our understanding of convective cores should be achieved through 
asteroseismology, especially through high precision space observations such as those 
planned for the French satellite mission C O R O T (cf. Baglin et al. 1997), and possible 
larger missions such as STARS (Badiala et al. 1996). Advances should also be achieved 
through the development and application of diagnostic and inversion techniques to 
coordinated ground based observations of (for example) δ Scuti and β Cephei stars. 
The boundary of convective cores generates a periodic signal in the oscillation frequen-
cies produced by the steep change in sound speed gradients and composition as the 
star evolves with mixing in the core and associated overshoot region (Roxburgh and 
Vorontsov 1994). Some oscillation modes can be exceedingly sensitive to the region 
around the core, giving a valuable diagnostic tool with which to probe the internal 
core structure. The problem with such stars is that of mode identification and fitting 
the observed spectrum of frequencies to a model of the star. At the moment this is still 
an uncertain process but promises rich rewards. The method used is essentially model 
fitting, that is to produce a set of models of different mass and with different assump-
tions on the internal physics, in particular on convective overshooting, that satisfy 
such classical observational constraints as exist ( M y , T e / / , abundances), computing 
the oscillation frequencies of these models and seeking to find a fit to the observa-
tions. This is not easy since only a subset of modes may be observed and because 
the predicted values of the frequencies depends on the structure the surface layers 
where there is considerable uncertainty in our understanding of the physics. A new 
"differential response" technique which gives a way round this problem has recently 
been developed by Vorontsov (1997) and gives some hope that progress can be made 
in this area. 

For a group of stars in a cluster, or in a binary system, asteroseismology is a 
potentially powerful tool for probing both convective overshooting in the core and 
the properties of convection in outer envelopes. For such stars which may be assumed 
to have the same age and initial composition (and in the case of binaries possibly 
good constraints on the masses) we can parametrise the unknowns in the models of 
stellar evolution and seek to determine these by a simultaneous fit to the classical 
observables ( M v , T e / / , and possibly some constraints on composition Χ , Y, Z) and 
the measured oscillation frequencies. Several such analyses have been undertaken 
to quantify the accuracy with which one can determine these parameters by such 
cluster/group fitting (cf. Audard et al. 1996). Figure 4 shows the results of an analysis 
by Audard and Roxburgh (1997) for a group of 6 stars with properties similar to those 
in the Hyades, in which the unknown stellar parameters are the fractional increase 
in core mass due to overshooting (assumed to vary with core mass), the parameter 
oti in the mixing length model of convection, (assumed to vary with stellar surface 
properties # , T e / / ) , the masses of the stars M^, the age t, the initial composition 
y , Z , and the distance to the cluster D. The classical observables and their assumed 
errors are magnitudes mv (O.Olmap), Β - V (OMmag), LogZ (0 .1) ,π (0.004"). The 
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asteroseismological observables are assumed to be frequencies with ί — 0 ,1 ,2 either 
just enough to give an average value (over n, £) for the large separation Δ = vn^ — 
Vn-i,i (Ο.ΟϋμΗζ) and small separation d = vn^ — i/n-1,^+2 (0.3μΗζ), or individual 
frequencies vn^ (0.3μΗζ) with the assumption that for large mass stars only half 
the frequencies with η = 1,10 are measured, and for smaller mass stars half the 
frequencies with η — 17,29. This "cluster fitting" procedure needs to be refined both 
for binary systems and for clusters to demonstrate (with artificial data) that it is 
possible to reproduce the input physics that went into producing the artificial data, 
and in particular to use Vorontsov's "differential response" technique when individual 
frequencies are assumed measured. 

8. C o n c l u s i o n s 

Convection and convective overshooting is one of the most important and least un-
derstood processes that determine the structure and evolution of the sun and stars. 
There is evidence from observations of clusters and binary systems that penetration 
above convective cores is significant. A major advance can be expected from seismic 
observations of other stars, from the ground and from space, providing data that can 
be used to diagnose the properties of convective core overshooting and the efficiency 
of surface layer convection. Numerical simulations, whilst restricted in the range of 
parameters they can study, can also be used to address problems in this field and to 
guide theorteical developments. A major effort however needs to be directed towards 
understanding sub-grid scale modelling and eddy viscosity. 
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