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CRITERIA FOR GROUPS WITH REPRESENTATIONS 
OF THE SECOND KIND AND FOR 

SIMPLE PHASE GROUPS 

A. J. VAN ZANTEN AND E. DE VRIES 

1. I n t r o d u c t i o n . In this paper we consider matr ix representat ions of com
pact groups over the field of the complex numbers . W e shall deal mainly with 
finite groups. 

The Kronecker product of two irreducible representat ions ci and o-2 of a 
group & is in general a reducible representat ion of ^ . T h e explicit reduction of 
such a product to irreducible representat ions o-3 can be performed by means of 
a uni ta ry matr ix, the elements of which are called Wigner coefficients or 
Clebsch-Gordan coefficients [1 ; 25 ; 27]. These coefficients are functions of ai, cr2 

and or3 and of mi, m2 and m3, which number the rows and columns of the 
representat ion matrices of ai, o-2 and 0-3, respectively. Wigner coefficients play 
an impor tan t role in theoretical physics. 

The set of Wigner coefficients thus defined is not uniquely determined 
however, so t h a t there remains a certain freedom in their choice. This freedom 
can sometimes be used to impose some simple symmet ry relations upon the 
various Wigner coefficients. An impor tan t kind of group in theoretical physics 
are the simply reducible groups. These groups are defined as groups every 
element of which is conjugate to its inverse (i.e. all classes are ambivalent) and 
furthermore with the proper ty t ha t the Kronecker product of two irreducible 
representat ions contains no irreducible representat ion more than once (multi
plicity free). As has been shown by Wigner [27], the Wigner coefficients of such 
a group can be chosen in such a way t ha t their absolute values are invar iant 
under every permuta t ion of the at and the corresponding Wj ( i = 1, 2, 3). T h e 
Wigner coefficients change only by a multiplicative phase factor under such a 
permuta t ion . This phase factor depends only on the at. T o determine its value 
one has to know whether the irreducible representat ions are of the first or 
second kind (cf. [11]), or s ta ted in the language of physicists whether the 
irreducible representat ions are integer or half-integer (cf. [27; 28]). (Because of 
the proper ty of ambivalence of simply reducible groups, the irreducible 
representat ions at cannot be of the third kind.) This means t ha t in the case of a 
finite group one has to know whether the value of the Schur-Frobenius in-
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variant [11; 12; 28] 

(1) c(x) = \ S x(i?2) 

is + 1 or — 1 for the various irreducible representations. In equation (1) x is the 
character of an irreducible representation a of the group @ and g is the order 
of ^ . T h e summation runs over all elements R £ ^ . 

If one drops the property of ambivalence no essential new difficulties arise in 
the definition and in the symmetry relations of Wigner coefficients. However, if 
the multiplicity free condition is dropped a multiplicity index enters the 
Wigner coefficients. Then it is not always possible to choose the Wigner 
coefficients such t ha t they have symmetry properties as mentioned above. In 
fact difficulties arise with the Wigner coefficients in which all the three at s tand 
for the same irreducible representation. This problem was studied elaborately 
by Derome and Sharp [9]. Derome has shown in [10] tha t it is possible to choose 
Wigner coefficients of the form 

(2) ( ' ' ') 

(where r is a multiplicity index) in such a way tha t their absolute values are 
invar iant under every permutat ion of the m{ if and only if the following relation 
holds 

(3) \Y, x ( i ? 3 ) = ; Z ix(R)}\ 
g R g R 

(x is the character of the irreducible representation a). Irreducible representa
tions for which equation (3) holds are called simple phase representations. 
Groups for which equation (3) holds for all irreducible representations are 
called simple phase groups (S.P. groups) [6 ; 7 ; 16; 23-25]. 

We want to point out t ha t knowledge of the Schur-Frobenius invariant c(x) 
is also of algebraic interest, because it is related to the Schur index (cf. 
[11 ; 15 ; 22]). I t is unknown to us whether the non-simple phase property or in 
part icular the value of J2R (Vg)xCK3) c a n m a n Y w a v ^ e related to an algebraic 
property. 

In this paper we shall discuss some criteria according to which it is possible to 
decide whether a finite group is not a simple phase group. I t will turn out t ha t 
we can formulate a number of criteria which give a decision on the existence of 
representations of the second kind of a group & and tha t wTe can also formulate 
a number of criteria for non-simple phase groups. Many of the criteria for the 
existence of representations of the second kind are analogous to criteria for 
non-simple phase groups. T h a t there exists a certain analogy can be understood 
by the following consideration. A group S^ has no representation of the second 
kind if 

(4) lH x(R*)* - l 
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for all characters % [H ; 12; 28]. Now one has 

(5) \ E U(i?)}2 - \ Z x(2)(i?) + \ £ xa\R) 
g R g R g R 

and 

(6) lZ x ( i ? 2 )= ;E x ( 2 , ( i ? ) - ;Z xw(R). 
g R g R g R 

where x(2) is the character of the symmetrized part of the Kronecker product of 
the representation a with itself and x(l2) is the character of the anti-symmetrized 
part (cf. [24; 25]). Therefore equation (4) is equivalent with 

(7) ; Z x (1 , )(*)-0 
g R 

or 

(8) ; E x(i?2) = ; E !x(i?)}2 

g R g R 

for all characters x of S .̂ Condition (8) is very similar to condition (3), which 
has to hold for all characters x of ^ if the group is to be simple phase. From 
this similarity one can expect that criteria for non-simple phase groups and 
criteria for groups having no representations of the second kind will also be 
similar in some cases. 

The criteria which we shall derive in the next sections will all be formulated 
for finite groups, although some of them can be generalized to compact groups. 
The classification of representations of connected compact simple Lie groups 
into representations of first, second and third kind has been discussed at 
various places in the literature (see [2; 3 ; 7; 19-21]). Results on the simple 
phase property of representations of such groups are given by Butler and King 
[7]. In the same paper the authors give also results on the symmetric and 
alternating groups on n symbols. 

2. Criteria for groups with representations of the second kind. In this 
section we shall derive some criteria for the occurrence of representations of the 
second kind in finite groups. 

THEOREM 1. Let ^ be a finite group. Let I(2)(1) be the number of solutions of the 
equation X2 = 1, where X must be an element of ^ and where 1 is the unit 
element of &. Let furthermore J2'x x(l) denote the sum of the degrees of the 
irreducible representations with real characters. The group ^ has at least one 
representation of the second kind if and only if the following inequality holds 

0) r(2,(D < Z x(i). 
X 
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Proof. From equations (5) and (6) we have 

(10) J E x(R2)=-pZ !XCR)}2-J E xm(R) 
& R s R o R 

= * ( x ) - § E xm(R), 
g R 

where s2(x) denotes the number of times tha t the trivial representation I*? is 
contained in the Kronecker square a <g> a (x is the character of the irreducible 
representation a). Multiplying by x ( l ) and summing over x provides us with 

(ii) ; E E xd)x(i?2)= E x(i)5,(x)-^E E x(Dx(12)(i?). 
& X « X g X « 

T h e left hand side of equation (11) equals f^2)(l) (cf. [11; 12; 24]). The first 
term in the right hand side of equation (11) equals ^ ' x x(l)> because s2(x) = 1 
if X is a real character whereas s2(x) = 0 if x is a non-real character. The second 
term in the right hand side of equation (11) equals twice the sum of the degrees 
of the representations of the second kind of S^, which is a non-negative integer. 

We remark tha t Theorem 1 is a s ta tement about whether a finite group ^ 
has one or more irreducible representations which satisfy 

; E x ( i ? 2 ) ^ ;E ix(R)}2-
g R g R 

If one can decide with Theorem 1 tha t this inequality must hold for some x> 
then it is still unknown in general for which character this inequality holds. 
For Theorem 1 one has to know which characters are real and the degrees of 
these characters. However, if one wants to find out for which characters x the 
inequality holds, one has to calculate the Schur-Frobenius invariant 
c(x) = J2R (l/g)x(R2) fo r the characters x, which may be much more difficult. 
(In incidental cases it may be possible to determine whether a certain represen
tat ion is of the second kind by other means than a calculation of c{\). Cf. the 
example of the group Uz{Z) in section 4.) In this sense the property for which 
Theorem 1 gives a necessary and sufficient condition is a "global" property of 
the group S^. In concrete cases it still often happens tha t Theorem 1 cannot be 
applied, because one does not always know sufficient details of the character 
table of the group considered. Therefore we shall derive some other criteria in 
which the conditions are formulated directly in terms of the group s t ructure . 

Before we come to this we want to point out tha t if the degree x ( l ) of an 
irreducible representation a is odd then this representation is not of the second 
kind (cf. [11; 12]). 

T H E O R E M 2. Let ^ be a finite group and let Ç{2)(S) be the number of solutions in 
the group Ç0 of the equation X2 = S, where S is a fixed element of S^. The group @ 
has at least one representation of the second kind if there exists an element R with 
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the property that 

(12) f ( 2 , ( i ? )> f ( 2 ) ( l ) . 

Proof. Assume that condition (12) holds and that the group & has no 
representation of the second kind. From this it follows that in the equation 

(13) f(2)(i?) = £ c(x)x(R) 
X 

(cf. [11 ; 12]), the numbers c(x) are 1 or 0. Hence, 

g Z c(x)\x(R)\ r'(R) = I £ c(x)x(R) 
X 

û E c(x)x(l) = f(2)(D, 
X 

which contradicts condition (12). 

Theorem 2 is a sufficient criterion for a finite group & to have representations 
of the second kind. In section 5 it will be shown that the criterion is not 
necessary by giving a counter-example. We shall now indicate a kind of group 
for which the criterion is necessary as well. 

THEOREM 3. Let & be a finite group and let f(2)(5) be the number of solutions in 
the group ^ of the equation X2 = S, where S is a fixed element of &. Let further
more the representations of the first and third kind generate a subring in the ring of 
characters of &'. If' & has at least one representation of the second kind then there 
exists an element R with the properly 

Proof. The ring of characters of & (over the rational integers) is defined in 
[15, S. 586]. From the conditions of the theorem it follows by applying the 
Corollary on p. 299 of [4] that ^ has an invariant subgroup <#? not equal to the 
trivial subgroup consisting of the unit element only, with the property that all 
elements of ^f are represented by the unit matrix in the representations of the 
first and third kind, whereas this is not the case for representations of the 
second kind. Hence there exists an element R £ J^7, R ^ 1 for which 

(14) X(R) = x(D, 

if x is of the first or third kind, and 

(15) X(R) * x ( l ) , 

if % is of the second kind. Because the characters appearing in equation (15) are 
real we can write instead of equation (15) 

(16) X(R) < x ( l ) , 

if x is of the second kind. (Remember that one always has |xCK)l ^ x(l)-) 

https://doi.org/10.4153/CJM-1975-064-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-064-4


GROUP REPRESENTATIONS 533 

For the number Ç{2)(R) we now have 

(17) f(2)(i?) = £ c(x)x(R) 
X 

= E"X(20 - l'"x(fi), 

where ]C"x and ]C'"x denote summations over all representations of the first 
kind and the second kind respectively. From equations (14), (16) and (17) it 
follows that for an element R £ Jtif, R 9^ 1 we have 

f(2)(i?)> Z " x ( D - Z"'x(D = f(2)(l)-
X X 

COROLLARY 1. Let ^S be a finite simply reducible group. The group ^ has at 
least one representation of the second kind if and only if & has an element R with 
the property that 

f (2 )(i?)>f (2 )d). 
Proof. From the definition of simply reducible groups we know that & has no 

representation of the third kind. Furthermore it has been proved by Wigner in 
[28, Lemma 1] that the representations of the first kind generate a subring of the 
ring of characters of &. The corollary now follows from Theorems 2 and 3. 

Wigner (cf. [28, Theorem 2]) has given a necessary and sufficient condition 
for a group to be simply reducible. He proved that a finite group is simply 
reducible if and only if 

as) z \^(R)\3= z (-f-V 
R R \gR' 

Here gR stands for the number of elements of the class to which R belongs. 
(This condition was also discussed by Mackey in [18].) Hence we can formulate : 

COROLLARY 2. Let & be a finite group for which one has 

Z {r(2)0?)}3= S ( f ) 2 . 
R R \gR/ 

This group has representations of the second kind if and only if & has an element R 
with the property that 

There is still another kind of group to which Theorem 3 can be applied, vis. 
those groups which have only one non-linear character. For these groups we 
have the following corollary. 

COROLLARY 3. Let & be a finite group and let & have only one non4inear 
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character. The irreducible representation corresponding to this non-linear character 
is of the second kind if and only if & has an element R with the property that 

Proof. Representat ions of degree 1 are either of the first kind or of the third 
kind. Because the linear characters always form a subring of the ring of 
characters we can apply Theorem 3 immediately. 

From Theorem 2 we can derive another criterion, which is weaker. 

T H E O R E M 4. Let & be a finite group and let f ( w )(l) be the number of solutions in 
the group & of the equation Xn = 1, where 1 is the unit element of &. The group & 
has at least one representation of the second kind if the following inequality holds 

(19) f ( 4 , ( l ) > {f (2)(l)}2. 

Proof. The equation XA — 1 has f ( 4 )(l) solutions in &. The squares of these 
solutions all satisfy the equation X2 = 1. However, these squares cannot all be 
different from each other, for f<4>(l) > {f ( 2 )( l)}2 à f ( 2 )( l)- There cannot be 
more than f ( 2 )(l) different squares. Because f ( 4 )(l) > {f ( 2 ) ( l ) j 2 , among the 
squares of the solutions of XA = 1 there mus t be an element R which is more 
often than f ( 2 )(l) times the square of a solution of X 4 = 1. Hence for this 
element we have Ç(2)(R) > f ( 2 )(l) and we can apply Theorem 2. 

In practical cases one often knows the orders of the elements of a group. 
Therefore the following corollary, which is equivalent to the above theorem 
might be useful. 

COROLLARY. Let & be a finite group and let an be the number of elements of 
order n. The group & has at least one representation of the second kind if the 
following inequality holds 

(20) a4 > a2(a2 + 1). 

Now we come to some theorems on representat ions of the second kind which 
are specific in the sense tha t they can be applied only to irreducible representa
tions of degree 2. 

T H E O R E M 5. Let & be a finite group. Let & have an irreducible representation 
of degree 2. This representation is of the second kind if and only if the representation 
provided by the determinants of the representation of degree 2 is the trivial 
representation. 

Proof. Let D(R) be the representat ion matr ix of the element R in the 
irreducible representat ion of degree 2. Let Xi and X2 be the characterist ic values 
of the matr ix D(R). Then we have 

X(R2) = X!2 + X2
2 = (Xi + X2)2 - 2XXX2 = \x(R)}2 - 2detD(R). 
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Now suppose that det D(R) = 1, for all R G &, then it follows 

; E x(R2) = ~pZ ix(R)f-2. 
g R g R 

Because ZR ( V ^ ) X ( ^ 2 ) = ± 1 or 0 and E « (l/g){x(#)}2 = 0 or 1 we must 
have here 

; Z x(R2) = - 1 , 
& R 

which means that the irreducible representation of degree 2 is of the second 
kind. 

Conversely if the given representation is of the second kind det D(R) must be 
the trivial representation. 

COROLLARY. An irreducible representation of degree 2 of a perfect group is of 
the second kind. 

Proof. A perfect group is a group the commutator subgroup of which is equal 
to the group itself (cf. [17, p. 105]). Therefore such a group has only one linear 
character and hence Theorem 5 can be applied. 

Another consequence of Theorem 5 is : 

THEOREM 6. Let & be a finite group. An irreducible representation of degree 2 
with real character x is a representation of the second kind if and only if for all 
elements R of & with x{R) = 0 one has x(R2) = — 2. 

Proof. Because the character x is real, the two characteristic values of a 
matrix D(R) of the corresponding representation are either ei(t> and e~i(t> or 1 and 
— 1. In the former case det D(R) = 1 and in the latter case det D(R) = — 1. 
Further we observe that as a consequence of a theorem of Burnside the group 8̂  
always has at least one element S with x(S) = 0 (see [4, p. 319] and [11, p. 36]). 

(i) Suppose that X(R2) = - 2 if X(R) = 0- If x(R) ^ 0 then the charac
teristic values of the matrix D(R) are ei(f> and e~i4> with <f> ^ T/2 + k-w 
(k = 0, ± 1 , ± 2 , . . .). In this case we have that det D(R) = 1. If X(R) = 0 
then the characteristic values of D(R) are 1 and — 1 or i and — i. In the first 
case we should have xC^2) = 2, which contradicts our assumption. Hence if 
x(R) = 0 the characteristic values of D(R) are i and —i and therefore 
det D(R) = 1. From Theorem 5 it now follows that the irreducible representa
tion of degree 2 with character x is of the second kind. 

(ii) Suppose the irreducible representation of degree 2 is of the second kind. 
From Theorem 5 we know that det D(R) = 1, for all R Ç &. If X(R) = 0 then 
the characteristic values of D(R) are 1 and — 1 or i and — i. In the first case we 
should have det D(R) = —1, which is excluded. Hence if x(^0 = 0 the eigen
values of D(R) are i and —i and x(^2) = —2. 

COROLLARY. An irreducible representation of a finite group ^ of degree 2 with 
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real character x is a representation of the first kind if & does not posses^ an 

element R with x(R) = ~ 2. 

In [12, p . 199] Frobenius and Schur gave wi thout proof a theorem on the 
existence of representat ions of the second kind in a special type of group. We 
shall s ta te here this theorem in a slightly different form and give a proof. T h e 
proof is such t h a t it enables us to give a similar proof for an analogous theorem 
for non-simple phase groups. 

T H E O R E M 7 [Frobenius and Schur]. Let & be a finite group with one and only 
one element of order 2. If ^ is not the direct product of a cyclic group of order 2n 

and a group of odd order, then & has at least one representation of the second kind.] 

Proof. We shall prove the theorem by showing t h a t a group of order g = 2nm 
(m odd) with only one element Z of order 2 and which_has no representat ion of 
the second kind is necessarily of the type & = C2n ® @, where C2n is the cyclic 
group of order 2n and & is a group of odd order m. In the proof we shall make 
use of the principle of mathemat ica l induction. 

We note t ha t n ^ 1 for otherwise & could not have an element of order 2. 
Because Z is the only element of order 2 there can be no elements conjugate 
to Z. Hence Z lies in the centre of @. Because we suppose t h a t & has no 
representation of the second kind it follows from Theorem 2 t h a t 
f(2)CR) ^ f ( 2 )(l) = 2, for al i i? e ^ . H o w e v e r , if Xx2 = R then also (ZXJ2 = R 
from which it follows tha t Ç(2)(R) = 0 or 2. From the absence of representat ions 
of the second kind and from f ( 2 )(l) = Xlx ^(x)x( l ) = 2 we now have t h a t 
besides the trivial representation 1^ there is only one other irreducible repre
sentation with real character and this representat ion must be of degree 1. We 
shall denote the character of this representat ion by x • Because x(R) is real 
there exist g/2 elements of *& with x(R) ~ 1> whereas for the other g/2 
elements one has x(R) = ~ 1 (remember t ha t ^R x'(R) = 0). T h e g/2 ele
ments of S^ with x(R) = 1 form an invar iant subgroup S^i of order gi = 2n~1m 
(see, e.g., [4, p . 92]). With the relation £{2)(R) = ^2X c(x)x(R) it is easy to see 
tha t the elements of ^ \ are just the squares of the elements of ^ . 

(i) Suppose n = 1 : In this case g\ = m and therefore g\ is odd. T h e element Z 
cannot lie in S^i, from which it follows t ha t the subgroups C2 = {E, Z] and 
Ç0 = S^i have only the uni t element in common. We proved above t ha t 3^ is an 
invar iant subgroup. The subgroup C2 is also an invar iant subgroup, because Z 
is in the centre of ^ . Fur thermore it is not difficult to see t ha t C2 \J S^ = ^ . 
Hence, we can conclude 

(21) ^ = C2 ® f 

(cf. [13, Theorem 2.5.1]). 

fDr. L. C. A. van Leeuwen (Mathematical Institute, Rijksuniversiteit, Groningen) has given 
a proof (which is rather lengthy) that under the conditions of Theorem 7 there exists an 
element R Ç ^ such that £{2)(R) > £(2)(1)- Therefore Theorem 7 is a special case of Theorem 2 
(private communication). See also Nieuw Arch. Wisk. 22 (1974), p. 92. 
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(ii) Suppose now n ^ 2 and let the theorem be proved for n — 1 : In this case 
the order of ^ \ is even and hence ^ i must have an element of order 2, i.e. 
Z f ^ i . We take an arbitrary element R Ç ^\. We saw that R has two square 
roots in &, which we shall call Xi and ZXX. If Xi 6 ^ i , then also ZXX G ^ i . 
Therefore the elements of â^\ have either 0 or 2 square roots in S^i, which 
gives 

(22) fx(2)(J?) = £ Cl(Xi)xi(i?) = 0 o r 2 . 
XI 

The indices 1 denote that all symbols are to be taken in relation to ^ \. Because 
fi(2)(jR) is a linear combination of characters in which the trivial character 
occurs once it must satisfy X)«(1) (l/gi)fi(2)CK) = 1» where Y^x) means that 
the summation runs only over the elements of S^i. Hence, £i{2)(R) = 2 for 
gi/2 elements of ^ i , whereas for the remaining gi/2 elements of ^\ we have 
fi(2)(i?) = 0. But this gives that 

1 (i) 

(23) f E lri(2)(^)l2= Z ki(xi)l2 = 2, 
£ l R xi 

from which it follows that S î has only two irreducible representations with real 
character. Now fi(2)(l) = 2 and thus both of these representations are of 
degree one (one of them being the trivial representation). These representations 
of degree one have to be of the first kind, whereas all other irreducible repre
sentations of &\ are of the third kind. 

We see that &i just as ^ is a group with only one element of order 2, not 
having representations of the second kind. From our assumption it follows that 

(24) <3X = C2»-i ® 9. 

Hence there must be an element Ai £ ^\ with 

(25) A,2"-' = 1. 

Because A\ £ S î we can find an element A G & with A2 = A\ which gives 

(26) A2" = 1. 

We shall show now that C^n = {A} and ^ are invariant subgroups of 2^. 
For an arbitrary element B G & we have 

(27) Bm = 1. 

Let furthermore 

(28) BAB'1 = A', 

which gives BA2B~l = A'2. We also know that BA2B~l = A2 (A2 £ C2«-i and 
B G ^ ) and so we have either A' = A or A' = ZA. This last case leads to a 
contradiction, for then BmAB~m = Z*M = Z^4 (m is odd), whereas from 
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equation (27) it follows that BmAB-m = A. Instead of equation (28) we can 
write 

(29) BAB'1 = A, 

which means that every element of C^n commutes with every element of ^. 
Completely analogous to part (i) of the proof we can conclude that 

(30) & = C2n® W. 

The theorem has been proved now by the principle of mathematical induction. 

3. Criteria for non-simple phase groups. In this section we shall derive 
some criteria for the occurrence of finite non-simple phase groups. Most of the 
criteria are similar to the criteria for groups with representations of the second 
kind. 

THEOREM 8. Let & be a finite group. Let f (3)(1) be the number of solutions of the 
equation Xs = 1, where X must be an element of & and where 1 is the unit element 
of ^. Let furthermore s3(x) be the number of times that the trivial representation is 
contained in the Kronecker 3rd-power of the irreducible representation with 
character x- The group & is a non-simple phase group if and only if the following 
inequality holds 

(31) f(3)(i) < Z xUK(x). 
X 

Proof. In [24; 25] it is shown that 

(32) s3(x) = i £ {x(i?)|3 

g R 

= I E xw(R) + 2~ Z x™m + - £ xm(R), 
g R g R g R 

and 

(33) \ £ X(R>) = \ 2 x(3)(i?) - \ Z x™(10 + I Z xa\R). 
g R g R g R g R 

Here, x(3)C^) is the character of the totally symmetric part of the Kronecker 
third power, x(l3)C^) °f the totally antisymmetric part and x(2,1)(^) of the part 
which is partially symmetric and partially antisymmetric (for a precise 
description see [24; 25]). 

From equations (32) and (33) we have 

(34) lZ x(*3) = * 3 ( x ) - ! Z x™(R), 
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hence 

(35) ; Z Z x(Dx(i?3)= Z x d W x ) - ; Z E x(Dx(!,1)(i?), 
& X « X & X « 

from which equation (31) follows. 

COROLLARY. A finite group & the order of which is not divisible by 3 is a non-
simple phase group if and only if it has an irreducible representation, which is not 
the trivial representation, with Sz(x) ^ 0. 

THEOREM 9. Let & be a finite group and let f(3) (S) be the number of solutions in 
the group & of the equation Xz — S} where S is a fixed element of &. The group 
& is a non-simple phase group if there exists an element R with the property that 

(36) f<3)(i?) > f (8 )(l). 

Proof. The proof is analogous to the proof of Theorem 2. One has to apply the 
formula 

(37) fC8)(i?) = £ s3(x)x(i?), 
X 

which holds for simple phase groups and can be derived easily from equation 
(35). 

THEOREM 10. Let & be a finite group and let £{n)(l) be the number of solutions in 
the group & of the equation Xn = 1, where 1 is the unit element of &. The group @ 
is a non-simple phase group if the following inequality holds 

(38) f ( 9 ) ( l ) > ffC3)(l))2. 

The proof of Theorem 10 is analogous to the proof of Theorem 4. 

COROLLARY. Let & be a finite group and let an be the number of elements of 
order n. The group & is a non-simple phase group if the following inequality 
holds 

(39) a9 > az(az + 1). 

THEOREM 11. Let & be a finite group with only two elements of order 3. Let 
these elements of order 3 lie in the centre of &. If & is not the direct product of a 
cyclic group of order ?>n and a group the order of which is not divisible by 3, & is a 
non-simple phase group. 

Proof. We shall prove the theorem by showing that a simple phase group & 
of order g = 3nw (m not divisible by 3) with only two elements of order 3, both 
of which lie in the centre of ^ , is necessarily of the type 

(40) 9 = C3n ® &. 

Because the proof is quite similar to the proof of Theorem 7 we shall only 
indicate the characteristic points : Let the elements of order 3 be Z and Z2. If S? 
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is a simple phase group we have 

f<3,(l) = £ x ( l ) * ( x ) (cf. equation (37)). 
X 

Now f(3)(l) = 3 and therefore one of the following possibilities must occur: 
(a) & has 3 representations of degree 1 with s3(x) ~ 1» whereas for all other 

irreducible representations s3(x) = 0; 
(b) & has a representation of degree 2 with s3(x) = 1, whereas for all other 

irreducible representations unequal to the trivial representation we have 
*(x) = 0. 

Analogous to the proof of Theorem 7 it can be seen that f(3)(i?) = 0 or 3 for 
all R G ^ and more precisely f(3)(#) = 0 for 2g/3 elements R and f(3)(#) = 3 
for the remaining elements, because YIR (V&)X ( 3 )CR) = 1- This means that in 
case (b) we would have x(^) = —1 for 2g/3 elements and x(R) = 2 for the 
remaining elements of the irreducible representation of degree 2. However, this 
would contradict the orthonormality relation for a character of an irreducible 
representation, because this would give 

(41) i £ | x ( * ) | * = 2 . 
g R 

Only case (a) remains. Of the three representations of degree 1 having s3(x) = 1 
one is the trivial representation. The characters of the two other representations 
of degree 1 will be denoted by x and x''• Because in particular 6"3(x') = 1 the 
character x'(-R) can only assume the values 1, co and co2, where co = exp(2W/3). 
Furthermore x(R) = x"(R)*> where * denotes complex conjugation. From the 
orthogonality relation J^R (l/g)x(R) = 0 and the relation 1 + co + co2 = 0 it 
follows that x'C#) = x"(R) = 1 for g/3 elements of &. These g/3 elements 
form an invariant subgroup S î of the order gi = 3n~lm. The subgroup S î 
consists of the third powers of the elements of ^. 

As in the proof of Theorem 7, we can show now by the principle of mathe
matical induction that 

(42) & = CZn® W. 

COROLLARY. Let & be a finite group of odd order. Let & have only two elements 
of order 3. If & is not the direct product of a cyclic group of order 3n and a group, 
the order of which is not divisible by 3 then & is a non-simple phase group. 

Proof. As the order of & is odd, Ŝ  cannot have classes with two elements 
(the number of elements in a class divides the order of the group). Therefore the 
two elements of order 3 form each a class of one element and hence lie in the 
centre of &. 

We have not been able to give theorems for non-simple phase groups which 
are analogous to the remaining theorems of the previous section. However, we 
shall now state another theorem for non-simple phase groups. 
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THEOREM 12. Let @ be a finite group the order of which is not divisible by 3. If 
there is a class other than the class consisting of the unit element, which admits the 
substitution R —» R~2 then the group & is a non-simple phase group. 

This theorem was proved in [25]. 

We remark that the corresponding theorem, saying that a group of odd order 
has at least one representation of the second kind if there is a class other than 
the unit class which admits the substitution R—>R~1, does not make sense. 
In a group of odd order the unit class is always the only class which admits this 
substitution. 

We remarked in the previous section that the degree of a representation of 
the second kind is always even. We do not know an analogous property for 
representations to be simple phase. Concerning the degree of non-simple phase 
representation we can only say that this degree has to be at least equal to 3. 
This follows readily from equations (32) and (33). From these equations and 
equation (3) it is clear that an irreducible representation with character x is 
non-simple phase if and only if the non-negative integer 

(43) ; £ x<2'1,(i?)>0 

(the left hand side of the inequality (43) is equal to the number of times that 
the trivial representation \<§ is contained in that part of the Kronecker 3rd-
power which is denoted by (2, 1) cf. [24 ; 25]). From equation (32) it is seen that 
Sz(x) = 2 if equation (43) holds. However, one can easily verify that for an 
irreducible representation of degree 2 one has s3(x) = 1. 

4. Examples. In this section we shall give simple examples of groups which 
satisfy the criteria derived in sections 2 and 3. 

We shall start by giving examples relevant to Theorems 2, 4 and 7, in which 
sufficient criteria for the existence of representations of the second kind are 
formulated. We shall choose the examples such that they show that the criteria 
are not equivalent to each other. (Note that Theorems 4 and 7 follow from 
Theorem 2.) 

Table 1 Theorem 2 Theorem 4 Theorem 7 

<2 = (2, 2, 2 > + + + 
( - 2 , 2 , 3 ) + - + 

Q <g> C4 + + 
(2,2 |4;2> + 
C/.(3) -

For the definition of the groups (2, 2, 2), ( - 2 , 2, 3) and (2, 2|4; 2) see 
[8, Table 1] and for the group £/3(3) see [14, p. 441]. The group Q ® C4 is the 
direct product of the group Q = (2, 2, 2) and the cyclic group of order 4. All 
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these groups have representations of the second kind. A plus sign in the table 
indicates that the existence of representations of the second kind is covered by 
the theorem which labels the column in which this sign appears, whereas a 
minus sign indicates that it is not covered by the corresponding theorem. The 
example of J7s(3) shows that the criterion of Theorem 2 is not a necessary 
criterion. From the character table of this group (cf. [14]) and Theorem 1 it 
follows that J73(3) must have a representation of type 2, because f(2)(l) = 64, 
whereas 2 ' x x(l) = 76, hence the inequality (9) holds. Because the difference 
X/x x(l) — f ( 2 ) ( l ) = 12 equals twice the sum of the degrees of the representa
tions of the second kind, we see from the character table that the irreducible 
representation of degree 6 has to be of the second kind. This example illustrates 
a remark made at the beginning of section 2. 

The dihedral group D4 of order 8 (cf. [8]) which does not have a representa
tion of the second kind and the quaternion group provide examples for 
Theorem 3 and its corollaries and Theorems 5 and 6 and the corollary of 
Theorem 6. An example to the corollary of Theorem 5 is the binary icosahedral 
group (2, 3, 5) (cf. [8, p. 69]). 

In Table 2 we present examples relevant to Theorems 9, 10 and 11, in which 
sufficient criteria for non-simple phase groups are expressed. Once again the 
examples are chosen in such a way that they show the non-equivalence of the 
various criteria. 

Table 2 Theorem 9 Theorem 10 Theorem 11 

G« + + + 
G\S9 -f- — ~T" 

G63 <g> C3 + + 
G63 (X) C 3 (X) C 3 + — — 

G27 — — — 

The group G63 is a group of order 63 and is defined by the relations 

(44) S1 = T9 = 1, T^ST = S2 

(cf. [4, p. 319; 22, S. 179; 24]). The group Gi89 is a group of order 189 and is 
defined by 

(45) S1 = T27 - 1, T^ST = S\ 

Furthermore G2i is a group of order 27. A set of defining relations of this 
group is 

(46) 59 = T3 = 1, T^ST = S4 

(cf. [4, p. 145]). Finally C3 is the cyclic group of order 3. 
All the groups in Table 2 are non-simple phase groups. The plus and minus 

signs have a similar meaning as in Table 1. 
From the conditions of the Theorems 9, 10 and 11 it follows that they can be 
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applied only to groups the orders of which are divisible by 3. If 3 is prime to the 
order of a group one can attempt to apply Theorem 12. An example of a non-
simple phase group which is covered by Theorem 12 is a group of order 20, 
which can be defined by 

(47) 55 = T4 = 1, T^ST = S3 

(cf. [8; 25]). 
Some more examples can be found in [23]. 
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