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GEOMETRIC COVERINGS OF GROUPS AND THEIR DIRECTIONS

ROLF BRANDL

To PROFESSOR B.H. NEUMANN ON HIS 80TH BIRTHDAY

Let a group G be covered by finitely many disjoint cosets of subgroups Gi. We
study conditions which imply that the subgroups Gi are conjugate in G.

1. INTRODUCTION.

A covering (f) of a group G is a representation of G as the union of cosets, so that

(f) G = Gid! U • • • U Gnan, where a< g G and Gi,..., Gn are subgroups of G.

For reasons which will become apparent shortly, we call the Gi the directions of the
covering (f).

A celebrated result of B.H. Neumann [8] states that if (f) is irredundant, that is,
no coset GiUi can be dispensed with in (f), then all Gi are of finite index in G. This
theorem has applications in various parts of group theory, see for example [12, 11, 2,
3].

Here we consider a special type of coverings that are clearly irredundant (and hence
B.H. Neumann's result applies). To avoid trivial cases, we always assume that n > 1,
that is, Gi ^ G for all indices i.

DEFINITION: ([9]). The covering (f) is exact, if n > 2 and for all indices i, j with
i £ j , we have dat n GjCj = 0.

This means that the covering (f) is exact if and only if every element in G is
contained in exactly one of the cosets considered. A very natural example comes from
geometry: If G\ is a subgroup of finite index n in G (for example, a subspace in a finite
vector space), then G is covered by the n right cosets of G\ in G. In this example,
the cosets have all the same direction G\ , so one could call these parallel.

Our objective here is a study of the directions occurring in an exact covering of
some group G. First, if U and V are subgroups of finite index in G with U < V,
then we can cover G \ V by disjoint cosets of V and cover V by disjoint cosets of U.
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Thus, we arrive at an exact covering of G along 'very distinct' directions U and V. So
a natural hypothesis would be to consider only directions that are maximal subgroups
(hyperplanes) and ask for connections between the directions.

In general, we cannot expect that they all are equal. To see this, let 5 be a
subgroup of finite index n in G and let G = a-iS U ••• U aB5 be a covering by left
cosets. For every i, we have o<5 = (atSaT1)^ which means that a<5 is a right coset
of some conjugate of S. Hence the question one could ask is, whether the directions
in this case are always conjugate. Indeed, for soluble groups this is true as can be seen
from part (a) of the following

THEOREM A. Let G be a soiuWe group and Jet G = GjOi U •• • U Gnan be an
exact covering of G.

(a) If all directions G\, — , Gn are maxima/ subgroups of G, then they are
conjugate in G.

(b) If G\ is a maximal subgroup of G and if [G : G,-] = p2 for all indices i
with 1 ^ t < n , then all G{ are conjugate in G.

In general, the directions occurring in an exact covering need not be conjugate,
even if they all are maximal subgroups. Indeed, as we shall see below, the symmetric
group 55 has an exact covering along two directions that are maximal subgroups of
index 5 and 10 respectively, so that [0], Theorem. 3 cannot substantially be improved
upon in the case when n = 5.

In the above example, the indices of the directions were distinct. As Theorem A
shows, this situation cannot occur for soluble groups. Indeed, the latter coverings are
geometric in the sense of the following.

DEFINITION: The covering (f) is called geometric if it is exact, all directions d

are maximal subgroups and [G : G{] — n for all indices t. We call n the index of the
geometric covering (f).

Even for geometric coverings, the directions need not be conjugate in general. As
we shall see below, the simple group of order 168 has an exact covering along two
nonconjugate directions of index 7 (note that this contrasts with the remark at the end
of [9]). However, few conjugacy classes occur if the directions are of prime power index
in G. It will turn out that the number of conjugacy classes depends on whether or
not the prime belongs to a certain set u> of primes. It seems to be open whether u> is
infinite.

DEFINITION: Let w0 be the set of all primes p of the form p = (qn - l)/{q - 1)
where q is some prime and n ^ 3, and set w = WQ U {!!}•
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The following result depends on the classification of all finite simple groups.

THEOREM B. Let (f) be a geometric covering of prime power index pa.

(a) If a ̂  3 and p £ u>, then all directions are conjugate.
(b) If a < 3 and p G w, tien there are at most two classes of directions

occurring in (]).
(c) For all primes p there exists a group that has a geometric covering of

index pa for some a, along nonconjugate directions. If p — 2, we can
take a = 4.

Most of our notation is standard. For a group G and a subgroup S, we let
Coreo(S) = DogG &*• Moreover, G = [N]Q indicates that G is a split extension of a
normal subgroup N of G by some complement Q. If (f) is a covering of a group G,
and if JV is a normal subgroup of G, then we denote by

(]/N) G/N = (G/N)aiNU---U{G/N)anN

the induced covering of G/N. It is easy to see that if (f) is exact and if N ^ Coreo(G;)
for all t , then (t /N) is exact.

2. SOLUBLE GROUPS

We start with an observation concerning irredundant coverings that easily follows
from [8].

LEMMA 1 . ([&])• Assume that the covering (\) is irredundant. Then all Gi are
of finite index in G.Ifwe order the indices of the directions such that [G : Gi] ^ ... <
[G:Gn},then

(a) [GrdUn.
(b) If [G : Gi] = n , then [G :Gi]-n for all indices i and (]) is exact.

The following result is basic for our considerations.

LEMMA 2 . Assume that the covering (\) is exact. Then

(a) For all indices i, j , we have GiGj ^ G.

(b) If Gi is a maxima/ subgroup of G, then for all indices i, we have
CoreG{Gi) < G1.

(c) If all directions G\,.. .,Gn are maximal subgroups of G, then Corea{Gi) =
. . . = Corea{Gn). Moreover, the covering (f)/CoreG(Gi) is exact.

P R O O F :

(a) Suppose that G = G1G2 = G2G1. Then we have 02 af1 = <j2<7i for
some elements gi G G,-. We get G2<*2 = ^2^25101 = G2<7iai and hence

G G\a\ 0 G2O-2 , a contradiction.
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(b) Let C = Coiea(Gi). By (a), we have GXC C GxGi C G. As C is normal
in G, we see that G\C is a subgroup of G and the maximality of G\
implies that C C G\ as claimed.

(c) This is clear from (b). D

We can now prove our first main result.

PROOF OF THEOREM A: (a) By Lemma 1 and part (c) of Lemma 2, we may
assume that G is finite. Part (a) of Lemma 2 implies that GiGj ^ G, and finally, a
result of O. Ore (see [7], p.165) yields that all directions are conjugate.

(b) As above, we may assume that G is finite. By way of contradiction, suppose
that U := Gi is not a maximal subgroup for some index i. Set M = G\.

By part (a) of Lemma 2, we have MU ^ G, and part (b) of Lemma 2 implies
CoreGf(JT') ^ M. We proceed by induction to show the weaker claim that U and M are
conjugate. Clearly, we may assume that Core<3(l7) = 1. Let C = Coreo(M).

If C ^ 1, then U < CU < MU <G. Thus [G : U] = p2 implies that CU is a
maximal subgroup of G. As [G : M] = p2, we see that M and CU are nonconjugate
and finally, Ore's theorem yields G = M[CU) — MU, a contradiction.

Hence C = 1 and we have G = [i?]Af for some elementary abelian minimal normal
subgroup R of G of order p2.

If p does not divide the order of M, then both M and U are Hall p'-subgroups
of G and hence they are conjugate. Thus M is isomorphic to a subgroup of GL(2,p)
of order divisible by p. An inspection of the subgroups of PSL(2,p) (see [7], p.213 f.)
yields that for p ^ 5, we must have OP(M) =fi 1. But this contradicts the faithful and
irreducible action of M on il , If p = 2, then M = S3 and we readily see that G
is isomorphic to the symmetric group 54, in which case all subgroups of index 4 are
conjugate. So let p = 3. As 3 divides the order of M, we see from the structure of
GJD(2,3) that M contains elements of order 4, so that a Sylow 2-subgroup of G acts
irreducibly on R. But Coreo(l7) = 1 and RC\U ^ 1, because otherwise U would
be a complement to R and hence it would be conjugate to M. Thus we arrive at the
contradiction \U D R\ = 3, and the result follows. U

We now introduce a method that will enable us to construct a series of examples
and counterexamples for coverings along two nonconjugate directions. For reasons of
simplicity, we have only considered the case of two classes and leave the obvious general
case to the reader.

PROPOSITIION 3 . Let G be a group and let A and B be subgroups of Unite
index in G. If G ^ AB, then G possesses an exact covering whose directions are
conjugate to A and B, each of which occur.

PROOF: Clearly, the subset AB of G is a disjoint union of certain right cosets of
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A and of certain left cosets of B. Hence G \ AB is a union of left cosets of B which
are right cosets of some conjugates of B. The result follows. U

The first example shows that part (b) of Theorem A is no longer true if [G : Gi] =

P3.

EXAMPLE 4. Let G = [N]B where B is the alternating group of degree 4 and N is
an elementary abelian group of order 27 acted upon faithfully and irreducibly by B.

Then B is a maximal subgroup of G of index 27. Let C be the four-group contained
in B. Then N = N\ © N2 ffi Nj, where the Ni are irreducible modules for C. Then
A = [Ni]C is a subgroup of index 27 in G. Clearly, A and B are nonconjugate in G.

Moreover, we have A l~l B — C, and hence G ^ AB, so that Proposition 3 applies.

The second example shows that there are geometric coverings along nonconjugate
maximal subgroups. An obvious modification of the argument also shows that the
symmetric group 5s has an exact covering along maximal subgroups of indices 5 and
10 respectively.

EXAMPLE 5. Let p G w. Then there exists a nonabelian simple group G having two
nonconjugate subgroups A and B of index p (see for example [4]). Moreover, A and
B are Hall p'-subgroups of G and hence p does not divide \AB\. Thus AB ^ G and
Proposition 3 applies.

3. P R I M E POWER INDICES.

The proof of Theorem B will be split into a number of lemmas and one proposition.
Note that as above, it is sufficient to prove the result under the following.

HYPOTHESIS 6 . The covering (\) is geometric and CoreG{Gi) = 1 for all i.

Thus, G is finite. Let [G : Gi] = p° and let R be a minimal normal subgroup of

G. Then we have G = RGt for all i. If R is abelian, then G = [R]Gi.

We first consider the case when R is nonabelian. Note that the following result

covers the case when G is simple.

LEMMA 7 . Assume that Hypothesis 6 holds and let R be a product of t non-

abelian simple groups.

(a) If p $. w, then all directions G,- are conjugate in G.
(b) 11 p 6 w and a < 3 , then the G,- fall into < 2 conjugacy classes in G.

PROOF: Let R = Ri x • • • x R+ where the R+ are nonabelian and simple and set
Di = flnGjfUi^ <)• Then clearly, A is normal in Gt and so Coreo(Gi) = 1
implies that

(1) Gi = Na(Di).
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Thus, it suffices to show that the groups Di,... ,Dn fall into at most two conjugacy
classes.

For this, we consider the intersections Sitj = Di H Rj of Di with the direct
factors of R. First, observe that Sitj ^ Rj, because otherwise Rj < Gi, and so
S?j = S*f' < Rf* < Gi which contradicts Coreo(Gj) = 1. Moreover, ([5], p.314)
implies that

(2) Di = Si<1x.--xSi,i,

and hence [Rj : Sij] is a proper power of p for all i,j.

If p ^ w, then by [4] (see also [5], p.314), all Sij are conjugate in Rj. Therefore,
all Di are conjugate in R and part (a) follows from (1).

So let p £ n> and assume o < 3. Then the above shows that R is a direct sum of
t < 3 simple groups. The case t = 1 clearly follows from [4], so let 2 ^ t < 3. Now R
is a minimal normal subgroup of G, and hence G = RGi acts transitively on the set
{R\,• • •,Rt}- As t is a prime, this implies that there exists x € G,- such that

(3) Rj" = Rj+i (read indices mod t).

Assume that the direct summands Sij and Sh,j of Di, respectively -Djt are conjugate
in R (or, equivalently, are conjugate in Rj ). We proceed to show that Di and Dj are
conjugate in R.

Indeed, let Sk,j = S^j for some r 6 R and some index j . Then by (2) and (3),
we have

with a = rx 6 R. Hence Sk,j+i and Sij+i are conjugate in Rj+i- This is true for
every index j , and hence Di and Dk are conjugate in R. The result now follows from
[4] and (1). D

The case when R is abelian is dealt with in the next two lemmas.

LEMMA 8 . Assume that Hypothesis 6 holds and let R be abelian. If G\ has a
nontzivial abelian normal subgroup, then all Gi are conjugate.

PROOF: Let Q = Gi and let A be a minimal abelian normal subgroup of Q. As
Q acts faithfully and irreducibly on R, we see that A is a. 9-group for some prime
q ^ p. Let S = RA. Then .A is a Sylow 9-subgroup of S. Moreover, Q ^ NQ(A)
and Dedekind's law yields NQ{A) = [NR(A)]Q. Now NR(A) = CR(A) clearly is (?-
invariant, and hence we have NR(A) = 1, that is, Q = Na(A). As all Sylow q-
subgroups of S are conjugate in S, we see that all Gi are conjugate in G. D
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LEMMA 9 . Assume that Hypothesis 6 holds and assume that R is abelian. If
a ^ 3, then all Gi are conjugate.

PROOF: By Lemma 8, we only have to consider the case when Q := G{ does not
have any nontrivial abelian normal subgroups. By Theorem A, we may assume that
Q is nonsoluble. If a < 2 , then Q is isomorphic to a subgroup of GL(2,p). If p
divides |Q|, then either p < 3 in which case G were soluble. Otherwise, p ^ 5 and
Q > SL(2,p). But in this case, Z{Q) ^ 1 and Lemma 8 applies.

So let a = 3. First consider the case when p is odd. If p does not divide \Q\, then
the result follows from the theorem of Schur-Zassenhaus, so assume that p divides |Q|.
An inspection of the list given in [1] and using the fact that Q acts irreducibly on R,
shows that we must have SL(3,p) < Q ^ GL(3,p). An inspection of the subgroups of
GL(3,2) shows that the same is true for p = 2.

If p = 1(3), then Q has a nontrivial abelian normal subgroup and we are done by
Lemma 8. So assume p =£ 1(3). Let To be a complement to R in G and assume that
Q and To are nonconjugate in G. We show that G = QT0. The result then follows
from part (a) of Lemma 2. Clearly, it is sufficient to prove the latter statement for
the subgroups of Q, respectively To, isomorphic to SL(3,p), so let Q = SZ(3,p). By
way of contradiction, assume that G ^ QTQ. Then for every conjugate T of To, we
have G ^ QT (see [7], p.675). Now G contains a cyclic Hall subgroup H of order
p2 + p + 1 of Q (a so-called Singer-cycle). As nilpotent Hall-subgroups are conjugate,
we may assume that Q C\T > H. An inspection of all subgroups of Q containing H
and using [6] yields |<? D T\ < 3(p2 + p + l ) . Thus, we arrive at

a contradiction. D

Parts (a) and (b) of Theorem B now follow from Lemmas 7—9. For part (c), we
finally prove the following.

PROPOSITION 1 0 . For every prime p, there exists a group G having a geomet-
ric covering of index pa for some a depending on p along nonconjugate directions.

PROOF: If p < 3 , let Q = As, otherwise, let Q — Ap. By a result of Stammbach
[10], there exists an irreducible GF(p)Q-module M such that H1(Q/CQ(M),M) ^ 0.
As Q is simple, M must be faithful and so H]{Q,M) ^ 0. Let G = [M]Q be the
natural split extension and let R be a complement to M that is not conjugate to Q.
We show QR ^ G. Otherwise, G = QR and hence [Q : Q D R] = \M\ = p°. As
Q = Ap, this would imply \M\ = p, a contradiction. Note that for p = 2, the faithful
and irreducible modules for As are of dimension 4, so a = 4 and the result follows. D
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