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1. Introduction

In this paper the theory of periodic solutions of analytic Hamiltonian
systems of differential equations, which is due to Cherry [5], is specialized
to systems which have one symmetry property.

We shall consider conservative systems with 2 degrees of freedom

*!» - *L ^ - _ dJ- (k = i*\
dt ~ dyk dt 8xk

 K ' '

in which the Hamiltonian F is an analytic function of the xk, yk. In vector
notation such a system may be written as

dx

where x is the vector with components xx, x2, yx, y2; J is the skew-symmetric
matrix

L-/, 0

(I% being the 2x2 unit matrix) and Fx is the gradient of F. Later we shall
change variables and shall then use f, z and Z to denote vectors with
components flt £2, <ox, <o2; zx, z2, ux, u2 and Zx, Z%, Ux> U2 respectively.

In the usual dynamical interpretation of (1.1), xx and x% are the
coordinates of a particle moving in a plane and any path which the particle
describes in this plane is called an orbit of the system. yx and y% are the
corresponding momenta and F is the net energy of the particle.

Symmetries in the dynamical system are thus characterized by proper-
ties of F — the energy function. If the dynamical system is reversible, for
example, then the energy is the same when the momenta are reversed and
so F has the property that for all values of the xk, yk

F(xi. xt> Vi> Va) = F(xi> xs. -Vi. -V%)-
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Symmetry of the dynamical system about the a^-axis is characterized in a
similar way by the identity

We shall say, therefore, that the system (1.1) is symmetric if, in vector
notation, F satisfies the identity

(1.2) F(x) = F(Vx)

where V is one of the following diagonal matrices:

(1.3) ±diag (1, 1, - 1 , - 1 ) or ±diag (1, - 1 , - 1 , 1).

Concerning the solutions of a symmetric system (1.1) we note that if
x = <f>{f) is a solution then so is x = V<f>(—t). The solutions of a symmetric
system therefore occur in pairs. Each member of a pair may be regarded as
the reflection, in the appropriate axis of symmetry, of the other member.
Exceptionally two members of a pair may coincide to give a solution
x = <f>{t) which satisfies the identity

(1.4) *(*) = V*(-t).

Such a solution is its own reflection and we shall therefore say that it is
symmetric. At t = 0 the orbit of such a solution has a point of zero velocity
or else an orthogonal crossing of one of the coordinate axes, according to the
type of symmetry which V represents.

A solution x = <f>(t) is said to be periodic if <f>{t) = <f>(t+T) for some
T > 0 and the smallest such T is called the period of the solution. A periodic
solution has a closed curve as its orbit and a symmetric periodic solution
has an orbit with two distinct orthogonal crossings of the axis of symmetry,
one at t = 0 and the other at t = T/2: c.f. [2; vol I, p. 745].

The existence of periodic solutions near a symmetric periodic solution
has been investigated by Birkhoff [2] in connection with the restricted 3-
body problem. More recently De Vogelaere [6], [7] has announced some
interesting results for the Stormer problem. Cherry's methods lead to results
which appear to be more detailed, however, and which can easily be extended
to systems with more than 2 degrees of freedom.

Cherry defines a solution of (1.1) to be periodic if it can be expanded as a
convergent Laurent series in evt where, for a real period, v is pure imaginary.
A periodic solution is said to be regular if certain convergence criteria are
satisfied [5; pp. 185—186]. Of the characteristic exponents of such a solu-
tion, two may be denoted by ±A while the other two are zero (modulo v).
X\v is called the characteristic ratio of the periodic solution and X may be
determined so that it satisfies —|- < RlXjv ^ %.
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Cherry considers the existence of periodic solutions near a given regular
periodic solution which we shall call the generating solution and shall denote
by

(1.5) x = W).

Let Xjv be its characteristic ratio. Cherry shows that if Xjv is irrational then
the generating solution can be embedded in an analytic family of periodic
solutions called Family I. But if Xjv is rational there are additional families
of periodic solutions which contain the generating solution. These families
are said to branch from Family I at the generating solution. The branching
families give orbits which close after v0 circuits of the orbits in Family I
where Xojvo is the reduced form of the rational Xjv.

It is a fairly trivial result that if the system (1.1) and the generating
solution (1.5) are symmetric then so are the members of Family I.

Our main results for symmetric systems are as follows: When the generating
solution is symmetric with XQ ^ 0 then in general the branching families are
composed of •periodic solutions which are symmetric. When v0 2: 4 two
branching families are obtained in general (Families II and III) but when
v0 = 3 or v0 = 2 there is only one such family (Family II).

When Xo = 0, however, there are several different cases which are of general
occurrence and in one of these cases we obtain branching families whose members
are unsymmetric.

The diagrams [5; p. 177] which summarize the reality and stability prop-
erties of the branching families when Xo =£ 0 are still valid in the symmetric
case. The branching families have the analytic form

(1.6) x = 0((a-v)i,eat"')

where a is the family parameter and where $ is a series of positive powers of
(<T—v)i and of positive and negative powers of e"11"'. The series are absolutely
convergent (for pure imaginary v and a) when jcr—v| is sufficiently small.
The generating solution is the member of (1.6) for which a = v. (The case
v0 = 3 is exceptional in that (a—v)£ may be replaced in (1.6) by a—v).

The results are stated to hold in general but exceptional cases may
occur when leading coefficients in a certain power series vanish accidentally.
In such cases additional branching families may be obtained whose members
are unsymmetric. Detailed results for some exceptional cases are stated in
sections 5 and 6.

The results for exceptional cases may be relevant to systems (1.1) which
depend analytically on a parameter fi. The coefficients in question are then
continuous functions of ft and so it is possible that they could vanish for a
discrete set of values of fi.

The coefficients in question may also vanish because of the presence of
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more than one symmetry property in the Hamiltonian system and the
generating solution. In a subsequent paper we shall present the modifica-
tions which the theory for such systems requires and we shall give some
numerical illustrations.

2. Outline of procedure

We shall first of all outline the way in which Cherry obtains the periodic
solutions in the case where kjv is rational, the only case in which we are
interested here.

Cherry constructs a formal contact transformation to new variables Z
which we denote by

(2.1) x = p{Z,ft*»).

Here a is an arbitrary parameter and the right hand side is a formal
power series in the components of the vector Z with coefficients which are
Laurent series in e?tlv<>. Under this transformation the system (1.1) assumes
a simple normal form

The new Hamiltonian Z. is a formal power series in the Zt, Uk with a—v
occurring linearly. The variables Zx and Ux occur only in the combinations

(2.3) v = ZJJX, W = ZJ», w' = U\y

Equilibrium solutions of the normalized system (2.2) are then found which
we denote by

(2.4) Z = Z°.

Z° is given as a function of a—v which vanishes with this argument. When
the equilibrium solutions are substituted in (2.1) the families (1.6) of periodic
solutions of the original system are obtained. Convergence of the formal
series which specify the families (1.6) is then proved by the method of
dominant series.

In outline our procedure for specializing Cherry's theory to symmetric
systems is as follows: we study the effect of symmetry in the original system
(1.1) and in the generating solution (1.5) on the transformation (2.1);
on the Hamiltonian L; on the equilibrium solutions and then finally on the
periodic solutions (1.6) of the original system.

In carrying out this procedure we shall need to consider in some detail
the way in which the transformation (2.1) was constructed. It was actually
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composed of four contact transformations and we shall denote the first
three of these transformations by

(2.5) x =

(2.6) £ = 0(e")C

(2.7) f = g(z, e"*)

Here x, f, f and z are vectors; ̂  is the generating solution; 0 is a matrix and
g is a vector function of z. We shall denote the Hamiltonians of the systems
to which (2.6) and (2.7) lead by G(Z,evt) and K(z,evt) respectively. The
transformations are determined in such a way that in the series develop-
ments G has its quadratic terms in £ normalized while K has all its higher
order terms in z normalized.

If in these transformations the constant v is replaced by the arbitrary
parameter a, the overall transformation becomes x = f(z, e^') where

(2.8) f{z, e°*) = 4>{e<rt)+0{e"t)g (*. «**).

When applied to (1.1) this transformation gives a system with Hamiltonian
K{a—v, z, eat) which is a power series in the arguments

(2.9) zlUl, #(«")-*•, <°(*") \ z2 and

with a—v occurring linearly.
We shall write the fourth transformation, which leads from Hamiltonian

K to Hamiltonian L, in component form:

(2.10) z1 = Z 1 ( O v % . *2 = ^2. »i=U1(<rt)-W.i u,= Ut.

We study in succession the effect of symmetry on each of the above
transformations and the Hamiltonians to which they lead. Under the
hypothesis Ao ̂  0 and v0 ^ 3 we study the effect of symmetry on 0 and G
in section 3. The bulk of section 4 is then concerned with its effect on g and
K. The results, stated in theorems 1 and 2, are then pieced together to give
the result that the transformation (2.1) has the property

(2.11) p (WZ, e-*tlv°) = Vp (Z, e'*1"'),

where W is a certain involutory matrix, while the Hamiltonian L has the
property

(2.12) L[a-v, WZ) = L(a-v, Z).

As a consequence of this property of L it is shown in section 5 that the
equilibrium solutions (2.4) have in general the property

(2.13) WZ° = Z°.
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The corresponding periodic solutions of the original system x = p(Z°, f1**),
which give the branching families (1.6), therefore have the property

(2.14) p(Z°, e"*1*") = Vp(Z°, e-""*)

in view of (2.11). Comparing (2.14) with (1.4) we see that the members of
the branching families have the same symmetry as the generating solution
had.

In sections 6 and 7 we sketch the modifications which are required
when v0 = 2 and when Xo = 0 respectively.

The discussion is a merely formal one since the convergence theory of
[5] is still applicable.

3. Symmetry and the linear transformation

If x = ^(e'^ + l is substituted in the differential equations (1.1) and
the terms of degree greater than 1 in the components of f are then neglected
in the series development of the right hand sides, a linear homogeneous
system of differential equations with periodic coefficients is obtained

(3.D %-JF.i.

These equations are called the equations of variation of the system (1.1)
with respect to the generating solution (1.5).

The transformation f = 0{evt)t, is the linear contact transformation
with periodic coefficients which brings these equations to a normal form.
Such transformations were first given by Cherry but have since been
discussed by Moser [8; pp. 87—101]. Siegel [9; § 13] discusses the equilibrium
case, corresponding to <f>(ert) being a constant.

In this section we shall assume that Xjv ̂  0 and X/v ̂  £ and we shall
change our notation slightly by writing 0{t) in place of 0(e'*). Thus 0(t)
has period ini\v, = T say. The properties of 0(t) which we shall use in dis-
cussing symmetry are listed below. It should be noted that 0{t) is by no
means uniquely determined by these conditions.

Firstly, the condition that the transformation preserve the Hamiltonian
form of the equations may be written in the form (cf. [9; p. 11])

(3.2) 0{t)'J0(t) = / .

Secondly, when the original system and t are real (as we assume), the
second and fourth columns 6{i)(t) and Bw(t) of the matrix 0(t) are real.
And when X is pure imaginary the first and third columns satisfy

(3.3)
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Here F is a constant which is equal to 1 or —1 depending on the original
system (c.f. Cherry's "case A" and "case B" [5; p. 157]).

Thirdly, 0li)(t) is a constant multiple of the vector d]dt${en), which is a
solution of the equations of variation (c.f. [10; § 87]).

Finally the normal form to which the transformation brings the equa-
tions of variation (3.1) is

(3.4)

where

(3.5)

When the transformation is applied to the original non-linear system we
get a system with quadratically normalized Hamiltonian

(3.6) G(C, «") = G(2)(C)4

where the terms not written explicitly have degree greater than 2 in the
components of £. We can now prove

THEOREM 1. When F and <j> have respectively the symmetry properties
(1.2) and (1.4), characterized by a matrix V, then 0{t) may be chosen so that
it has the property

(3.7)

where W is the involutory matrix

(3.8)

The Hamiltonian G then has the property

(3.9) G(f. e'*) =

V0(t)

- o
0

iF

0

0
1

0
0

= 0{-t)W

-iF

0
0
0

0

0
0

— 1

PROOF. From the symmetry of F and <f> it follows immediately that if
X(t) is a fundamental system of solutions of the equations of variation (3.1)
then so is VX(—t). There exists, therefore, a matrix C which is independent
of t such that

(3.10) X(t)C = VX(-t).

Now it is easily verified that the normalized equations of variation
(3.4) admit the fundamental system of solutions
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so that the matrix 0(t)A(t) will be a fundamental system of solutions of the
original equations of variation (3.1). We may therefore substitute this
matrix into (3.10) in place of X{t). We thus get

(3.11) A(t)CA{-t)~i = 0(t)~W0{-t).

But since the right hand side has period T, = 2ni\v, we must have

(-T)-1 = C

since A(Q) is the unit matrix.
Let us suppose for the present that a =£ 0. The hypothesis on Xfv gives

eAT _£ _j_i_ Hence from the above equation we find on using the explicit
form of A(T) that C must be a matrix of the form

"0
0

a
.0

0

P
0

V

d
0

0
0

0"
0

0

-p.
Direct calculation now gives

and so (3.11) becomes simply

) - 1 = C

(3.12) 6(t)C = V0(-t).

Thus we have only to show that there is a 0{t), satisfying the previous
conditions, for which C = W.

Firstly, dw[t) is a multiple of djdt <f>(ePt) and so from the symmetry of
<£(e") we have 6w(t) — —Vdw{—t). If we substitute this result in (3.12)
we find that /? = 1.

Secondly, we may replace 0(t) by 0{t)A where A is the matrix

1

0
0
0

0
1

0
*v

0
0
1

0

0
0

0
1

This leaves unchanged the conditions 0(t) already satisfies except that C
is replaced by A~XCA and in this new C we have the new y = 0.
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Thirdly, we may replace 0(t) by the matrix 0(t)B where B is the dia-
gonal matrix

diag (e", 1, er*t, 1)

in which //, is a real number at present arbitrary. Now at least one of the
elements of the vector 0(3)(O) must be non-zero and we shall suppose for
definiteness that the first element, 631(0), ^ 0. We can now choose /i so that
in the new 0(t) the new 031(O) is either real or pure imaginary as we please.
From (3.3) we then get

where the sign depends on our choice of p. On the other hand (3.12) gives

6u(0) = ±o031(O) and 031(O) = ±<50U(O)

where the sign here depends on the particular form (1.3) of the matrix V.
Comparing these equations we see that fi can always be chosen so that
a = iF and d = —iF.

Thus we have shown that, when a =£ 0, 0(t) can be chosen so that
C = W in (3.12) and hence V0{t) = 0{-f)W as desired. A straight-
forward modification of the above shows that the result is also valid when
a = 0.

To prove the property of the Hamiltonian G we note that by the well-
known rule for transforming Hamiltonian functions [10; § 27]

(3.13) G(C, O = G<«(t)+F*(WS*)+e(t)C)

where F*(x) denotes the sum of those terms in the series development of
F(x) whose degree exceeds 2. On the right hand side of this equation we
now consider each member separately. From (3.5) and (3.8) it follows
immediately that

(3.14)

As regards the second member we note that by (1.4) and (3.7)

But it follows from (1.2) that F*(Vx) = F*(x). Hence

(3.15) F*(*(er'*)+e(-t)WC) = F*(

From (3.13), (3.14) and (3.15) the required property G(W£, e~vt) = G(£ evt)
now follows.
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4. Symmetry and the non-linear transformation

We shall need the following

LEMMA. Let £ = g(z, evi) be a contact transformation which brings the
system with Hamiltonian G(£, evt) to one with Hamiltonian K[z, evt). If
G has the property that G(£ evt) = G(W£, e-vt), then the transformation
? = W~1g(Wz, e~vt) brings the former system to a system with Hamiltonian
K(Wz, e-").

The lemma may be proved by a straight forward application of the rule
[10; § 27] by which Hamiltonian functions are transformed and we omit the
details.

We shall now consider the effect of symmetry on the transformation
(2.7), C = g(z, evt). When applied to the system with Hamiltonian (3.6),

it gives a system with Hamiltonian

K(z, evt) = A z ^ -

in which only the following combinations of the zk, uk and t appear

(4.1) v = 2 ^ , w = ff(evt)-x<>, w' = ul'(ept)^>, z2 and u2.

The original procedure for constructing this transformation was given
by Cherry [4]. A more direct procedure is due to Birkhoff [1; pp. 85—88].
Although Birkhoff treats only the incommensurable case explicitly, his
procedure can be extended trivially to deal with the case in which Xjv
is rational. By referring to Birkhoff s work we can easily prove

THEOREM 2. Because of symmetry the transformation £ = g(z, e"*)
may be determined so that it has the property

(4.2) g(Wz, e") = Wg(z, e-'*)

while the corresponding Hamiltonian K(z, evt) has the property

(4.3) K{z, evt) = K{Wz, e~vt).

PROOF. The leading idea in Birkhoff's construction is to use an auxiliary
function S to define the contact transformation. If S = Ci**i+C2«2+ • • •
is a formal power series in the £k, uk with coefficients which are Laurent
series in e"* then the equations

as as „ , nx
(* 1 2 )
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are uniquely soluble for the £*, eot in terms of the zk, uk and so define a
contact transformation.

Now it turns out that the coefficients in S can be successively deter-
mined so that the only terms which remain in K have the form {
u(*(evt)° with

PJ+vc => 0
(which means that, when Xjv is rational, K contains only powers of the
variables (4.1)). In this way the coefficient of every term CJ'wf^'Mg1^1")"
in S is uniquely determined unless the indices satisfy the above condition.

At this stage we determine the coefficients of the excepted terms also
by imposing a condition used by Siegel [9; p. 187] that in the expansion of

(4-4) 2 (zkwk-ukCk) = z'JC

in powers of the zk, uk no powers of the variables (4.1) alone should occur.
The resulting transformation is thus determined uniquely and we take it as
our transformation f = g(z, evt).

Let us now consider the related transformation

C = W-ig(Wz, e-») = z+ • • •

which may be represented by a function S as above.
Firstly, in view of the lemma, and (3.9), it leads to a system with

Hamiltonian function K(Wz, e~vt) and this function involves only powers
of the variables (4.1) since the replacement of z by Wz and t by — t merely
permutes the variables (4.1).

Secondly the expression corresponding to (4.4) is now

z'JW-lg(Wz, e~vt).

Since W'JW = —J this is equal to

-{Wz)'Jg{Wz,e-"*)

which again involves no powers of the variables (4.1) alone.
Thus by uniqueness we get the required property of g,

W-ig{Wz, e~n) = g(z, en).

A further application of the lemma now gives K(z, evt) — K(Wz, e-vt),
thereby completing the proof of the theorem.

COROLLARY 1. Because of symmetry the transformation (2.8), a; = f(z, eat),
has the property

(4.5) Vf(z, e<") = f{Wz, a-"*),
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and the corresponding Hamiltonian K(a—v, z, evt) has the property

(4.6) K(a-v, z, eat) = K{o-v, Wz, e~at).

PROOF. The result for / is an immediate consequence of theorems 1 and 2.
The result for K is obtained by noting that

(4.7) K{a-v, z, eat) = F(f{z, e"*)) +oM(z, eat)

where, by the rule [10; § 27] forltransforming Hamiltonian functions, the
remainder function oM(z, eat) depends on a only as indicated by the nota-
tion. From (1.2) and (4.5) we see that

(4.8) F(f(Wz, er**)) = F(f(z, «*«))•

On the other hand theorem 2 gives

K(0, Wz, e-vt) = K(0, z, evt).

Substituting these two results in (4.7) with a = v we find that

M(Wz, e-vt) = M(z, evt).

But since this holds identically in t we may replace v by a to get

(4.9) M(Wz, e-"') = M(z, e°*).

From (4.7), (4.8) and (4.9) we see immediately that K{a—v, z, e") =
K(a—v, Wz, er"*) as required.

COROLLARY 2. Because of symmetry the transformation (2.1), x =
P(Z, e^1'*), has the property

(4.10) Vp(Z, e^l"') = p(WZ, e-"*1"")

and the corresponding Hamiltonian L has the property

(4.11) L(a-v, Z) = L(a-v, WZ).

PROOF. Let us write the transformation (2.10) in vector notation as

x = X(Z, **"•)•

Then from (2.1) and the explicit form (3.8) of the matrix W we see that

(4.12) X{WZ, e-"*1"') = WX(Z, e"*"')

since the vectors on either side of this equation each have components

Now p may be expressed in terms of / by the equation

P(Z, e^"') = f(x(Z, <?«"*), **).
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Thus
Vj>(Z, e'""') = f(Wx(Z, fi'»), e-**) by (4.5)

= f(x(WZ, e-*1!"*), c-at) by (4.12)
= p(WZ, e-"1'*).

Thus (4.10) is proved.
The property of L now follows from the expression for L in terms of K

given in [5; p. 163] in a straightforward way and we omit the details.

5. Solution of the normalized system

We shall now consider the effect of symmetry on the equilibrium solu-
tions Z = Z° of the normalized Hamiltonian system (2.2) which lead to
the branching families.

The procedure by which these solutions are obtained [5; pp. 163—175]
may be summarized as follows. In place of the variables

(5.1) v = ZJJX, w = Z\\ w' = U£

new variables q, s, s' are introduced by putting

(5.2) q = iFv, s = w+{%ry*w', s' = i(w-[ir)"«w')

where F = ± 1 , as in section 3. In place of the Hamiltonian L a function H,
which is a real valued function of its arguments, is introduced by putting

(5.3) H(i(a-v), q, s, s', Z2, U2) = L(Z, a-v).

The series expansion of H, which we shall require later, is of the form

H = i(a—v

( 6 4 ) -

+

where the a's and /S's are real constants. We have not given any terms in U2

as these will not be required in the sequel. The following equations are then
solved for q, s, s', Z2, U2 as functions of i(o—v) which vanish therewith:

(5.5.1) si-\-s'2-4q"« = 0
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s -g- +2vo?--i — = 0 (s # 0)
(5.5.3)

or , ' ^ + ^ , ^ - 1 ^ = 0 (s'#0)
oq as

(5.5.5) C/2 = 0.

From the values of q, s, s' obtained in this way, the corresponding values of
v, w, w' are determined by using (5.2) and the value of Zlt Ux are then ob-
tained from (5.1). The values of the Zk, Uk so determined are the required
equilibrium solutions of (2.2). When q is positive and s, s' are real, the corre-
sponding solutions of the original system (1.1) can be shown to be real.

LEMMA. Because of symmetry, H has the property

H{i(a-v), q, s, s', Z2, U2) = H{i(a-v), q, (-l)">s, ( - l ) ^ s ' , Z%, -Ut)

PROOF. From the explicit form (3.8) of the matrix W we see that the
substitution

z-> wz
may be written componentwise as

From (5.1) and (5.2) we see that this is equivalent to the substitution

From the definition (5.3) of H we now see that the required property of H
is equivalent to the property L(a—v, Z) = L(a—v, WZ) proved already.

We can now prove that the equilibrium solutions have the property
(2.13) which ensures that the corresponding periodic solutions of the original
system are symmetric.

THEOREM 3. Because of symmetry the equilibrium solutions Z = Z°
of (2.2) have in general the property

WZ° = Z°

PROOF. Suppose first that v0 is an odd integer. Then by the lemma H
becomes an even function of s when we put U2 = 0 (as (5.5.5) requires).
Thus (5.5.2) is explicitly
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If /?4 # 0, which we assume to be in general the case (see below), the
only solution which vanishes with o—v is

s = 0.

From (5.5.1) and (5.5.3) we now get successively
O TT O TJ

Oii. CLJ.
s' = ±2 /« ' a and — ±v0f'>

2~1 — = 0.
oq os

The second of these equations and (5.5.4) now give q and Z2 in terms of
i(a—v). When v0 > 4 (the only case for which we give details) these equa-
tions have the form

,i(a-v)+fi1Z2+^q+• • • = 0
•• — 0.

If a/?6+/S? ^ 0, which is so in general, these equations have the unique solu-
tion

From (5.2) and (5.1) we now get in succession

— {iry«w' = w, w = — is'12, Z'f

and hence Zx = (Ti)1'"'^, Ux = — iTfT/)~1/"»yi. The various determina-
tions of the vo-th roots in these expressions for Z1 and Ut lead to the same
periodic solutions of the original system [5; p. 167]. Thus we have only two
essentially different families in the above results, which correspond to
Families II and III. If we now adopt ± t as our determination of i1!"0 —
which is permissible since v0 is odd — we get for the two families

(5.6) Z1

In either case let Z\, U\ denote the values of the Zk, Uk so obtained.
Then from (5.6) and (5.5.5) we get

(5.7) Z\ = -inj\ and U\ = 0.

Now from the explicit form (3.8) of the matrix W we see that the vector
WZ° has components

-iru\, z%, irz\, -u\.
But by (5.7) these are equal to the respective components Z\, Z%, U\, U\
of the vector Z°. Thus WZ° = Z° as required.
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Suppose now that v0 is an even integer so that H becomes an even function
of s' on putting t/2 = 0. If we proceed as above we find two families of
equilibrium solutions and for one of these families we find

Zx = iqi, Ux = -rqi.
We can then verify the property WZ" — Z° for the family in exactly the
same way as above.

To show that the other family leads to symmetric periodic solutions
of the original system it is necessary to change the origin of t by nija,
however, and we shall not give the details here. (The need for changing the
origin of t has a simple geometric interpretation. Let A and B denote the
two points at which the orbit of the generating solution crosses the axis of
symmetry orthogonally. Then, when v0 is even, the orbits in one branching
family have both of their orthogonal crossings near A, while those of the
other branching family have both of their orthogonal crossings near B.)

When v0 > 3 the branching families are real on one side of the gener-
ating solution and complex on the other since q changes sign with i(o—v)
provided aa.2

Jra.1fl1 ^ 0.
When v0 = 3 trivial modifications of the above show that there is only

one branching family in general, but it is real on both sides of the generating
solution.

Non-vanishing of the coefficients. In proving theorem 3 we have assumed
in the case where v0 is odd that

& # 0, <x.ft+pl ^ 0 and aa^+oL^ ^ 0.
Similar assumptions are used in the case v0 even. By appropriately modifying
examples given by Cherry we can construct symmetric systems in which
these conditions are satisfied. Arguments can then be given to show that
these conditions are satisfied in general: c.f. [5], footnote to p. 167. Cases in
which the above constants vanish are exceptional.

Results for exceptional cases. The important condition in regard to
symmetry is that on /?4. It ensures that the variable s vanishes identically
and this in turn ensures that the corresponding periodic solutions of the
original system are symmetric. The other conditions merely affect the
number of families obtained and their reality.

If /S4 vanishes, however, then there will be a solution of (5.5.2) besides
the one s = 0. This leads in general to a pair of branching families, Families
IVa and IV|,. Their members are unsymmetric — as can be seen from specific
examples — and Family IVb is composed of the reflections of the members
of Family IVa in the axis of symmetry. It turns out that members of these
two families are in general complex for all real values of the period, 1nivo\a.
Families I, II and III exist as before, in general, and have symmetric mem-
bers.
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6. The case A0/p0 = -|

In this case the previous discussion requires modifications which stem
from the fact that for the normal form of the quadratic terms of the Hamil-
tonian we now have

By making a few minor changes in sections 3 and 4 we can show that
theorems 1 and 2 remain valid (regardless of whether a or b vanishes)
provided that the matrix W is now given by W = Q(evt) where

Q(e") = diag ( - « - " , l , «", - 1 ) .

(The present case has an interesting peculiarity: previously the origin of t
could be chosen at either of the two orthogonal crossings of the generating
solution, but in the present case the result just stated for W is valid for
only one of these choices.)

It follows that in corollary 1 (section 4) we must now take W = Q{eat)
while in both corollary 2 (section 4) and theorem 3 we must take W — Q(l),
which is independent of t.

The normalized Hamiltonian L is in the present case a power series in
the Zk, Uk and i{a—v) with real coefficients. It involves Zx and U1 only in
the combinations

(6.1) v = ZxUit w = Z\, w' = U\.

From corollary 2, as modified above, we deduce that L is an even function
of Zx and £72 jointly. In terms of the arguments (6.1) this means that L
becomes an even function of v when we put U2 = 0. But since t>2 = ww'
this means that v can be omitted as an argument of L. The conditions
which the Zk, Uk must satisfy [5; p. 166] therefore simplify to

or or or

Z° U 0 0 U0

If we put U2 = 0 we have an expression of the form

L = (a—»-)(c2Z2+c8ze'+c9w'H )

—\aZ\-\-bw-\-clzwZi-\-cliw'Zi

and the above equations are respectively

(6.2.1) Z1(ce(a-v)+b+c13Z2+c17w+cltw'+ • • •) = 0

(6.2.2) C^1(^(ff-r)+cMZ1+cltiif+c18w'H ) = 0

(6.2.3) Ci(a-v)-aZ2+c13w+cliw'+ . . . = 0
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Now in general b =£ 0. From (6.2.1) it follows that in this case the only
solution which vanishes with a—v has

Z1 = 0.

Assuming that a # 0 and <%t-\-acia ^ 0 we find that (6.2) admit the follow-
ing solutions:

(I) Z1 = 0, Z2 = a~*cs(o-v)+---, Ut = 0. f/2 = 0

The ambiguity of sign for f7x corresponds to two determinations of the same
periodic solution of the original system. Thus (I) and (II) lead back to two
families of periodic solutions of the original system, Families I and II.
From the conditions Zx = 0, U2 = 0 it is easy to verify that theorem 3
holds for the equilibrium solutions (I) and (II). Hence Famines I and II
are composed of symmetric periodic solutions. Family II is in general real
on one side of the generating solution and complex on the other.

Results for exceptional cases. In exceptional cases coefficients which
are in general non-zero may vanish. We shall consider the case in which
6 = 0. Here Zx = 0 is not the only solution of (6.2.1) and we obtain, besides
(I) and (II), the following solutions of (6.2):

c2c17 cBcBc13
2 = - 2 • - . V*—*)

Ux — 0, C/2 = 0

(IV) Zx = ±[{(AJA)(o-v))i-\ ], Z2 = (AaIA)[a-v)

••1, U. = 0

where the A's are third order determinants involving the c's. We assume that
c\3-\-acxl ^ 0 and A =£ 0 in (III) and (IV) respectively. For real periodic
solutions of the original system the Zk, Uk and i(a—v) must be real. Stability
may be studied as in [5]. Our results are as follows.

In the exceptional case b — Owe obtain the following branching families
of periodic solutions: Families II, III , IV8 and IVb. The members of Families
II and III are symmetric but those of Families IVa and IVb are unsymmetric.
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Family IV, is composed of the reflections in the axis of symmetry of the
members of Family IVb.

Family II is real on one side of the generating solution (corresponding
to a = v) and complex on the other and the same is true for Family III.
Family IVa (and IVb) is either real on one side of the generating solution
and complex on the other or else complex throughout.

The non-zero characteristic exponents of the members of Family I are
pure imaginary on both sides of the generating solution or else complex
on both sides. For the real members of the branching families the charac-
teristic exponents may be real or pure imaginary (and here the result for
one branching family is independent of that for the others).

%-Vpo F-{F)n

Fig. 1. v, = 2, 6 = 0, a ^ O , cf4+ac18 ^ 0, cf,+oc17 # 0, o«,+CjC14 ^ 0, flc,+c,cIS zjt 0,
A ^ 0, J ,J , > 0.

Along each curve is written the nature of the non-zero exponents of the periodic solutions
represented by its points.
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Variation of a parameter ft. Suppose now that the original Hamiltonian
system (1.1) depends analytically on a parameter ft and that it is symmetric
for each value of p. Suppose furthermore that for p, = 0 the system has a
symmetric generating solution with Xjv = ^ and suppose that it gives the
exceptional case b = 0 as above. As in [5; pp. 210—216] we have studied
the periodic solutions near the generating solution when p # 0. The sort
of results we have obtained are illustrated in figure 1, which is analogous
to those given in [5].

Families IVa and IVb are represented by the same curve. The members
of Families I, II and III remain symmetric when //. ^ 0 and those of
Famines IVa and IV6 remain unsymmetric.

When / i ^ O branching occurs at periodic solutions which are represen-
ted by the points A, B, C and D in the figure. For C and D the characteristic
ratio is \ and at these points we have instances of the general case, treated
earlier in this section. For A and B, however, the characteristic ratio is
zero and at these points we have instances of a case which is treated later,
in section 7.

It can be shown that when for fi = 0 the Families IV are complex
throughout then the periodic solutions represented by the points A and B
are both real for /i < 0 (say) and both complex for fi > 0. If, on the other
hand, the Families IV change from real to complex at the generating
solution fi = 0 — the situation depicted in figure 1 — then the periodic
solutions represented by A and B are real and complex respectively for
fi < 0 (say) but complex and real respectively for /x > 0.

7. The case Ao = 0

The normal form of the quadratic terms of the Hamiltonian is now given
by

By considering the Jordan normal form of the monodromy matrix of the
equations of variation of the original system (1.1) we find that in regard to
the constants a, b, c and d there are essentially only four cases which can
occur:

(i) ab ̂  0
(ii) a = c = 0, bd ^ 0

(iii) a = c = d = 0, 6 ^ 0
(iv) a = b = c — d = 0

A discussion analogous to sections 3 and 4 now gives the following
results. Let Vx = diag (1, - 1 , - 1 , 1) and let Fa = diag (1, 1, —1, - 1 ) .
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Then in case (i) theorem 1 and theorem 2 and both corollaries of theorem 2
remain valid if W is replaced by — Fj . In case (ii), however, we must be
prepared to replace W by F1( —Vx or F2 while in cases (iii) and (iv) W must
be replaced by F1( —Vt, F2 or —F2.

We now give the discussion corresponding to section 5. The normalized
Hamiltonian L is now a power series in the Zk, Uk and i(a—v) with real
coefficients and we have

L = (o-v)c1Z1+c2Z2+d1U1+d2U2

with at least one of cl,ci,d1, d2 non-zero [5; p. 181]. If c2 ̂  0 we obtain the
required equilibrium solutions of the normalized system by putting U2 = 0
and then solving the equations

for the Zk, Uk as functions of a—v.
In case (*) the solution of equations (7.1) which is given in [5; p. 183]

is still valid. Family I is the only family of periodic solutions which contains
the generating solution and its members are easily shown to be symmetric.
(The existence of this case appears to have been overlooked in [7; pp. 73, 74].
An example to illustrate this case is given later.)

Other cases. By analogy with the cases treated in sections 5 and 6 one
might expect case (i) to be the general case and cases (ii), (iii) and (iv) to be
exceptional. It turns out, however, that among the latter cases there are
some which are likely to be of general occurrence for the following reason:
if one of these cases occurs for a system (1.1) then it occurs for all neigh-
bouring systems.

Branching families with unsymmetric members are obtained in some of
the cases just mentioned.

Variation of (i. We shall exemplify the preceding remarks by considering
case (ii) with W = V2. We suppose that the original symmetric system (1.1)
depends analytically on a parameter /* and that for /i = 0 there is a symme-
tric generating solution So of zero characteristic ratio. We suppose further
that So belongs to case (ii) with W = F2. Under these hypotheses we shall
now show that for each (sufficiently small) value of /i there is a periodic
solution Sp of zero characteristic ratio which belongs to the same case as So,
namely, case (ii) with W = F2.

The Hamiltonian L now involves /t and the equations (7.1) are to be
solved for the Zk, Uk as series in a—v and fi which vanish therewith.

From corollary 2 (section 4) as modified above we find that L is an
even function of U1 and U2 jointly and so either cx ^ 0 or c2 # 0 by [5;
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p. 181]. After interchanging subscripts if necessary we may suppose that

Thus with U2 = 0 we have

L = (o-v)(c1Z1+ctZ1l+ctUl+ • • •)

+c6Ut+ • • •

The equations (7.1) now become explicitly

c1(a-v)+c'1p+bZ1+ciUt+ • •
c2(a~v)+c'ifi+dZ2+c5Ul-\

= 0
= 0

These equations may now be solved to give in general the solutions

(I) Zx = -b-^cx{a-v)-b-^c[(i , U 1 = 0,
Z2 = -d~iCi(a-v)-d-ic^ , U2=0,

(II) Z1 = A(o

where A, B and C are constants which depend on the c's.
From (I) we get a family of symmetric periodic solutions of the original

system, Family I, which is real on both sides of the generating solution.
But from (II) we get a pair of branching families with unsymmetric members,
Families IIa and II5, which are real on one side of the generating solution
and complex on the other in general. Family IIa is composed of the reflec-
tions in the axis of symmetry of the members of Family Hb and hence these
two families are represented by a single curve in figure 2.

i(a-v)

\

Fig. 2. A, = 0, a = c =[0, bdjtO, W = V,, C ̂  0,
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Now provided C ^ 0 Family I and the Families II have a member in
common for each value of fi. It is the member (of either family) for which

a—v = ~C

and it is represented in figure 2 by the origin 0. This is the periodic solution
Sp whose existence was to be established. It is evident from the figure that
the branching at S^ for /i ^ 0 is of the same sort as that which takes place
at So. This suggests that SA belongs to the same case as So and this can be
verified by deriving the equations of variation with respect to S^.

We have calculated the non-zero characteristic exponents ±X of a
typical member of Family I as in [5; p. 183] and obtained an expression
of the form

X* = (P(o—v) + P > + • • .)(Q+R{o-v) + R>/l+ • • •)

where P, Q and R are constants depending on the c's. From this expression
we have deduced the results for the non-zero characteristic exponents of the
members of the various families in figure 2.

Example of case (i). An example of a symmetric Hamiltonian system
for which case (i) occurs can be obtained by specializing the above discussion.
We consider the special case in which Q = 0 in the expression X2. In this
case X2 changes sign twice along Family I near the generating solution — once
at SA and again at a periodic solution T'f say. We can show by examples
that in general S^ =£ TM unless^ = 0. Thus we have the situation represented
in figure 3 where the point A represents T^.

Tl
p is thus a symmetric periodic solution with all its characteristic

exponents zero and it belongs to only one family of periodic solutions. This

Fig. 3. A, = 0, a = c = 0, bd ^z 0, W = V,,
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suggests that T^ gives an instance of case (i) and this has in fact been verified
by deriving the equations of variation with respect to T^.
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