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On a Theorem of Bers, with Applications to
the Study of Automorphism Groups of
Domains

Steven Krantz

Abstract. We study and generalize a classical theoremof L.Bers that classiûes domains up to biholo-
morphic equivalence in terms of the algebras of holomorphic functions on those domains. _en we
develop applications of these results to the study of domainswith noncompact automorphismgroup.

1 Introduction

For us a domain in complex space is a connected open set. If Ω is a domain, then let
O(Ω) denote the algebra of holomorphic functions on Ω.

In 1948, Lipman Bers [1] proved the following elegant result.

_eorem 1.1 LetΩ, Ω̂ be domains inC. IfO(Ω) is isomorphic toO(Ω̂) as an algebra,
then the domain Ω is conformally equivalent to the domain Ω̂.

Since that time, this result has been generalized to domains in Cn and even to
domains in Stein manifolds; see, for instance, thework of Zame [14,15]. _e approach
that we present below is diòerent from, andmore elementary than Zame’s.

In this paper we oòer some other variants of Bers’s theorem and develop applica-
tions of these results to the study of the automorphism groups of domains in complex
space.

2 Variants of Bers’s Theorem

In this sectionwe formulate several variants of Bers’s theorem. _ey all have the same
proof. For completeness, we provide the proof of Bers’s original theorem stated in the
previous section.

Proof of_eorem 1.1 In fact we will prove the result inCn . As we shall see below, it
will be necessary to assume that the domains in question are pseudoconvex.

Let Ω ⊆ Cn be a pseudoconvex domain. LetO(Ω) denote the algebra of holomor-
phic functions fromΩ toC. Bers’s theorem states, in eòect, that the algebraic structure
of O(Ω) characterizes Ω. We begin our study by introducing a little terminology.
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Deûnition 2.1 LetΩ ⊆ Cn be a domain. AC-algebrahomomorphism ϕ∶O(Ω)→ C
is called a character of O(Ω). If c ∈ C, then themapping

ec ∶O(Ω) Ð→ C,
f z→ f (c),

is called a point evaluation. Every point evaluation is a character.

It should be noted (andwe use this fact frequently below) that if ϕ∶O(Ω)→ O(Ω̂)
is not the trivial zero homomorphism, then ϕ(1) = 1. _is follows because ϕ(1) =
ϕ(1 ⋅ 1) = ϕ(1) ⋅ϕ(1). On any open set where the holomorphic function ϕ(1) does not
vanish, we ûnd that ϕ(1) ≡ 1. _e result follows by analytic continuation.

It turns out that, for pseudoconvex domains, every character of O(Ω) is a point
evaluation. _at is the content of the next lemma.

Lemma 2.2 Assume that Ω ⊆ Cn is pseudoconvex (see [8] for this concept) and
bounded. Let ϕ be a character on O(Ω). _en ϕ = ec for some c ∈ Ω. Indeed, if we let
τ j(z) = z j for j = 1, . . . , n and c j = ϕ(τ j), then c = (c1 , c2 , . . . , cn) ∈ Ω.

Proof Let c be deûned as in the statement of the lemma. Let µ j(z) = τ j(z) − c j .
_en

ϕ(µ j) = ϕ(τ j) − ϕ(c j) = c j − c j = 0.
If it were not the case that c ∈ Ω, then (τ1(z), τ2(z), . . . , τn(z)) would never take

the value c on Ω. _erefore the expression

( τ1(z) − c1 , τ2(z) − c2 , . . . , τn(z) − cn)
would never vanish on Ω. But then we can iteratively choose complex constants
λ1 , λ2 , . . . , λn so that

τ(z) = λ1( τ1(z) − c1) + λ2( τ2(z) − c2) + ⋅ ⋅ ⋅ + λn( τn(z) − cn)
will never vanish on Ω. Indeed,

n

∑
j=1

∣τ j(z) − c j ∣

will have aminimum, nonzero value X on Ω. Let λ j = 10 j ⋅ 2 ⋅ diamΩ/X.
_us, τ will be a unit in O(Ω). But then

1 = ϕ(τ ⋅ τ−1) = ϕ(τ) ⋅ ϕ(τ−1) = 0 ⋅ ϕ(τ−1) = 0.

_at is a contradiction, so c ∈ Ω.
Now let g ∈ O(Ω) be arbitrary. _en wemay write

(2.1) g(z) = g(c) +
n

∑
j=1

µ j(z) ⋅ g̃ j(z),

where g̃ j ∈ O(Ω). _us,

ϕ(g) = ϕ( g(c)) +
n

∑
j=1

ϕ(µ j) ⋅ ϕ(g̃ j) = g(c) + 0 = g(c) = ec(g).
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We conclude that ϕ = ec , as claimed.
It is clear (because the algebra of holomorphic functions separates points) that c is

unique.

Now we can prove Bers’s theorem. We formulate the result in slightly greater gen-
erality than stated heretofore.

It should be noted thatBers’s theorem(stated below) is false for non-pseudoconvex
domains. Consider the example of Ω = B (where B is the unit ball in C2) and
Ω̂ = B ∖ {(0, 0)}. _en, by the Hartogs extension phenomenon, O(Ω) and O(Ω̂)
are identical (hence certainly isomorphic), but the two domains are not even home-
omorphic,much less biholomorphic.

_eorem 2.3 Let Ω, Ω̂ be pseudoconvex domains in Cn . Suppose that

ϕ∶O(Ω)Ð→ O(Ω̂)
is a C-algebra homomorphism. _en there exists one and only one holomorphic map-
ping h ∶ Ω̂ → Ω such that

ϕ( f ) = f ○ h for all f ∈ O(Ω).
In fact, using the notation of the lemma,we deûne h j = ϕ(τ j) and h = (h1 , h2 , . . . , hn).

_e homomorphism ϕ is bijective if and only if h is biholomorphic, that is, a one-to-
one and onto holomorphicmapping from Ω̂ to Ω.

Proof We deûne h as in the statement of the theorem. It is clear from the construc-
tion that h is a holomorphicmapping.

If a ∈ Ω̂, then ea ○ ϕ is a character of O(Ω). _us, our lemma tells us that ea ○ ϕ
must in fact be a point evaluation at some point c in Ω. As a result, ea ○ ϕ = ec , with

c j = (ea ○ ϕ)(τ j) = ea(h j) = h j(a)
for j = 1, . . . , n. _us, if f ∈ O(Ω), then

ϕ( f )(a) = ea(ϕ ○ f ) = (ea ○ ϕ)( f ) = eh(a)( f ) = f (h(a)) = ( f ○ h)(a)

for all a ∈ Ω̂. We conclude that ϕ( f ) = f ○ h for all f ∈ O(Ω).
For the last statement of the theorem, suppose that h is a one-to-one, onto, holo-

morphic mapping of Ω̂ to Ω. If g ∈ O(Ω), then set f = g ○ h−1. It follows that
ϕ( f ) = f ○ h = g. Hence, ϕ is onto. Likewise, if ϕ( f1) = ϕ( f2), then f1 ○ h = f2 ○ h
hence, composing with h−1, f1 ≡ f2. So ϕ is one-to-one.
Conversely, suppose that ϕ is an isomorphism. Let a ∈ Ω be arbitrary. _en ea is

a character on O(Ω); hence ea ○ ϕ−1 is a character on O(Ω̂). By the lemma, there is a
point c ∈ Ω̂ such that ea ○ϕ−1 = ec . It follows that ea = ec ○ϕ.Applying both sides to τ j
yields ea(τ j) = (ec ○ϕ)(τ j). Unraveling the deûnitions gives a j = ec(τ j ○ h) = h j(c).
_us, h(c) = a and h is surjective. _e argument in fact shows that the pre-image c
is uniquely determined. So h is also one-to-one.

Now we formulate some variants of Bers’s theorem. Again we stress that each has
the same proof (the proof that we just presented).
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In what follows, we will be dealing with the space L(Ω) of Lipschitz functions on
Ω. _ese are functions that satisfy a condition of the form

(2.2) sup
x ,y∈Ω
x≠y

∣ f (x) − f (y)∣
∣x − y∣ ≤ C .

As usual, we use the expression (2.2) to deûne a norm ∥ ⋅ ∥L(Ω) on L(Ω).

Proposition 2.4 IfΩ is a domain inCn , then let L(Ω) denote the algebra of Lipschitz
holomorphic functions on Ω. _e smoothly bounded, strongly pseudoconvex domains
Ω and Ω̂ in Cn are biholomorphically equivalent if and only if the algebras L(Ω) and
L(Ω̂) are isomorphic as algebras.

In order to prove this result, it is necessary to verify that the functions g̃ j in formula
(2.1) can be chosen to be in the space L(Ω). _is entails solving a Gleason problem
in the Lipschitz category using themethod of ∂. _e latter technique is explicated in
[6]. _e necessary estimates for ∂ can be found, for instance, in [12].

Proposition 2.5 _e smoothly bounded, strongly pseudoconvex domains Ω and Ω̂ in
Cn are biholomorphically equivalent, with a biholomorphism that is bi-Lipschitz, if and
only if the algebras L(Ω) and L(Ω̂) are isomorphic as algebras.

For this result, one need only observe that h j = ϕ(τ j) is the image under ϕ of a
Lipschitz function. And ϕ is assumed to be an isomorphism of Lipschitz algebras.

We remark that it is possible to formulate versions of these results for Sobolev
spaces of holomorphic functions, for Besov spaces of holomorphic functions, and
in other contexts as well. We leave the details to the interested reader.

3 Applications

Our intention here is to study the automorphism groups of domains in Cn . Here, if
Ω ⊆ Cn is a domain, then the automorphismgroup ofΩ (denoted Aut(Ω)) is the col-
lection of biholomorphic mappings of Ω to itself. _e usual topology on Aut(Ω) is
that of uniform convergence on compact sets (equivalently, the compact-open topol-
ogy). For a bounded domain Ω, this topology turns Aut(Ω) into a real Lie group.
Note, however, that the automorphism group of Ω = Cn with n > 1 is inûnite dimen-
sional hence certainly not a Lie group.

If Ω is a ûxed domain in Cn and if f ∈ L(Ω), then let us say that f is noncompact
if there is a sequence ϕ j ∈ Aut(Ω) such that { f ○ ϕ j} is a noncompact set in L(Ω).
Notice that, obversely, f is compact if { f ○ ϕ j} is a compact set in L(Ω) for every
choice of ϕ j .

Proposition 3.1 Let Ω be a smoothly bounded, pseudoconvex domain inCn . _en Ω
has noncompact automorphism group if and only if there exists an f ∈ L(Ω) such that
f is noncompact.
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Proof If the automorphism group is noncompact, then (by a classical result of
H. Cartan), there exist ϕ j ∈ Aut(Ω), P ∈ Ω, and X ∈ ∂Ω such that ϕ j(P) → X.
By a result of Ohsawa (see [11]), the Bergman metric is complete. Fix a nonconstant
f ∈ L(Ω). Choose p, q ∈ Ω, p ≠ q, so that

∣p − q∣ ≈ ( 1/∣ f ∥L(Ω)) ⋅ ∣ f (p) − f (q)∣ .

Wemay suppose without loss of generality that ∣p − q∣ = 1.
Now certainly ∣ϕ j(p)− ϕ j(q)∣→ 0 (since, by the completeness of themetric, both

ϕ j(p) and ϕ j(q) must both tend to X). We can now calculate that

C = C∣p − q∣
≈ ( 1/∥ f ∥L(Ω)) ⋅ ∣ f (p) − f (q)∣
= ( 1/∥ f ∥L(Ω)) ⋅ ∣ f (ϕ−1

j (ϕ j(p))) − f (ϕ−1
j (ϕ j(q))) ∣ .

Since ∣ϕ j(p) − ϕ j(q)∣ → 0, we see that { f ○ ϕ−1
j } has Lipschitz norm that is blowing

up. So f is noncompact.
Conversely, if Aut(Ω) is compact, then let f ∈ L(Ω) and consider { f ○ ϕ j} for

ϕ j ∈ Aut(Ω). Examine

(3.1) ∣ f ○ ϕ j(p) − f ○ ϕ j(q)∣ .

Clearly, by compactness, ∣∇ϕ j ∣ is bounded above and below, uniformly in j, on any
compact set K ⊂⊂ Ω. By the Ascoli–Arzela theorem applied on compact sets, we see
from (3.1) that f ○ ϕ j has a convergent subsequence.

_e next well-known result, due to Bun Wong [13], is a cornerstone of the mod-
ern theory of automorphism groups of smoothly bounded domains. We now present
some new proofs of this result.

_eorem 3.2 Let Ω be a smoothly bounded, strongly pseudoconvex domain in Cn .
Suppose that there a point P ∈ Ω and a strongly pseudoconvex boundary point X ∈ ∂Ω
and that there exist ϕ j ∈ Aut(Ω) such that ϕ j(P)→ X. _en Ω is biholomorphic to the
unit ball B ⊆ Cn .

Proof As advertised, we will sketch three proofs. We ûrst note that, according to
Cartan’s theorem and our previous result, the hypotheses imply that there is an f ∈
L(Ω) that is noncompact.

First Proof of the_eorem: If Ω is not biholomorphic to the ball, then, by a cele-
brated result of Lu Qi-Keng [10] (see [4] for thorough discussion), there is a point
Q in Ω where the holomorphic sectional curvature of the Bergman metric is not the
constant holomorphic sectional curvature of the ball.
As noted in the proof of the preceding result, the Bergman metric is complete on

Ω. So, in fact, any compact set K ⊂⊂ Ω has the property that {ϕ j} converges uni-
formly on K to X. In particular, ϕ j(Q) → X. But it can be calculated (see [4, 5, 7])
that the holomorphic sectional curvature of the Bergman metric tends to the con-
stant curvature of the ball at points that approach a strongly pseudoconvex boundary
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point X. _is contradicts the last sentence of the previous paragraph. We conclude
that Ω is biholomorphic to the ball, as claimed.

Second Proof of the_eorem It is convenient for this argument to equipO(Ω)with
the topology of uniform convergence on compact sets (i.e., the compact-open topol-
ogy). For convenience, and without any loss of generality, we restrict attention now
to ambient dimension 2.

LetU be a small neighborhood of X. Since X is a peak point (see [8]), it is standard
to argue that for any compact set K ⊆ Ω, there is a J so large that j > J implies that
ϕ j(K) ⊆ U ∩ Ω. Let X′ be a point of U ∩ Ω that is very near to X. Let δ = δ j =
dist(X′ , ∂Ω). A�er a normalization of coordinates,wemay suppose that the complex
normal direction at X is z1 and the complex tangential direction at X is z2.
Deûne

ψ(z1 , z2) = (X′
1 + (z1 − X′

1)/δ, X′
2 + (z2 − X′

2)/
√
δ) .

_en ψ ○ ϕ j , with j as above, will have Lipschitz norm that is bounded, independent
of j. As a result, using a sequence of compact sets K j that exhausts Ω, and neighbor-
hoods U that shrink to X, we can derive a subsequence, convergent on compact sets.
And it will converge to a mapping of Ω to the Siegel upper half space. (_is is just
the standard method of scaling, which is described in detail in [4]). So Ω is biholo-
morphic to the Siegel upper half space, which is in turn biholomorphic to the unit
ball.

_ird Proof of the_eorem: For this proof we examine the Feòerman asymptotic
expansion for the Bergman kernel near a strongly pseudoconvex boundary point (see
[2,4]). _is says that, in suitable local coordinates,

(3.2) K(z, ζ) = ψ(z, ζ)
[−X(z, ζ)]n+1 + ψ̃(z, ζ) ⋅ log[−X](z, ζ).

Hereψ, ψ̃ are smooth functions on Ω×Ω and X is the Levi polynomial (see [8, Ch. 3])
on Ω.
An interesting feature of Feòerman’swork, and subsequentwork of Burns andGra-

ham [3], is that the logarithmic term is always present near a boundary point that is
not spherical.
Arguing as usual, if P and X exist, then any other point Q ∈ Ω has the property

that ϕ j(Q) → X as j →∞. We begin with a point Q near the boundary at which the
Feòerman expansion (3.2) is valid. If Ω is not the ball, then we can take Q to be very
near to a boundary point that is not spherical.

Of course the Bergman kernel transforms under a biholomorphicmapping F ofΩ
by the standard formula ([8, Ch. 1])

(3.3) JacC F(z)K(F(z), F(ζ)) JacC F(ζ) = K(z, ζ).
So, when we think of ϕ j(Q) → X, then we can understand how the Bergman kernel
transforms by applying the transformation formula (3.3) to the Feòerman expansion
(3.2). On one hand, this should give rise to another Feòerman-type formula based at
the point ϕ j(Q). But the problem is that the logarithmic expression does not scale.
_e result, as j → ∞, will not be a valid Feòerman formula. _is is a contradiction,
so Ω must be biholomorphic to the ball.
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_e following corollary is a consequence of the ûrst two results.

Corollary 3.3 A strongly pseudoconvex domain Ω ⊆ CN is biholomorphic to the ball
if and only if the algebra L(Ω) of Lipschitz functions is noncompact.

4 Further Results

_e next result is classical. See [9, Ch. 12] for amore traditional proof.

Proposition 4.1 Fix a bounded domain Ω ⊆ Cn . Let {ϕ j} be automorphisms of Ω.
Assume that the ϕ j converge normally (i.e., uniformly on compact sets) to a limit f .
_en either
(i) themapping f is an automorphism of Ω; or
(ii) themapping f maps to a complex variety in the boundary.

Proof We adopt the point of view of Bers’s theorem.
With ϕ j ∈ Aut(Ω) as in the statement of the proposition, and g ∈ L(Ω), examine

{g ○ ϕ j}.
Now either g ○ ϕ j is compact or it is not. If g ○ ϕ j is compact, then there exists a

subsequence ϕ jk and a τ such that g ○ ϕ jk → τ with τ ∈ L(Ω). So g ○ f = τ, with
f ∈ Aut(Ω) (because it is a nondegeneratemapping, and a limit of automorphisms).
Speciûcally, themapping f is univalent, because it is the limit of univalent mappings.
Also, f is onto, because we can apply our reasoning to ϕ−1

j . _at is part (i) of our
conclusion (formulated in the language of this paper).

If instead g ○ ϕ j is noncompact, then {g ○ ϕ j} has no convergent subsequence. So
g ○ϕ j blows up in norm. Hence, there are a point P ∈ Ω and a point X ∈ ∂Ω such that
ϕ jk(P) → X (for some subsequence ϕ jk ). Hence, g ○ ϕ jk collapses to the boundary.
_is completes the proof of (ii).

We now have the following proposition.

Proposition 4.2 Suppose that f ∶Ω → Ω is a holomorphicmapping. Assume that, for
some sequence {ϕ j} of automorphisms of Ω, f ○ ϕ jk converges normally to a function
g ∈ O(Ω).
(i) If g ∈ Aut(Ω), then f ∈ Aut(Ω).
(ii) If g is not constant, then every convergent subsequence of hk ≡ f ○ ϕ jk+1 ○ ϕ−1

jk has
limit idΩ .

Proof _is result is like a converse to compactness.
If f (a) = f (b) for some distinct points a, b ∈ Ω, then

f (ϕ jk ○ ϕ−1
jk (a)) = f (ϕ jk ○ ϕ−1

jk (b)) .

Now, if the ϕ jk converge to some ψ, then we see that g(ψ(a)) = g(ψ(b)). If ψ is an
automorphism then this is certainly a contradiction.

Of course, f ○ ϕ jk(Ω) ⊆ f (Ω) for all k. So g(Ω) ⊆ f (Ω) ⊆ Ω. But g(Ω) = Ω, so
f (Ω) = Ω. _us, f is onto. It is also one-to-one. _is proves (i).
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For part (ii), we take g to be holomorphic and nonconstant. Let h be a subsequen-
tial limit of f ○ ϕ jk+1 ○ ϕ−1

jk ≡ hk . As a result, f ○ ϕ jk+1 = hk ○ ϕ jk , so g = h ○ψ. But then
h = g ○ψ−1, so h diòers from g by an automorphism. Certainly then h is nonconstant.
We note further that g = h ○ ψ so that g is an automorphism.

5 Concluding Remarks

Bers’s theorem is a very classical result, originally proved in the context of one com-
plex variable. Yet the ideas that it represents are still meaningful and of considerable
interest today. _is paper represents a brief exploration of Bers’s theorem in a new
context.
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