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PYTHAGOREAN TRIPLES

TAKAFUMI MIYAZAKI

(Received 28 November 2008)

Abstract

Let a, b, c be relatively prime positive integers such that a2
+ b2
= c2 with b even. In 1956 Jeśmanowicz

conjectured that the equation ax
+ by

= cz has no solution other than (x, y, z)= (2, 2, 2) in positive
integers. Most of the known results of this conjecture were proved under the assumption that 4 exactly
divides b. The main results of this paper include the case where 8 divides b. One of our results treats the
case where a has no prime factor congruent to 1 modulo 4, which can be regarded as a relevant analogue
of results due to Deng and Cohen concerning the prime factors of b. Furthermore, we examine parities of
the three variables x, y, z, and give new triples a, b, c such that the conjecture holds for the case where b
is divisible by 8. In particular, to prove our results, we shall show an important result which asserts that
if x, y, z are all even, then x/2, y/2, z/2 are all odd. Our methods are based on elementary congruence
and several strong results on generalized Fermat equations given by Darmon and Merel.
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1. Introduction

Let Z, N be the sets of integers and positive integers, respectively. Let a, b, c be
relatively prime positive integers such that a2

+ b2
= c2 with b even. Then the triple

(a, b, c) is called a primitive Pythagorean triple. It is well known that there exist
integers m, n such that

a = m2
− n2, b = 2mn, c = m2

+ n2,

where m > n > 0, gcd(m, n)= 1, m 6≡ n (mod 2). Clearly, the equation

ax
+ by

= cz, x, y, z ∈ N

has the solution (x, y, z)= (2, 2, 2).
Whether there are other solutions has been investigated by a number of authors.

Sierpiński [19] showed there are no other solutions when (a, b, c)= (3, 4, 5).

c© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

413

https://doi.org/10.1017/S0004972709000471 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000471


414 T. Miyazaki [2]

Jeśmanowicz [9] further showed there are no others when (a, b, c) is (5, 12, 13),
(7, 24, 25), (9, 40, 41) or (11, 60, 61). He conjectured that the above equation has
no solution other than (x, y, z)= (2, 2, 2):

CONJECTURE 1.1. Let m, n be integers such that m > n > 0, gcd(m, n)= 1, m 6≡
n (mod 2). Then the equation

(m2
− n2)x + (2mn)y

= (m2
+ n2)z, x, y, z ∈ N (1.1)

has no solution other than (x, y, z)= (2, 2, 2).

A number of other special cases of Conjecture 1.1 have since been settled. Lu [17]
proved it when n = 1. In 1965, Dem’janenko [5] extended earlier results in several
papers [10, 11, 18] by proving the conjecture to be true whenever m − n = 1. In
general, this problem has not yet been solved (see also [12, 13, 20–23]).

The first difficulty is to show that parities of x, y, z are all even. For this, the
simplest conditions are given by [1, 7]. They assume the existence of certain prime
divisors of a or b, and, by using elementary congruences and the quadratic reciprocity
law, they show that x, y, z are all (or partially) even. In particular, if x, y, z are all
even and 2 ‖ mn, then it is easily seen that y/2= 1, and the conclusion holds (see [8]).
For example, the case m ≡ 1 (mod 8), n ≡ 6 (mod 8) implies (x, y, z)= (2, 2, 2).
Further, some relations in x, y, z are known [6, 14] (and see Lemma 3.1 below).

The second difficulty is to show that if we assume that x, y, z are all even (so we put
x = 2X , y = 2Y , z = 2Z ) and 4 divides mn, then (X, Y, Z)= (1, 1, 1). In this case, it
is important to determine the parities of X, Y, Z (see Proposition 2.3 below). But even
though one assumes it, it is very difficult oneself to obtain the conclusion. Most of
the known results of Conjecture 1.1 concern the case where 2 exactly divides mn. In
fact, in such a case, we can deduce much information by only elementary congruence,
in particular, on determination of y. But, for the case where mn is divisible by 4,
few results are known about the conjecture. This difficulty also appears in solving
other exponential Diophantine equations ax

+ by
= cz . In fact, most results for these

concern the case where 2 exactly divides a or b; see, for example, [1, 2, 15, 16]
and [24]. Concerning this point, the following propositions have (essentially) been
proved by Deng and Cohen [7, Theorems 1 and 2].

PROPOSITION 1.2. Suppose that m is even with no prime factor congruent to 1
modulo 4. If (x, y, z) is a solution of (1.1) and y, z are even, then (x, y, z)= (2, 2, 2).

PROPOSITION 1.3. Suppose that m is even, n has no prime factor congruent to 1
modulo 4, and 25n > 2m. If (x, y, z) is a solution of (1.1) and y, z are even, then
(x, y, z)= (2, 2, 2).

We now state our first main result.

THEOREM 1.4. Suppose that m2
− n2 has no prime factor congruent to 1 modulo 4.

If m − n has a prime factor congruent to 3 modulo 8 and m 6≡ 1 (mod 4), then
Conjecture 1.1 holds.
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The assumptions in the complete version of Propositions 1.2 and 1.3 are primarily
on the prime factors of b = 2mn. On the other hand, our assumptions in Theorem 1.4
are primarily on the prime factors of a = m2

− n2, so this can be regarded as a relevant
analogue of the results of Deng and Cohen. Note that the results of Deng and Cohen
include the case where 4 divides mn, and our result also includes this case (see
Example 2.12).

In Section 3, we shall examine parities of the three variables x, y, z (see
Lemma 3.1). As a consequence, we obtain our second main result:

THEOREM 1.5. If m ≡ 4 (mod 8) and n ≡ 7 (mod 16), or m ≡ 7 (mod 16) and n ≡
4 (mod 8), then Conjecture 1.1 holds.

By Theorem 1.5, we can easily obtain pairs m, n such that Conjecture 1.1 holds for
the case where mn is divisible by 4.

To prove our theorems, we shall use elementary congruence and several strong
results on generalized Fermat equations (see Darmon and Merel [4]). In particular,
by using such strong results, we shall prove an important result which asserts that
if (x, y, z) is a solution of (1.1) and x, y, z are all even, then x/2, y/2, z/2 are all
odd (see Proposition 2.3). This has in fact been derived under various assumptions in
earlier papers, but we prove it without any of these assumptions.

In what follows, (∗
∗
) denotes the Jacobi symbol.

2. Proof of Theorem 1.4

We shall begin with the following lemmas, which are necessary to show that x, y
and z are even.

LEMMA 2.1. Let (x, y, z) be a solution of (1.1). If m is even or m has a divisor
congruent to 3 modulo 4, then x is even.

PROOF. If m is even, as is well known, by considering (1.1) mod 4, we have 2 | x .
If m has a divisor congruent to 3 modulo 4, say d, then by considering (1.1) mod d,
we see that (−1/d)x = 1. This implies that x is even. 2

LEMMA 2.2. Let (x, y, z) be a solution of (1.1). If m + n has a divisor congruent
to 3 modulo 8, then z is even. If m + n has a divisor congruent to 7 modulo 8, then y
is even. If m − n has a divisor congruent to 3 or 5 modulo 8, then y ≡ z (mod 2).

PROOF. Let d be a divisor of m + n. Then, from (1.1),(
−2
d

)y

=

(
2
d

)z

. (2.1)

By the quadratic reciprocity law, we see that if d ≡ 3 (mod 8), then (2.1) implies that z
is even, and if d ≡ 7 (mod 8), then (2.1) implies that y is even.

If d is a divisor of m − n such that d ≡ 3 (mod 8) or d ≡ 5 (mod 8), by
considering (1.1) mod d , we have (2/d)y

= (2/d)z . This implies that y ≡
z (mod 2). 2
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Next, we prove an important result, derived in earlier papers under various
assumptions. We prove it without any assumptions.

PROPOSITION 2.3. Let (x, y, z) be a solution of (1.1). If x, y and z are all even, then
x/2, y/2 and z/2 are all odd.

PROOF. First, we quote the following lemmas given by Cao and Dong [3], which play
important roles in our proof. They have shown them by using the strong results from
elliptic curve theory due to Darmon and Merel [4].

LEMMA 2.4 [2, Lemma 9]. Suppose that N ∈ N with N > 1. Then the equation

A2N
+ B2

= C4, A, B, C ∈ Z, gcd(A, B)= 1, 2 | A

has no solution with AB 6= 0.

LEMMA 2.5 [2, Lemma 10]. Suppose that N ∈ N with N > 1. Then the equation

A2N
+ B4

= C2, A, B, C ∈ Z, gcd(A, B)= 1

has no solution with AB 6= 0.

By our assumption, we can put x = 2X , y = 2Y , z = 2Z with X , Y , Z ≥ 1. Since
{(m2
− n2)X , (2mn)Y , (m2

+ n2)Z
} is a primitive Pythagorean triple, we obtain

(m2
− n2)X

= s2
− t2, (2.2)

(2mn)Y = 2st, (2.3)

(m2
+ n2)Z

= s2
+ t2, (2.4)

where s > t > 0, gcd(s, t)= 1, s 6≡ t (mod 2). Since s + t , s − t are relatively prime,
by (2.2),

s + t = u X , s − t = vX , (2.5)

where u > v > 0, gcd(u, v)= 1, uv = m2
− n2. Note that u, v are odd since m2

− n2

is odd.
Let 2α ‖ mn with α > 1. Then 2(α+1)Y

‖ (2mn)Y , that is,

2(α+1)Y−1
‖ st (2.6)

by (2.3).
We need the next elementary lemma.

LEMMA 2.6. Z < 2X and Z < 2Y .

PROOF. Since s2
+ t2 < (s2

− t2)2, we know from (2.2) and (2.4) that (m2
+ n2)Z <

(m2
− n2)2X . This implies that Z < 2X . For the second inequality, consider (2.3),

(2.4) and the inequality s2
+ t2 < (2st)2. 2
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If X (or Y ) is even, then, from Lemma 2.5, we must have Y = 1 (X = 1). By
Lemma 2.6, this gives Z = 1, and so X = Y = 1 by (1.1). This is a contradiction.
Hence, X and Y are odd. Similarly, we can show that Z is odd by Lemmas 2.4 and 2.6.
This completes the proof of Proposition 2.3. 2

REMARK 2.7. If we only treat the case 2α 6= β + 1 (see Section 3 for the definition
of α and β), then we can show that X, Z are odd without using Lemmas 2.4 and 2.5.
In fact, we can prove this fact by comparing two exponents α, β as we will observe in
the proof of Lemma 3.1 (also see the proof of Lemma 3.3).

PROOF OF THEOREM 1.4 We now invoke the assumptions of Theorem 1.4. Let
(x, y, z) be a solution of (1.1). We prepare several lemmas as follows.

LEMMA 2.8. x, y and z are all even.

PROOF. Since now m 6≡ 1 (mod 4), we know that m is even or m ≡ 3 (mod 4). Thus,
by Lemma 2.1, we have 2 | x .

Since m + n ≥ 3 is odd, there exists an odd prime p dividing m + n. By our
assumptions, we know that p ≡ 3 (mod 8) or p ≡ 7 (mod 8), so by Lemma 2.2, it
is easily seen that y and z are even. 2

By Lemma 2.8, we may use the notation in the proof of Proposition 2.3. We prove
the following lemmas.

LEMMA 2.9. m ≡ s (mod 2) and n ≡ t (mod 2).

PROOF. By Proposition 2.3, we know that X and Z are odd. Then, from (2.2)
and (2.4), we have 2m2

≡ 2s2 (mod 4) since m2
+ n2 and m2

− n2 are odd. This
means m ≡ s (mod 2). Clearly, m ≡ s (mod 2) gives n ≡ t (mod 2). 2

LEMMA 2.10. gcd(m − n, s + t)= 1 and gcd(m + n, s − t)= 1.

PROOF. Suppose that gcd(m − n, s + t) > 1. Then there exists a prime p dividing
both m − n and s + t . Note that p 6= 2 and p ≡ 3 (mod 4) by our assumption.
From (2.3), we have (−1/p)= 1 since Y is odd by Proposition 2.3. However, this
contradicts p ≡ 3 (mod 4). Therefore, gcd(m − n, s + t)= 1.

Similarly, we can show gcd(m + n, s − t)= 1. 2

It is easily seen that u = m + n, v = m − n by (2.2), (2.5) and Lemma 2.10.

LEMMA 2.11. 2α ‖ st .

PROOF. Note that one of m, n is even, the other odd. Assume that m is even. Then s
is even and n, t are odd by Lemma 2.9. From (2.5) and 2 - X , we have

s = m(u X−1
− u X−2v + · · · − uvX−2

+ vX−1). (2.7)

Since u, v and X are odd, u X−1
− u X−2v + · · · − uvX−2

+ vX−1 is odd. It follows
from 2α ‖ m and (2.7) that 2α ‖ s, and so 2α ‖ st since t is odd.

For the case where n is even, we reach the same conclusion by a similar process. 2
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By (2.6) and Lemma 2.11, we have Y = 1. Hence, Lemma 2.6 gives Z = 1, so
X = 1. This completes the proof of Theorem 1.4. 2

EXAMPLE 2.12. We give the infinitely many examples of Theorem 1.4. Let p
be a prime such that p > 3, p ≡ 3 (mod 8) and let e, d be odd positive integers
satisfying pe

− 3d > 2. Then, we solve the system m + n = pe, m − n = 3d , and
m = (pe

+ 3d)/2, n = (pe
− 3d)/2. It is easily seen that these m, n satisfy the

conditions of Theorem 1.4. Note that all our examples are not included in the earlier
results (see Section 1). For instance, let (p, e, d)= (11, 1, 1), (19, 1, 1). Then
we know that 33x

+ 56y
= 65z and 57x

+ 176y
= 185z both have a unique solution

(x, y, z)= (2, 2, 2).

3. Proof of Theorem 1.5

In this section, we shall first examine parities of the three variables x, y, z. As a
consequence, we have pairs m, n such that Conjecture 1.1 holds for the case where mn
is divisible by 4. For this purpose, we need to prepare some notation.

Note that we may assume that n > 1 by [17]. We shall define positive integers α, β
and odd positive integers i , j as follows. When m is even, we let

m = 2αi, n = 2β j ± 1, β ≥ 2

and when n is even, we let

n = 2αi, m = 2β j ± 1, β ≥ 2.

Note that if α = 1, then 2α 6= β + 1 since β ≥ 2.
This following lemma is necessary to prove Proposition 3.2 and Theorem 1.5. Its

proof includes generalizations of [21, Proposition 3] and [23, Proposition 3(2)].

LEMMA 3.1. Let (x, y, z) be a solution of (1.1). If 2α 6= β + 1 and y > 1, then
x ≡ z (mod 2). If 2α = β + 1, then y > 1 and x or z is even.

PROOF. The proof is elementary. We may assume that n > 1 by [17], and also
assume that α > 1. In fact, when α = 1, by considering (1.1) mod 8, we have
(±5)x + 4y

≡ 5z (mod 8). It follows that (±5)x ≡ 5z (mod 8) if y > 1. This implies
x ≡ z (mod 2) if y > 1.

First, we consider the case where m is even. Since m2
= 22αi2 and n2

= 22β j2
±

2β+1 j + 1, then

m2
− n2

= 22αi2
− (22β j2

± 2β+1 j + 1),

2mn = 2α+1k, k odd,

m2
+ n2

= 22αi2
+ (22β j2

± 2β+1 j + 1).
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Case 1. α ≥ β + 1. By considering (1.1) mod 2β+2, we have

(∓2β+1
− 1)x ≡ (±2β+1

+ 1)z (mod 2β+2),

and so
∓(−1)x−12β+1x ≡±2β+1z (mod 2β+2).

This implies that x ≡ z (mod 2).

Case 2. β + 1> α > 1.

Case 2.1. β + 1> 2α. By considering (1.1) mod 2β+1, we have

(22αi2
− 1)x + (2α+1k)y

≡ (22αi2
+ 1)z (mod 2β+1),

and so
(−1)x−122αx + (2α+1k)y

≡ 22αz (mod 22α+1).

From this, we see that y > 1, and so x ≡ z (mod 2).

Case 2.2. 2α − 1≥ β + 1> α. By considering (1.1) mod 2β+2, we have

(∓2β+1
− 1)x + (2α+1k)y

≡ (±2β+1
+ 1)z (mod 2β+2),

and so
∓(−1)x−12β+1x + (2α+1k)y

≡±2β+1z (mod 2β+2).

Thus, if y = 1, then α = β, so

∓(−1)x−1x + k′ ≡±z (mod 2), k′ odd.

This gives x 6≡ z (mod 2). If y > 1, then x ≡ z (mod 2) since 2α + 2≥ β + 2.

Case 2.3. 2α = β + 1. Note that 4α − 2= 2β. By considering (1.1) mod 24α−2, we
have

((i2
∓ j)22α

− 1)x + (2α+1k)y
≡ ((i2

± j)22α
+ 1)z (mod 24α−2),

and so

(−1)x−1(i2
∓ j)22αx + (2α+1k)y

≡ (i2
± j)22αz (mod 24α−2).

It is clear from this congruence that y > 1, so

(−1)x−1(i2
∓ j)x + 2α(y−2)+yk′ ≡ (i2

± j)z (mod 22α−2), k′ odd.

This implies that x or z is even since α > 1, y ≥ 2 and i2
+ j ≡ 2 (mod 4) or i2

− j ≡
2 (mod 4).

For the case where n is even, we reach the same conclusion by a similar process. 2
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By this lemma for the case 2α 6= β + 1, we have the following result which can be
regarded as another analogue of the results of Deng and Cohen.

PROPOSITION 3.2. Assume that m2
− n2 has no prime factor congruent to 1

modulo 4. If 2α 6= β + 1, m − n has a prime factor congruent to 3 modulo 8, then
Conjecture 1.1 holds.

PROOF. Let (x, y, z) be a solution of (1.1). By the proof of Theorem 1.4, we know
that y, z are even. Thus, it suffices to show that x is even. Since now 2α 6= β + 1 and
y > 1, by Lemma 3.1, then x ≡ z (mod 2). This implies 2 | x . 2

For the case where 2α = β + 1, we obtain the following lemma, which does not
need assumptions on prime factors of m2

− n2 or 2mn.

LEMMA 3.3. Assume that 2α = β + 1. If (x, y, z) is a solution of (1.1), y is even and
x ≡ z (mod 2), then (x, y, z)= (2, 2, 2).

PROOF. The proof is similar to the case 2α = β + 1 in Lemma 3.1. By Lemma 3.1,
we know that x, y and z are all even. Thus, we may use the notation in Section 2.
First, we consider the case where m is even. We know that s is even and t is odd by
Lemma 2.9. Note that α > 1 and

22(α+1)Y−1
‖ 2s2

by (2.6). From (2.2) and (2.4),

(22αi2
− (24α−2 j2

± 22α j + 1))X
+ (22αi2

+ (24α−2 j2
± 22α j + 1))Z

= 2s2.

(3.1)
Then, by considering (3.1) mod 24α−2, we have

((i2
∓ j)22α

− 1)X
+ ((i2

± j)22α
+ 1)Z

≡ 22(α+1)Y−1s′ (mod 24α−2), s′ odd,

and so

(−1)X−1(i2
∓ j)22αX + (i2

± j)22αZ ≡ 22(α+1)Y−1s′ (mod 24α−2).

Thus,

(−1)X−1(i2
∓ j)X + (i2

± j)Z ≡ 22α(Y−1)+(2Y−1)s′ (mod 22α−2).

Now suppose that Y > 1. Then

(−1)X−1(i2
∓ j)X + (i2

± j)Z ≡ 0 (mod 22α−2).

This implies that X or Z is even since α > 1 and i2
+ j ≡ 2 (mod 4) or i2

− j ≡
2 (mod 4). But this contradicts Proposition 2.3. Thus, Y = 1, and so X = Z = 1 by
Lemma 2.6.

For the case where n is even, we reach the same conclusion by a similar process. 2

Using this lemma, we shall prove Theorem 1.5.
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PROOF OF THEOREM 1.5. Assume the cases m ≡ 4 (mod 8) and n ≡ 7 (mod 16),
or m ≡ 7 (mod 16) and n ≡ 4 (mod 8). Note that α = 2, β = 3. In particular,
2α = β + 1. For both cases, we know m 6≡ 1 (mod 4). Thus, by Lemma 2.1, we
see that x is even. For the case m ≡ 4 (mod 8) and n ≡ 7 (mod 16), we know that
m + n ≡ 3 (mod 8) and m − n ≡ 5 (mod 8). Hence, by Lemma 2.2, we see that y
and z are even. For the case m ≡ 7 (mod 16) and n ≡ 4 (mod 8), it is similarly seen
that y and z are even. Therefore, x, y and z are all even. Thus, by Lemma 3.3,
(x, y, z)= (2, 2, 2). 2

From Theorem 1.5, we can easily obtain infinitely many examples which are not
included in earlier results (see Section 1). For instance, let (m, n)= (7, 4), (23, 12).
Then we know that 33x

+ 56y
= 65z and 85x

+ 552y
= 673z each have a unique

solution (x, y, z)= (2, 2, 2).
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[13] , ‘On Jeśmanowicz conjecture concerning Pythagorean numbers’, Proc. Japan Acad. Ser.

A Math. Sci. 72 (1996), 97–98.
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