
BULL. AUSTRAL. MATH. SOC. I 0 A 3 0 , 30A22

VOL. 19 (1978) , 245-272.

The interruption phenomenon for

generalized continued fractions

M.G. de Bruin

Dedicated to K. Mahler on the occasion of his 75th birthday

After defining a generalized C-fraction (a kind of Jacobi-Perron

algorithm) for an n-tuple of formal power series over S

(n 2 2) , the connection between interruptions in the algorithm

and linear dependence over I [a;] of the power series is studied.

Examples will be given showing that the algorithm behaves in a

way similar to the Jacobi-Perron algorithm for an w-tuple of

real numbers (the gcd-algorithm): there do exist n-tuples of

formal power series f , f , ..., f with a C-n-fraction

without interruptions but for which 1, / , / , ..., /'"' is

nevertheless linearly dependent over (t[x] .

Moreover an example will be given of algebraic functions f, g

of degree n over (I[a:] (formally defined) for which the

C-n-fraction for f,j, ••., f has just one interruption and

2 n
that for g, g , ..., g none, while of course

1, /, T, ..., j1 and 1, g, g , ..., g admit (only) one

dependence relation over d[x] .

1. Introduction

It is well known that there exists a one-to-one correspondence between
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formal power series in an indeterminate x with complex coefficients

(1) fix) = I axV (c * 0) ,
V=0

and so-called C-fractions, a terminating or non-terminating continued

fraction of the form

rl r 2
ax

[bQ, a±, a2, ... e <E\{o}; r^, *>2, ... f 1«) .

In the case that we admit the power series in (l) to have a vanishing

oo

constant term, that is, f(x) = T a xV (e7 t 0, k € w) , the
v=k

correspondence still holds if we replace b in (2) by e,x .

An important property of the one-to-one correspondence is

(3) f in (l) is the MacLaurin series of a rational function

(/ € <l(x)) if and only if the C-fraction (2) corresponding to

/ terminates,

which (for the sequel) is rephrased into

(!+) 1, f linearly dependent over tt[x] if, and only if, the

C-fraction for / terminates.

For the theory of C-fractions the reader can consult the basic texts

Perron [«], WaI I [70].

As the reader immediately realizes, (U) is the analogue of a similar

assertion for the ordinary continued fraction for a real number (replace

I far] by TL ) .

This just mentioned continued fraction for a real number has been

generalized in many ways to an algorithm for an n-tuple of real numbers.

Of these generalizations we only mention one that is closely connected to

the greatest common divisor algorithm, see Perron [7], the so-called

Jacobi-Perron algorithm.

Algebraic properties have been studied amongst others by Bernstein [7]
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and metrical properties by Schweiger [9].

There is, hovever, a loss compared to the ordinary continued fraction

algorithm: a generalization of (U) does not hold for n 2 3 (then there

exist n-tuples of real numbers a , a?, ..., a which have a Jacobi-

Perron algorithm without interruptions but for which 1, a., 0U, — , a

is nevertheless linearly dependent over TL ) ; the case n = 2 is not yet

clear for the algorithm from [7].

Now there are different ways of generalizing the C-fraction algorithm

to w-tuples of formal power series. For instance, see the work of Dubois

[5] and Paysant Le Roux [6].

They use the well known non-archimedean valuation on the field of

formal power series to define the notions "distance" and "integer" and

thereby reach an algorithm that satisfies a modified version of (k) with

d[x3 replaced by the set of "integers". It is then possible to prove, see

[5], that the number of independent dependence relations is equal to the

number of interruptions in the algorithm.

In this paper another generalization is considered which behaves very

much like the ordinary C-fraction algorithm and which is also connected

with the sequence of Pade approximants on the main stepline in a

generalized Pade table, see de Bruin [2], [3], [4].

2. The C-n-fraction algorithm

Consider an w-tuple of formal power series in an indeterminate x

with complex coefficients

(5) f{j\*)=Io^ (i-1. 2, ...,»;OW-

There is no loss of generality in requiring a ' = 1 as will be pointed

out in the sequel. The use of this condition lies mainly in the fact that

it enables one to recover many results for ordinary C-fractions as they

appear in [«], [70] by simply taking n = 1 in the general theory, see

[2], [3].

Also, for the sake of simplicity and because we are otherwise led to a
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rather trivial situation, we assume that fi is not a monomial nor

identically zero.

Let b. nx '°' U = 1, 2, . . . , n) be the first non-zero term in

/2), /Q
2), .-., /£n) , respectively (so An, 0) = 0 , bin, 0) = l)and

a. ,x ' the second non-zero term in fn •

Then

uniquely defines the formal power series / with constant term equal to

1 . This f is then used to define the formal power series

[l],f[2) f^ (uniquely) by

(6b) tfhx) = bit(f
U-0) ̂  [f^^/lf^U)) « - 2, 3. ...,»).

Thus we get another n-tuple of formal power series,

/i » /T > • • • > f\ » of which the last one has constant term equal to

one, and we can try to apply the method described in (6a, 6b) once more.

Now, however, we have two different situations: /. is a monomial

or not; they will be considered separately.

Let the n-tuple of formal power series f^ , /^ , •••, f^ {f^

has constant term equal to 1 ) have been constructed for a certain

A. f̂ 1-* IS NOT A MONOMIAL NOR IDENTICALLY ZERO

Let a2 v x
r ( 2 ' v ) , respectively ^ v + 1 x

r ( l ' V + l ) , be the first,

respectively second, non-zero term in the series / (that is,

ao ,t a1 ., ̂  0 ). Then the formal power series f I with constant term
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equal to 1 is uniquely defined by

After this, let <z.+1 x + ' be the first non-zero term in the series

" U ; (or zero if / = 0 ) for i = 2, 3, . . . , n-1 ; we know that the

first non-zero term in / is the constant 1 . Then the formal power

series / ' , / ^ J , . . . , /,,_,_-, are uniquely defined by

rv u " ' - a i+i,v* T |/v+l v u"J/( Jv+iw

(i = 2, 3, . . . , n-1) ,
(7b)

'V v

CONCLUSION. The rules (7a), (7b) construct, starting with an n-tuple

of formal power series of which the last one has constant term equal to

1 , an n-tuple of the same kind.

B. / is a monomial or identically zero

Let f , f , ..., /[, all be monomials or identically zero and

let / be the first formal power series (regarding the superscript)

which has at least two non-zero terms (if there is one).

This situation is called an interruption of order k at index v

("Storung") and leads to a subdivision of Case B.

Bl. k = n ; that is, all formal power series have at the most one non-

zero term.

Take * i + 1 ) / ' U + 1 ' V ) = / ^ } ( x ) (i = 1, 2, . . . , n-1) , fcy = 1 ;

a x ' already follows from Case A for v - 1 .

The algorithm terminates. Calculating backwards using (7a), (7b), for
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v, v-1, ..., 2, 1 and (6a) * (6b), shows that f^, fQ
2', ..., f™' are

the MacLaurin series of rational functions which are regular at the origin.

B2. 1 £ k < n-1

Take ai + ly«
+ 1'^ E /»><*) (i = i. 2, ..., *) , a.J^ , 0

(i = 1, 2, . .., k; \i 2 v+l) and define the formal power series /v + 1 with

constant term equal to 1 using the first and second non-zero term in

is

After this the formal power series ft1, f \\ , •••» f+i a r e

lk+2) J
Jyj « 1 y » ' • ' » J y

uniquely determined as in (7b) by the first non-zero term in

lk+2) Jk+3) Jin)
yj 1 J

i = fe+2, ^+3, . . . , n-1) ,
(8b)

CONCLUSION. After an interruption of order k at index v the rules

(8a), (8b) construct, starting with the (n-fc)-tuple of formal power series

f , f ,...,/• of which the last one has constant term equal to

1 , an (n-k)-tuple of the same kind.

In what manner the algorithm has to be adapted if after an

interruption of order k another interruption, say of order m at index

U , appears is now evident.

C • / , // + , . .., /*jM have an interruption of order m at index

M .

The case m = n - k is the "same" as Case Bl; the algorithm

terminates. Let now m+k S M-1 .
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Then take ai+x ^ ( i + 1 ' l j ) = f ^ (x) (i = *+l, fc+2, . . . , fc+m) ,

a. x r >V E 0 ( i = 1, 2 k+m; v > u+l) , and define the formal
7. ,V

power series f i with constant term equal to 1 using the first and

~(k+m+l) An)second non-zero term in j " ; J u + 1
 1 S unique:

(9a)

Jin),

Jk+m+l) _(fe+m+2) An-l) _ nn . . . „_
^ ' '••' -MJ+1 f o l l o w a s i n C a s e s A a n d B 2 :

(9b)

(i = k+m+2, k+m+3, ..., n-l)

(if m + k = n - 1 , (9a), (9t>) have to be replaced by the second line of

(9b) only).

The C-n-fraction for an arbitrary n-tuple of formal power series now

follows by applying the construction given above, at each step choosing

Case A or Case B and once Case B has been chosen, choosing Case B or Case

C.

The construction terminates or not; this matter will be treated in

the next section.

For notational convenience only the coefficients and powers of x

that appear when we apply the algorithm are given; we have then
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(10)

Jin)

,0)

>2,o*-(2>O)

L, l

2 , ]

*

,D

a ,xn , l . . . a x
r(n,v)

(n,0)
n , 0

(with r(n, 0) = 0 , bn Q = 1 ).

REMARK I. The notation (10) shows how the algorithm has to be

adapted if f~ does not have a constant term equal to 1 : just put the

first non-zero term in the series /"- in the place of b x '/"-

Interruptions show up in (10) in the following way: an interruption

of order k at index v leads to zeros in the rows 1, 2, ..., k

starting in the column number v + 1 (if the first column is given the

number 0 ).

Using the right hand side of (10) it is possible to define n + 1

A^sequences of polynomials A^ , A (numerator polynomials)

and Sv (denominator polynomials) for V € H u (-«, -n+1, .... -1, 0} by

(11)

-0
(£ = 1 , 2 , . . . , w) ,

B . = 0 f o r j = l , 2 , . . . , « ,

' h . / ™ < * - ! . * . . . . . » > . ' o - 1 '
and the recurrence relation, the same for each of the sequences,

For detailed information concerning the sequences of polynomials and
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the sequences A^'/B (i = 1, 2, ..., n; v € IN) , for instance the order

relations for the exponents r(i, v)

(0 5 r(j, 0) < r{j, 1) < r{j-l, 2) < ... < r(l, j+1) , and

r(w, v) < r(n-l, v+1) < ... < r(l, v+w-l)) ,

the relations f - A /B = d. x plus higher powers, and so on;

see in.
For the sequel we only need the initial values (ll), the recurrence

relation (12), and

(13) det

v-n

v v-n

B_. ... B

Vn
3=1

v •"• v-n)

(an empty product has to be taken as 1 ; for the proof see [2]).

EXAMPLE 1. Let g be the unique formal power series in x with

constant term equal to 1 that satisfies

(lit)
3 2 2gJ - g - xg - x E O .

Take f = g - g ; because g satisfies an irreducible (over

equation of degree 3 , the triple 1, f, g is linearly independent over

d[x] . Straightforward (formal) calculation shows f(x) = x + x plus

higher powers of x . Apply the C-2-fraction algorithm to f,g:

=x + f-x = x + g2-g-x = x+ (g3-gZ-xg) /g = x + (x2/g)

~ (g constant term 1 )
g=l+g-l=l+ [g^-g]/g = 1 + (f/g) .

This shows that the C-2-fraction is purely periodic (period length 1 )

and has the form

(15)

x

X X

X

X
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EXAMPLE 2. Let g be the unique formal power series in x with

constant term equal to 1 satisfying

(16) g2 + (x-l)g + x = 0 .

Take f = g - g ; then (1, /, g) is linearly dependent over ff[x]

[f + xg + x = o) , but /, g are not rational while (l6) is irreducible.

We have

f = g2 - g = -^g - * = -x - x{g+{x-i)}

= -x - x{g2+(x-l)g}/g = -x + [x3/g] ,

g = 1 + g - 1 = 1 + fig .

Again period length 1 and (IT) gives the C-2-fraction

(18)
K

-X

1

a;
-X

1

. . . X

. . . -X

... 1

EXAMPLE 3. Let f be the unique formal power series with constant

term equal to 1 satisfying

(19) f -f- x= 0 .

Then f, j are not rational and ( l , / , f) allows just "one" dependence

relation over d[x] while (19) is irreducible.

This time an interruption comes up:

(20) / = 1 + / - 1 = 1 + x/f (/ constant term 1 ),

f2 = 1 + [x(f+l))/f ;

(21)

(22)

x(/+l) = 2x + x(f-l) = 2x + x If , f = 1 + x/f ;

x is a monomial, f = 1 + x/f .

From (22) follows an interruption of order 1 at index 2 ; the function

to go on with leads to a non-terminating algorithm f = 1 + x/f ad

•infinitwn. We have
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(23) 1

1

X

2x

1

a;
X

1

0 . . .
x . . .

1 . . .

0

X

1f2

EXAMPLE 4. The C-2-fraction for the functions l/(l-x),

(21+)

( ) =1 + (x(

(x(2-x))/(l-x) = 2x + x2/(l-x) , 1 - x = 1 + (-x(l-x))/(l-x) ;

-x(l-x) = -x + x2/l , 1 - x = 1 + (-x)/l ;

-x is a monomial, 1 is a monomial.

We have an interruption of order 2 at index 3 ; the C-2-fraction

terminates

(25)
K

1

1

X

2x

1

2
X
- X

1

2
X
- X

1

3. Interruptions and linear dependence

In the sequel the following abbreviations will be used:

v € » ) .

f^Q
n) have an

the next

THEOREM 1. Let the C-n-fraction for f ^ , / £ 2 ) , . .

interruption of order k at index \i ( l £ k S n-X; p i l )

interruption (if any) appears at index T > y+1 .

(i)
Let A^' U = 1, 2, . . . , n) , B^ (v € N u {-n, -n+1, . . . , - 1 , 0})

be defined as in (llh (12). Then

( i = 1, 2, n; 1 < v < y) ,
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(i) (fc+l) (t) (fc
v-n+kJv v-n+fe-1 v

k+1)
- l a v

(i = 1, 2, . . . , n; v+1 ^ v S T)

Furthermore, for v = 1 , 2 , . . . , T ,

(28) the columns of

An)
4
v-n+fe

4 ( l ) 4 ( l )

v v-n+k
B ... B
v v-n+k

are linearly independent over <L[x] .

P r o o f . F o r v = 1 , f o r m u l a ( 2 6 ) f o l l o w s from ( 6 a ) , ( 6 b ) :

(i = 2, 3, . . . , n) .

Let (26) hold for a certain v , 1 S v 5 p-1 ; then (7a), (7b) imply

rO v+l A.

J v-w-1 v

V+1

v + l

v-n
B a ( l )
v-n-1 v

V l v-n+rv+1

+ y a
( "v-i A v

7 ^

\n)

B Jn-1)
V-1J V+1

B / + S a
v-n+lJv+l v-w v+1
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but this is (26) for v + 1 according to (12).

Substitute (7a), (7b) with v = y into (26) with v = y ; this leads

to (27) for v = y + 1 . After that we can use the method of proof for

(26) to prove (27) by induction. We only have to keep in mind the change

in (12) because of the interruption of order k at index y :

alk+l)yv-n+k-l (V = y+1> M+2' •••' T)

From (13) we derive

(30) det

v-n

A(l) AU)
v v-n

B ... B
v v-n

3=1

for v = 1, 2, ..., y ,

while a, • * 0 (j = 1, 2, ..., y) owing to the fact that the first

interruption occurs at index y .

Let

v > ^x) » • • • > ^ » ̂  (v € W u {-n, -n+1, ..., -1, 0})

be the general column of the matrix in (30).

Formula (30) implies that K K , K axe linearly

independent over 1[x] , and so X , K , ..., K too, for

v = 1, 2, ..., y .

The remaining values of v for which (28) has to be proved are

treated using the recurrence relation (29) written down for the columns

K •

(31) v-l V-2

Because a^~~' = a, ^x~ »•-•*,-/ v±^ a f Q f o r

y+1 5 v 2 x , (31) can be used to prove, for y+1 5 v 5 T ,
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Kv . , Ky _, ..., K , linearly independent over <L[x] implies

K , K ..., K , also linearly independent over (t[x] .

Starting with the independence of K , K ..., K (from (28)

with v = \i ) induction shows that (28) holds for v = u+1, u+2, ..., T . •

The following theorem is now obvious and will be given without proof.

The change in (27) at each index where an interruption occurs is dictated

by the number of zeros in the C-n-fraction; or - what amounts to the

same - the change that is described in Case C of the algorithm. The

a in the numerator must be the first one, regarding superfix, that is

different from zero; then f , /A ~ > • • • > /?, precede this a l in

the adapted (27). The difference from Theorem 1 is that Theorem 2 covers

the situation that interruptions of order k , fc , — , k., m with

k + k- + + k . + m = j (total order k ) occur at indices
1 *- 3

v v •••- v y •
THEOREM 2. Let the C-n-fraction for f{

Q
X), /Q

2), . . . , f{
Q

n) have

interruptions of total order k , the last of which appear (s) at index u ;

furthermore let the next interruption (if any) occur at index T > y+1 .

Then (27), (28) hold as stated in Theorem 1. •

THEOREM 3. Let the C-n-fraction for / ^ l ) , /Q
2\ . . . , / ( n ) have

interruptions of total order k . Then there exist at least k relations

of the form

/__> ( 0 ) / _ \ ( l ) / % ~ ( l ) / < „ ( " ) I ™\ An) I ~\ - n
1 3 2 ; p (x) + p \x)j (X) + . . . + p \x)f (x) - 0 ,

which are linearly independent over tt[x] .

Proof. If k = n , the C-n-fraction terminates and thus

fQ , f0 , ..., /Q 6 G(x) from which the assertion follows.

Let now 1 < k 5 rz-1 and let u be the index at which the last of

the interruptions occur(s).
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According to Theorem 2 the rank of the matrix

An)
u+1

4(»)
u-n+fe+1

u+1 '"' u-n+k+1

B ... B . ,
u+1 u-w+k+1

is n - k + 1 ; that is, it is possible to choose n - k + 1 rows which

are linearly independent over l[x] . For the sake of simplicity let it be

the 1st, 2nd, ..., (n-fc+l)st row:

(33) q(x) = det

An)
u+1

Ak)
u+1

\i-n+k+l

\i-n+k+i

Formula (27) with v = \i + 1 implies that the following system of

n - k + 2 homogeneous linear equations over I[x] in the n - k + 2

unknowns, y±, y2, ..., #

= o

has the non-trivial solution

Jk+X)
iJu+l

u+1 '

1

9 . . . j

f o r i = 0, l, ...
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where the notation A = s and n a s been used. Thus

de t

M An) A
[n) '
\i-n+k

= o a = o, i , . . . , k-i) .) Aik) (fc)
p " ' ' V-n+k

0 y ' *' p-n+A:

Multiplication by (-1) and expanding the determinant using the first

column leads, for i = 0, 1, ..., k-X , to

T A±), N . n J2)< s . ^ n Jk-1), s3 - 7 0 \x> + °-70 '.x) + ... + O.fQ (x)

(3U)

0.1

0.1 + x) + . . . + O.f{
Q

k-2)(x) +

with p, . € tt[x] ( i = 1, 2, . . . , k; j = k, fe+1, . . . , n) .

According to (33) the relat ions (31*) const i tute k (obviously)

l inear ly independent re la t ions between 1, •* * •" '
•'O

.(n)

D

J1 5 , f^', . . . , f̂ "' fee an n-tuple of formalCOROLLARY 1 . Let fQ ,

power series. Then the following statements are equivalent:

(a) the C-n-fraction for the n-tuple terminates;

(b) the C-n-fraction for the n-tuple has interruptions of total
order n ;
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(a) there exist n relations (linearly independent over d[x] )

between 1, f^ , fQ , •••, /£ with coefficients in

(d) f^X\ f , ..., fi are the MacLaurin series for an

n-tuple of rational functions each of which is regular at

the origin.

Proof. (a) *=» (b), (c) *=* (d), and (a) =» (d) are trivial (Theorem 3

gives for k = n at least n linearly independent relations: that there

can not be more than n , follows from the fact that the existence of

n + 1 linearly independent relations for n + 1 functions

1> f^K f\^\ ••-, f^ would imply that those functions are all

identically zero, a contradiction). For a proof of (d) ** (a), see [2]. •

COROLLARY 2. If the n-tuple of formal power series

£K tf\ .-. /0
B) has the property that [i. f^\ f^\ ..., f

is linearly independent over <l[x] , then the C-n-fraction for the

n-tuple has no interruptions. D

Example 2 shows that there do exist pairs of formal power series f, g

with 1, f, g linearly dependent over <I[x] but for which the

C-2-fraction has no interruptions: the absence of an interruption does not

imply the absence of a dependence relation!

In Example 3 the pair of formal power series admits exactly one

dependence relation while the C-2-fraction has exactly one interruption

(two interruptions are not possible according to Corollary l ) .

That this kind of behaviour is not restricted to the case n = 2 will

be shown in the next section.

4. Interruptions versus linear dependence

In this section we restrict ourselves to the case n > 2 (for n = 1

the problem is completely solved by (1*)) . For the sequel we need two types

of formal power series to construct examples.

DEFINITION 1. Let g be the unique formal power series in x with
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constant term equal to 1 that satisfies

35) r + [px •
j=2 l <*=1 n-k+1

* bnxns = 0

with

(36)

(i) s €fl ,

(ii) an = 1 , b, V l , an_2

k=i n-k+l

(iii) the equation (35) is irreducible over d[x] .

REMARK 2. From (36) (iii), it follows that g is algebraic of

degree n over d[x] . Actually (35) has n formal power series

solutions

1 with a t 0 ,

n - 2 with <? = 0 , a # 0

1 with eQ = c1 = 0 , e2 o .

The proof is left to the reader.

That it is possible to find a's and b that satisfy (36) follows

from the next remark.

REMARK 3. For s = b = a
n_x

= a2 = 1 we have, instead of (35),

(37)

= 0 .

Now it is easy to prove that (37) is irreducible over tt[x] and the unique

solution of (37) with constant term equal to 1 is actually algebraic of

degree n over tt[x] .

DEFINITION 2. Let / be the unique formal power series in x with

constant term equal to 1 that satisfies

(38) - axr = 0 (a € I\{0}, r € W) .
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a + ex + +ex?=>a=cn, r = w p = > p =

REMARK 4. Again the proof that (38) is Irreducible over t[x] is

left to the reader (there exists a solution of the form

„ =»__-• an(j s o on^ . that is, f

is algebraic of degree n over tt[x] .

The number of (formal) solutions of (38) is different from that of

(35):

r = k(n-l) for some k € H , 1 with c i 0 ,

n - 1 with e = a = ... = c. = 0 , and e, ± 0 ;

r # k(n-l) for all k € IN , 1 with a t 0 .

THEOREM 4. Let the n-tuple /^l), f^2), ..., f£n) be given by

,on^ ~(n) Jn+l-i) i t i-l . i-2 t 2 i-3 , i-2 >
(39) /Q = g , fQ = g - [g * xg + x g + . . . + x g'j

(i = 2, 3, ..., n) ,

with g satisfying (37), constant term equal to 1 . Then there exists

precisely one relation between 1, fQ , f , , /i over

namely:

xn E 0 ,

nevertheless the n-tuple has a C-n-fraction without interruptions of
the following form:

(M) n-2

x
1

M-2

X
1

n-2

x

1

Proof. Substitution of (39) in (Uo) leads to (37) with g instead of

; so (UO) holds. Now
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-(1) _ n n-1 _ n-2 _ x«-2

= -W1'1 + x(x-l)gn-2 + . . . + xn~2{x-(n-2)}g + xnj by (37)

r n i . i n -1 n-2 r , . -, n
= -x\g + (x-l)<7 + . . . + x ix-(n-l)}g + x •

= -x [ (n - l )x"~ g-xn~\/g by (37)

, ,> n -1 r n+1 . >= - ( n - l ) x + [x Ig) ;

thus f ± 9 = fo while g has constant term equal to 1 .

Furthermore we have, for i = 2 , 3, , w-1 ,

n-i n-i-l n-i-1
- g - xg - - x g

that is, f[i] = f^) (i = 1, 2, . . . , n-2) .

Finally

/J»> -g - 1 + ? - 1 = 1 + (g2-g)/g - 1

thus ^ ) = 4"-1) .

This shows that the C-n-fraction algorithm for / i , f i 2 , . . . , A?

is purely periodic with period length 1 and leads to the form (Ul).

That there is only one dependence relation for

1. /£ . ^0 ' " • • ' ^0 f o l l o w s f r o m t h e f a c t t h a t 9 i s a l g e b r a i c of

degree n over tt[x] . •

THEOREM 5. Let g be the formal power series from Definition 1 and

define

C»2) / = 1 + axr/g (a 6 <L\{o}, r € W) .

https://doi.org/10.1017/S0004972700008716 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008716


The interruption phenomenon 265

Then the n-tuple f , j , ..., f1 (the powers of f ) allows just one

dependence relation for 1, / , j , . . . , / " over tt[x] but has a

C-n-fraction without interruptions of the following form

(U3)

a nxn-1

r3s

_2s

an-3X
,3s

2s

_3s

2s
an-2X

an-lx

Proof. That there i s jus t one dependence re la t ion is an immediate

consequence of (36) ( i i i ) ; see also Remark 2.

Define the formal power series U U , , U by

(MO U = a x ^s
 + {u. \ ,g

U = 2, 3, . . . , n-1) ,
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and le t a = -b £ b a
1 k=l n

[a± t 0 because of ( 36 ) , ( i i ) ) ,

The defini t ion of / , (U2), implies that the C-n-fraction algorithm

for / , X •> —> J begins in the following way (application number 0) :

/ = 1 + axr/g (that is f[n) = g )

/ 2 = l + / 2 - l = l + [axr{l+f))/g

t = 1 + T — 1 = 1 + \OSC 1 1 + 7 + T + . . . + T

This shows that the first column and the entry (-,)oa; on the top of the

second column are correct in (1*3) and also

The next application of the algorithm (application number l) leads to

) =2ax r + [a2x2r)/g= axr(l+f) = 2axr *

(that is f(
2

n) = g ) ,

+ . . . + U-l)f + i})/ff

(i = 2, 3, . . . , n-1) ,

Only the l a s t l i ne of (1*6) needs comment.

Multiplication of (35), with g substi tuted for X , by g - bxs

leads to

(1*7) _ g» =

Successive appl ica t ion of (1*1*) for j = n - 1 , n - 2 ,

combined with (1*7),

. . , 2 , 1 y i e l d s ,
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n-X, n s n-1 n-2\ . n

3
= g - 1

that is the last line of (k6).

The result of (1*6) gives the second column and the entry (2)a x
 r on

the top of the third column of C>3), and

a2x2r{f + 2/"
1
 + 3/"

2 + ... + if * (i+l)} ,

U = l, 2, ..., «-2

The remaining part of the proof is now relatively simple: each time

the C-n-fraction algorithm is applied, another U appears until we get

(after application number n - 1 ):

After that application, the algorithm is purely periodic with period

length 1; from (kk) we find, for v 2 n ,

=ui a = 1,2, ..., »-D ,

(W)

(«)

c(n-l)s

„(«-•£ )s

.(i-Dl/Un;
v+l

v+lj '

U = 2,

That the entries of (1*3) on the jth anti-diagonal (starting at the jth

1 of the first column, counted from the top entry) slanting upwards under

n/k rad. actually are the monomials that appear in the expansion of

x J by the binomial theorem, can easily be proved by induction (and

(j, k (. h, j > k+1) ; this is left toendurance) using £ (,) =
r=k K

the reader. D
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THEOREM 6. Let f be the formal power series from Definition 2.

Then there exists just one relation between 1, / , j , . . . , f1 over fl[x]

(namely, equation (38)) and the C-n-fraation for f , j , . . . , f1 has just

one interruption of order 1 .

This C-n-fraction has the form

n-2\ n-2 (n-2)r
n-2 a x

0**"

(1+9)

G>

n-1 2 2r

(n-\ 2 2
l 2Ja *

ax

n-l] n-1 (n-X)r
i a xn-11

n-1]axr

1

n nr

w-l

' n 1 n-2 (n-2)r
n-2Ja x

n-l) n-3 (n-3)r
n-3)a x

n-1 2 2r
2 la x

n-ll r

»-l]^i-l (n-l)r
n-1

2n-2x(n-2)r

n-1 2 2r
lai

n-l r
|ax

n-l | 2 2r
2 la x
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n-l] n-1 (n-l)r
n- l f l X

Proof. That there is just one dependence relation follows at once

from Remark k; this implies, by Theorem 3, that there is at most one

interruption of order 1 . Application number 0 of the algorithm gives,

combined with (38),

(50)

= 1 + f - 1 = 1 + = 1 + ax
r/f-X

(that is, f[[n) = " 1 ),

f = 1 - 1 = 1

Thus i = 1, 2, ..., »-l) ,

= 7 . Application number 1 leads to
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f[X)
= a*r(l+/) = 2axP

f
(n)

(that is, f ^ = f 1 ) ,

(£ = 2, 3, . . . , M-1) ,

which shows

(52)

i = 1, 2 , . . . , n-2) ,

After a cumbersome proof by induction we get , for k = 2, 3, , n-1 ,

(53) i-j-3

« . - . A )

Now (53) leads to

(5*0

_(1) _ n-1 (n-l)r/„ - a x

J.n) _ ji-1

after which the appearance of an interruption of order 1 is clear: f.(1)

is a monomial.
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Application of the algorithm to (5*0 gives

(55) •

* - 3 • -

(n)

and further applications do not change the (n-l)-tuple

(56) f{j] = f{nl[ (i = 2, 3, .... n; v =n+2, n+3, ...) .

The form of the C-n-fraction, C»9), follows from (50), (51), and from

the first non-zero terms of the formal power series in (53), (5*0, (55),

and (56). •
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