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Abstract

This paper gives a necessary and sufficient condition for a Kuhn-Tucker point of a non-
smooth vector optimisation problem subject to inequality and equality constraints to be an
efficient solution. The main tool we use is an alternative theorem which is quite different
to a corresponding result by Xu.

1. Introduction

A vector optimisation problem is a problem where two or more objectives are to be
minimised on some set of feasible solutions. In such a problem we often deal with
conflicts amongst objectives and hence in most cases cannot find a feasible solution
which is optimal in the sense that it minimises all the objectives simultaneously.
So in vector optimisation we must use concepts different from this requirement of
optimality. In this paper, we restrict ourselves to the concept of an efficient solution:
this is a feasible solution such that there does not exist another feasible solution at
which all objectives are the same or better, with at least one being strictly better. From
a mathematical viewpoint it can be formulated as follows. Let us consider a set Si
of an Euclidean space Rn and m functions / , (i = 1,2,..., m) defined on W. The
set 5] can be interpreted as the set of feasible solutions and the functions / , can be
regarded as our objectives which we want to minimise. Then a point x0 € Si is an
efficient solution if we cannot find another point x e Si such that /,(x) ^ /,(*o) for
all / and, in addition, at least one of these inequalities is strict. This efficiency property
originated with Pareto [16] and plays a crucial role in economics, game theory and
statistical decision theory (see [1,3,7,16,22,24]). In many practical situations Si is
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given as a subset of a closed set 5 which consists of all points x of S satisfying a
system of inequalities and equalities:

gj(x) g 0 (/ = 1. 2, . . . , * ) , h,(x) = 0 (s = 1, 2 , . . . , / ) .

In addition, the functions/,, gy and hs are not differentiable in the classical sense. In
this paper they are assumed to be locally Lipschitz. Such functions are often encoun-
tered in economics, engineering design and various branches of analysis. Examples of
locally Lipschitz functions arising in these fields can be found in [5] which is a basic
book for everyone interested in nonsmooth analysis. The problem of finding efficient
solutions for the objectives / , on the above feasible set Si is referred to as problem
(VOP) and is written as follows:

Minimise / (x) := (fi(x)J2(x) /„,(*)) subject to

gj(x)^0 (j = 1 , 2 , . . . , * ) , (1.1)

*,(*) = 0 (5 = 1,2,.. . , /), (1.2)

x e S. (1.3)

It is well-known [12] that the convexity of functions involved in a minimisation
problem with inequality constraints (that is, problem (VOP) where p = 1, 5 = R" and
hs are absent) assures the optimality of a point satisfying the Kuhn-Tucker conditions
[12] and the validity of the Wolfe duality theorems [12]. In 1981, Hanson [9] was
the first to show that a generalised convexity requirement, later called invexity, is an
appropriate substitute for the usual convexity condition in proving these facts. The
invexity idea is also useful for establishing necessary optimality conditions [10,11] and
alternative theorems [4]. In [13] the invexity property was extended to KT-invexity to
prove that a Kuhn-Tucker point (that is, a point satisfying the Kuhn-Tucker necessary
optimality conditions) is a minimiser of a minimisation problem with differentiable
data if and only if this program is KT-invex at this point. A generalisation of invexity
to locally Lipschitz functions was introduced in [6,17,18]. It has been noted [21] that
invexity is not suitable for problems with equality constraints since the Kuhn-Tucker
multipliers associated with these constraints are not necessarily nonnegative. So a
new notion of infine functions was defined and was shown in [21] to be an adequate
tool for equality constraints. Observe from [21, Remark 3.5] (see also Remark 4.2
of the present paper) that introducing a new terminology for infineness is needed
since the class of locally Lipschitz infine functions does not coincide with the class of
cone-invex functions defined by Craven [6]. The invex-infineness property (that is, the
requirement of invexity for objectives and inequality constraints, and of infineness for
equality constraints) is used in [21] to establish a necessary and sufficient condition
for an efficient solution to be a Geoffrion properly efficient solution [8] in problem
(VOP) with locally Lipschitz data.
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The aim of this paper is to extend the invex-infineness to KT-pseudoinvex-infineness
and GKT-pseudoinvex-infineness such that under suitable assumptions a Kuhn-Tucker
point ̂ o is an efficient solution of (VOP) if and only if (VOP) is KT-pseudoinvex-infine
(or GKT-pseudoinvex-infine) at x0- Roughly speaking, we want to generalise a known
result of Martin [13, Theorem 2.1] to the case of efficient solutions of nonsmooth
multiobjective problems subject to mixed constraints (1.1)—(1.3). The proof of the
above result and other related facts in Section 4 is based on an alternative theorem
which is established in Section 3 for a system of inequalities and equalities given
by the support function of nonempty convex compact sets. When each of these
sets is a singleton we obtain a result (Corollary 3.2) which is quite different from
the nonhomogeneous Farkas lemma of Xu [23]: Xu restricts himself to the case
when equalities are absent and some additional hypothesis is required for the validity
of his Farkas lemma while our Corollary 3.2 is true without these restrictions. (The
formulation of Xu's result and that of our own is also different.) Section 3 also contains
an application of our alternative result to a concave vector optimisation problem subject
to several concave inequality constraints and abstract linear constraints. Observe that
applications of concave programming problems arise more frequently in areas such as
inventory, production and transportation planning, site selection, Leontiev substitution
systems, assignment problems, decision theory, network flows and so forth. The reader
is referred to [2] for a comprehensive survey of the theory of concave programming
and an overview of its applications.

To conclude this introduction let us observe from Remark 4.4 that our paper contains
results which can be applied to any practical problem with inequality constraints. This
shows the applicability of some of our theoretical results to a wide class of problems
often encountered in practice.

2. Preliminaries

Let K" be an Euclidean space. For x = (xt, . . . , xn) e IE" and y = ( v j , . . . , yn) e
W we will use the following notation:

x = y <$• xi = y,, for all i;

x < y <$• x,; < y,-, for all i;

x ^ y -£> Xi ^ y,, for all /;

x < y 4> x ^ y and x ^ y;

x £ y : the negation of x < y.

Let us observe that if n = 1, that is, if x and y are real numbers then the above
notation shows that x < y <$• x < y.
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If / is a nonempty subset of {1, 2 , . . . . n] we will denote by A./ or (A,),e/ the vector
with components A, (i 6 / ) . Similarly, if/, : OS" —> R (i e /) is a function then we
will use the symbol / / or (/,),6/ to denote the vector-valued map with components / ,
(I" € /).

Let / : R" -> R be a locally Lipschitz function, that is, for any z € R", there
exist a > 0, /? > 0 such that for any *, x' e OS" with \\x - z\\ < a, \\x' — z\\ < a,
1/ ( • * ) - / CO I ̂  P\\x - JC'II, and let x0 e R". Then the Clarke directional derivative
of/ at x0 in the direction u is defined by

A

and the Clarke subdifferential of/ at *0 is defined by
0

0 ; v) ^ <£, v) Vv € R"},

where {•, •) denotes the inner product in 05".
It is well-known [5] that for any u e K "

f°(xo;v) = max (f, t>)
feyc*)

and 3/(JCO) is a nonempty compact convex subset of R". When / is of class C1

then 3/ (JC0) coincides with the Frechet derivative f of / at x0 (see [5]). If / / is a
vector-valued map with locally Lipschitz components / , (i e /) then we denote by
f?(xQ; •) the vector-valued map with components//V6; ) (' G /) . The symbol/^ is
used to denote the matrix with row vectors f[Xo (i e I). Thus/^^ is simply the vector
with components f'iXtr\ := (f!Xo, *l) (' e /)•

Let 5 be a closed subset of R" and x0 e R". The Clarke [5] tangent cone of 5 at x0

is defined by

Ts(*0) := (v e R": d°5(x0; v) = 0},

where ds(x) = infz£S ||z — x ||, and the Clarke [5] normal cone of S at x0 is defined by

Ns(.x0) := {w € R" : (w, u ; ) ^ 0 V v e 7i(jc0)}.

A subset A C R" is said to be a cone if kx e A for all x € A and X ̂  0. A cone
which is a convex set is said to be a convex cone. For any nonempty subset A C R"
denote by cone A the intersection of all convex cones containing A. It is easy to check
that cone A is a convex cone consisting of all points of the form J2?=i ^'xi where m is
a positive integer, JC, e A and A., ^ 0. Also cone A = cone(cOi4), where coA stands
for the convex hull of A. When A is a convex set, cone A = [kx : X ^ 0, x e A}.
It has been proved [5] that Ns(x0) — cl comdds(x0), where cl A denotes the closure
of A. Also we denote by spA the intersection of all subspaces of R" containing A.
Observe that sp A = cone A — cone A.
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3. An alternative theorem

In this section we give an alternative theorem which is needed to prove the results
of Section 4. Let

fiix) = max(v,x), i e I : = {1,2 , . . . , m } ,
uefl,

gjQc) = max{v,x), j e J := {1 ,2 , . . . , *} ,
veCj

hs(x) = max(u,A0, s e L := { 1 , 2 , . . . , / } ,
veA,

where 5, (i e I), Cj (j e J) and As (5 e L) are nonempty convex compact subsets
of W. Let 5 be a closed convex cone in K". Setting hs(x) = maxve_Ai(v, x), we see
that

[ = > h,(x) = as. (3.1)
hs(x) S -as\

Let S~ := {| 6 W : (f, x> ^ 0 for any x e 5}. Then we can check that x e S if
and only if

q(x) g 0, (3.2)

where g(x) = max?eD(^, jr), D := S~ n B" and fi" is the closed unit ball of IR".
The following lemma will be needed for obtaining our alternative theorem.

LEMMA 3.1 ([19,20]). The system of inequalities f i(x) < 0 (i 6 / ) , gj(x) ^ 0
(j e J) has a solution if and only ifO & co |J1 £ / B, + cl cone U/ey Q-

Now let a = {a\, a2,..., «;). b = (b\,b2, • • •, bm) and c = (ci, c2, . . . , c*) and let
A; = Asx{-as] C K"xK,s; = fl,-x{-*>,-} C KnxKandCj = Cy- x{-c;} C R"xK.

We will need the following closedness assumption (H).

(H) For each p e / the set

cone U f .
[iitp jeJ J seL

is closed.

REMARK 3.1. Assumption (H) automatically holds if each of the sets B,, C, and
As is a singleton and if 5~ is a polyhedral cone.
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THEOREM 3.1. Assume that the closedness assumption (H) holds. Consider the
following statements:

(a) The system

f (x) < b, g(x) ̂  c, h(x) =a, x e S

has a solution, where f = (/",-) ie/. g = (gj)jej and h = (hs)ssL;
(b)

(I)

0, ^ 0, (Ss)seL ^ 0, (E,),eL ^ 0,

iel jeJ seL seL

°a< ~ ] £ *'fl"
! € / seL

(3.3)

(3.4)

(3.5)

(3.6)
seL

or

(ID

(X,)ie/ ^ 0, (jij)Jej ^ 0, (8,),eL ^ 0, &)S€L ^ 0,

0 e

o
i'€/

^ + E s°a° - E ^a"
iel szL

(3.7)

(3.9)

a solution.

Then

(1) (a) does not hold = > (b)
(2) //w« assume additionally that for any s e L, Asisa singleton, then we can state

that either (a) or (b) holds, but never both.

PROOF. (1) Suppose that (a) does not hold. Then system (3.3) has no solution.
Using (3.1) and (3.2) we derive that for each fixed index p € / the following system
in the variable x' = (x, r) e K" x 1R has no solution:

O,JC) - \r <0 ,

/„(*)-V<°.

(IH) gjQc)-Cjr^O, j eJ,

hs(x)-asr^0, s e L,

hs(x) + asr ^ 0, s e L,

q(x)+0r^ 0.
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By the closedness assumption and Lemma 3.1, we have

0 e c o { 5 p x {-&„}, {0}x{-l}}

ytyp jeJ seL seL J

Thus there exist k'p ^ 0, r'p ^ 0, A^ ^ 0, (i ^ p), \if ^ 0, (j e J), «<"> ^ 0,
S^ ^ 0 , ( i £ L) such that

/•;+X; = l (3.10),

0 e r'p0 + X'pBp J2^ E ^ '

seL set

and

jei. seZ.

Summing up (3.1 l)p over p e I and setting

A2 = A2 + A2 + A2 + • • • + A2 ,

8, = 8 ™ + 8™ + ' • • + 8 ® , s e L ,

we obtain that

0 e Y,kiB> + Hv-lCi + E M * - E ^ A i + S~- (313)

16/ yey J6L sei.

Summing up (3.12),, over p e I and setting

r' = r{ + r'2 + ••• + /„, (3.14)
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we obtain

0 = - 1 • r' -
iel jeJ seL seL

There are two cases:

(1) Vp 6 / , r'p = 0 (hence r' = 0 by (3.14));
(ii) 3p e I such that r'p > 0 (hence r' > 0 by (3.14)).

In case (i): Vp e / , k'p = 1 (see (3.10)p). Therefore Xp > 0 (Vp 6 /) and
system (I) has a solution.

In case (ii): system (II) has a solution (see (3.13), (3.15)).
(2) Suppose that As is a singleton for any s € L. Assume to the contrary that (a)

and (b) hold simultaneously and kh /ij, Ss, Ss satisfy system (I). Since (A.,),€/ > 0, we
see from (3.3) that there exists x e S such that

ie/ ie/ seL seL

)
jeJ jeJ seL seL

and hence we have

iel jeJ seL seL

~&>a> = ° ^ (3-6))- (3 .16)
iel jeJ seL seL

On the other hand, since A,, is a singleton, it follows from (3.5) that there exists
£ e S~ such that

(-f,jc)gfOO. (3.17)

Since x € S and £ e 5~, then ( -£ ,*) ^ 0. Hence (3.17) implies that £(x) ^ 0, a
contradiction to (3.16).

Assume now that x satisfies (3.3), and A.,, LLJ , Ss, Ss satisfy (II). Then we have

o >
iel jeJ seL seL

2 Six) (by (3.3) and (3.7)) (3.19)

^ ( - f , ; c ) (by (3.17)) (3.20)

^ 0. (3.21)

This is a contradiction.
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REMARK 3.2. The closedness assumption (H) is not used for proving that (a) and
(b) do not hold simultaneously.

REMARK 3.3. If As is a singleton for any s e L, then (b) in Theorem 3.1 can be
replaced by (b)', where

o>y

(A.,),6/ > 0, (jij)JeJ ^ 0, (Ss)seL e R1,

OeVu-

0 =

or
^ 0, ^ 0, (Ss)seL

ie/ seL

o
seLie/ jeJ

has a solution.

This can be obtained by setting Ss = Ss — Es (8S can be nonnegative or nonpositive).

COROLLARY 3.1. In addition to the closedness assumption (H) of Theorem 3.1, we
assume that the system

f(x) ^ b, g{x) g c , h{x) = a xeS (3.22)

has at least a solution and for any s € L, As is a singleton.
Then either

(a) System (3.3) has a solution or
(b) System (I) has a solution,

but never both.

PROOF. It suffices to show that the consistency of (3.22) implies the inconsistency
of (II). We omit the proof of this fact since it can be established by an argument similar
to that used in the proof of the second part of Theorem 3.1 (see (3.18)—(3.21)).

COROLLARY 3.2. Let S~ be a polyhedral cone. Let each of the sets Bit Cj and As

be a singleton: Bt = {M,}, CJ = [Vj] and A, = {ws}. Denote by (u,x) the vector with
components («,-, JC) (/ e /) and similarly for {v,x) and (w, x).
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(A) Then either

(a) the system

[10]

(u,x) < b, {v,x)^c, {w,x)=a, xeS

has a solution or
(b) the system

( I ) '

or

(ID'

0, (tij)JeJ ^ 0, (Ss)seL 6 R1,

• el jeJ s€L

iel jeJ seL

\^i)iel = "> Kt^jJjeJ = «> K"s)seL c IK ,

0 e Y^XjUi-
iel

iel seL

(3.23)

has a solution,

but never both.

(B) If we additionally assume that the system

(u,x) ^ b, (v,x) £ c, (w,x) = a, x e S

has at least a solution, then either
(a) System (3.23) has a solution or
(b) System (I)' has a solution,

but never both.

PROOF. This is a direct consequence of Theorem 3.1, Corollary 3.1 and Remark 3.1.

REMARK 3.4. Let us compare our Corollary 3.2 with [23, Theorem 2.1] under the
same assumption that 5 = K" (which implies that S~ = {0}). In this special case,
part (A) of Corollary 3.2 is quite different from Theorem 2.1 of Xu [23] since in our
case the equalities exist. Also, unlike [23] no assumption is imposed on our corollary.
Our conclusion is quite different from that of Xu [23] and does not contradict his
counterexample 1.1.

COROLLARY 3.3. Let each of the sets As be a singleton: As = {ws}. Consider the '
following statements:
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(a) System (3.3) has a solution.
(b) For any M, € Bt (i € /) and Vj e Cj (j € J), system (3.23) has a solution.

Then (a) =» (b); and the converse implication holds if the closedness assumption (H)
is satisfied.

PROOF, (a) =>• (b) This implication is clear from the definition of the functions /
and g.

(b) =*• (a) Assume to the contrary that system (3.3) has no solution. Then by
Theorem 3.1 either system (I) or system (II) has a solution. If system (I) has a
solution then there exist w, e B, and Vj e Cj such that system (I)' has a solution.
By Theorem 3.1 and Remark 3.2, system (3.23) has no solution, a contradiction to
statement (b). Similarly, the consistency of system (II) implies the consistency of
system (II)' where M, e 5, and Vj e Cj are suitable points. By Theorem 3.1 and
Remark 3.2, system (3.23) has no solution, a contradiction to statement (b).

Now we will consider an application of Corollary 3.1 to a concave vector optimi-
sation problem. L e t / ={fx,f2,... ,fm) and g = (gu g2, ..., gk) be vector-valued
maps with components being concave on R". This means that for all x and x0 e K"

fi(x)-fi(x0)^f°(xQ;x-x0) (i = l , 2 , . . . , m ) , (3.24)

gj (x) - gj (jc0) g g°(xo;x -x0) (/ = 1. 2, . . . , * ) . (3.25)

Let S and M be closed convex cones in K" and R', respectively. Let /\ be an
/ x n-matrix, and let c = (c\, c2, . . . , c*) and d = (d\, d2, ..., ^/) be given vectors.

Consider the following concave vector optimisation problem (VOP)c with concave
constraints and abstract linear constraints:

Minimise f (x) := ( / " , ( * ) , / 2 ( * ) , ••• .

(VOP)C subject to g(j:) g c, (3.26)

A x + r f e M , (3.27)

^ € 5. (3.28)

A point x satisfying (3.26)-(3.28) is called a feasible solution of {VOP)C. We
are interested in finding an efficient solution x0 of (VOP)c, that is, a feasible solu-
tion x0 such that there is no other feasible solution x of (VOP)C with f (x) < f (x0).
Obviously, if x0 € S is an efficient solution for (VOP)C, then the system

f°(xo;x) < 0, g°(xo;x) ^ c', Ax+d' eM, x e S,

is inconsistent where d = c — g(x0) and d' = Ax0 + d. Indeed, if this system has
a solution x then in view of (3.24) and (3.25) we see that x := x + x0 is a feasible

https://doi.org/10.1017/S1446181100013547 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013547


534 Pham Huu Sach, Gue Myung Lee and Do Sang Kim [12]

solution of (VOP)c such that/ (JC) < f (x0), a contradiction to the efficiency property
of x0.

Let us set*' = (x, y) e K" x K',

F,W) := f?(xo;x) = maxtf', *'), #,(*') = K x').

G; (*') := g° (*<>;*) = max<f\ * ') . 5' = 5 x M,

where B\ = 3/,(*o) x {0}, Cj = 3g/0co) x {0}, a's = (as, -ps), as is the s-th row
of the matrix A and ps = (0, . . . , 0, 1, 0 0) e K' (1 being the j-th component
of Ps)-

Then the following system must be inconsistent:

F{x') < 0, G(x') ^ C, H(x') = -d'-, x' e S'.

Observe that x' = (0, d') e OS" x Rl is a solution of the last system with the sign <
of its first inequality being replaced by 5i. So by Corollary 3.1, we find (A.,)ie/ > 0,

= 0 and rs e R(s e L) such that

0 e > k,B', + > iijC + } rsa's + 5'" (3.29)
ie/ jeJ seL

and

0 = J2 X,0 + J^ Hi c'j ~ J2 r'd's (3-3°)
ie/ ;e7 seL

if the following closedness assumption holds: for every i € I, the set

(2(0 = cone | J B\, x {0}, [j q x {-c,} + sp (JK) X K'}
I'Vi je/ J Lse/.

is closed.
From (3.29) and the definitions of B\, C'j and a's, we can derive that

+ [5'- x {0}]

0 6 Y^ WM*o) + Yl fij 3gj (jc0) + J2 rsas + S' (3.31)
ie/ jeJ seL

and

0 = ^X ,0 + 5^/ iy0-J]r Ip J + M-. (3.32)
ie/ ;e7 je/.

Setting r = (ru r2, . . . , r;), we see that J2keL r^Pk = r- Thus (3.32) means that
r e M~. From (3.30), we have

nj (cj - gj (x0)) - J2^a" *o) + r,d,] = 0 (3.33)
jeJ seL
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(from which we can derive the complementarity condition).
From the above discussion, we can obtain the following necessary optimality

condition for (VOP)C-

THEOREM 3.2. Assume that for every i 6 / the set Q(i) is closed. If xo is an
efficient solution of the concave vector optimisation problem (VOP)c, then there are
(A-.Oiei > 0,, (iJ.j)jej ^ 0 and (rs)seL e M~ satisfying (3.31) and (3.33).

COROLLARY 3.4. In addition to the above assumption that Q(i) is closed for each
i 6 /, assume that g = 0, c = 0 and f is of class C1. Ifx0 is an efficient solution for
(VOP)C, then there are (A.,),e/ > 0, (rs)seL e M~ such that

as + S~ and 0 = ^T r,((as, x0) + ds),
i€/ seL seL

where f'ixo is the Frechet derivative offt at x0.

REMARK 3.5. In the case where M = R'_ (the nonpositive orthant of R') and
S = Rn, Corollary 3.4 is exactly Theorem 3.1 of [23] (the closedness assumption is
automatically satisfied since the sum of polyhedral cones is closed).

4. Efficient solutions of nonsmooth problems of vector optimisation

In this section we will use the notion of a Kuhn-Tucker point for the vector optimi-
sation problem (VOP) which coincides with the usual notion of a Kuhn-Tucker point
for the case of scalar optimisation. For smooth problems with inequality constraints
only, Martin [13] (see also [14,15]) introduced a class of KT-invex problems and
proved that every Kuhn-Tucker point is a global minimiser if and only if this problem
is KT-invex. The main result of this section is Theorem 4.1 which shows that the
above result of Martin can be extended to the case of nonsmooth vector optimisation
problems with mixed constraints, that is, the case when not only inequality constraints
(1.1) but also equality constraints (1.2) and a "geometric" constraint (1.3) are con-
sidered. The class of KT-pseudoinvex-infine problems (Definition 4.1) and the class
of GKT-pseudoinvex-infine problems (Definition 4.1') will be used as substitutes for
the class of KT-invex problems of Martin. We will see that they are suitable for our
goal. As a consequence of Theorem 4.1 we will obtain a generalisation of the above
result of Martin to problems with mixed constraints (see Remark 4.3). This section
will also discuss relationships between several classes of invex-infine problems (see
Theorems 4.2 and 4.3).

Let / := < / , , / 2 , . . . Jm) • IT - • Km, g := (gl, g2,..., gk) : 0T - • R* and h :=
(hu h2, . . . , hi) : R" -> K' be locally Lipschitz functions, and let 5 be a nonempty
closed subset of K". Let / = {1, 2 , . . . , m), J = {1, 2 , . . . , it} and L = (1, 2, . . . , /}.

https://doi.org/10.1017/S1446181100013547 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013547


536 Pham Huu Sach, Gue Myung Lee and Do Sang Kim [14]

Consider the vector optimisation problem (VOP) formulated in the introduction:

Minimise f (x) subject to x e S\,

where Si denotes the set of all points x satisfying (1. l)-( 1.3). We will be interested in
efficient solutions of (VOP). Recall thatx0 6 Si is an efficient solution of (VOP) if for
any* € Suf(x) £f(x0), that is, there does not exist* e Si such that/, (*) ^ / , (x 0 )
for all i and at least one of these inequalities is strict.

Let Jo = {j € J : gj (x0) = 0}. A point x0 € Si is said to be a Kuhn-Tucker point
of (VOP) if there are vectors (A.,-),-€/ > 0, (iXj)j€Jo ^ 0 and (rs)seL e R' such that

0 6 £*,3/,(*o) + J>;9«;(*o) + X/'3A'<*o) + Ns(x0). (4.1)
(€/ jeJ0 seL

This becomes the usual notion of a Kuhn-Tucker point if m = 1.

DEFINITIONAL Problem (VOP) is KT-pseudoinvex-infine at *0 e Si if for any
x e Si with/ (x) < / (XQ) there is r\ € Ts(x0) such that

0>/0(*o;»?), (4.2)

0 ^ g°jo(xo\ 17), (4.3)

O = h°(xo;n). (4.4)

REMARK 4.1. Let us consider problem (VOP) when the function h is absent. In
this case, it is natural to use the terminology "KT-pseudoinvex" instead of "KT-
pseudoinvex-infine". We now provide an example showing that (VOP) is KT-
pseudoinvex in the above sense but it is not KT-pseudoinvex in the weaker sense
of [19]. Recall that the authors of [19] say that the problem (VOP) of minimising /
subject to g(x) ^ 0, x e S is KT-pseudoinvex at x0 € Si := {x e S : g(x) ^ 0} if for
any x e Si with/ (x) < f (xQ) there exists rj e Ts(x0) such that

Consider the following vector optimisation problem:

(VOP) Minimise f (x) subject to x e S, := {x e S : g(x) ^ 0),

where/(;c) = ( - ; t 2 , j c 2 - ;0 ,g00 = (* 2 - l / 4 , -x) and S = R. Then S, = [0,1/2].
For x0 — 0, the active constraint function is gi(x) = —x and we have/^ = (0, —1)
and g^o = — 1. We can check that/ (x) < f (x0) for any x e S\\ {0}. For all such x,
let r) = 1. Then we have/;or? = (0, -rj) < 0 and g'^rj = -r) < 0. Thus (VOP) is
KT-pseudoinvex, but (VOP) is not KT-pseudoinvex in the sense of [19] since/,'^ = 0
and hence we cannot find r\ such that/x'o77 < 0.
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DEFINITION 4.1'. Problem (VOP) is GKT-pseudoinvex-infine atjr0 € 5i if for any
x e Si w i th / (x) </(*<>) and

«, € 3/,(*o) (i e / ) , vj € 3g,(x0) 0' 6 70). u;, e dhs(x0) (s e L), (4.5)

there is r) e rs(x0) such that

0 ><«.»?), (4.2)'

0 Z (v, ii), (4.3)'

0 = (w,n); (4.4)'

(Recall that (u, rj) is the vector with components (u,-, »j) (i € / ) and similarly for
(t>, rj) and {w, rj).)

Let us introduce the following closedness assumptions.

(HO For any i e / the set

cone I ( J 3/,-(JC0), [ J 3gj(x0) \+sp\Jdhs(x0) + Ns(x0)
[i'jti jeJo J seL

is closed.
(HO' For any j € / and

uP e dfeOco) (i' ?fe i), vj e dgj(x0) (j e Jo), ws e dhs(x0) (s e L), (4.6)

the set cone {U,V l «;', U7£y0
 VJ} + SP U , £ L ^ + Ns(x0) is closed.

THEOREM 4.1. Consider the following statements:

(a) Problem (VOP) is KT-pseudoinvex-infine atx0 € S\m,
(b) Problem (VOP) is GKT-pseudoinvex-infine atx0 e Su
(c) Ifx0 6 S\ is a Kuhn-Tucker point then x0 is an efficient solution of problem (VOP).

Then

(1) (a) =• (b) J / / I is of class C1; and (b) => (a) z/n w of class C1 and (H,) /IOWJ.

(2) (b) => (c); and (c) => (b) J / (H,)' no/ds.
(3) (a) =• (c) ifh is of class C1; and (c) =*• (a) z/« w of class O and (H,) no/ds.

PROOF, (a) =• (b) (if ft is of class C1): Obviously. (Observe that dhs(x0) equals
the Frechet derivative h'SXo of n, at x0 since n, is of class C1.)

(b) => (a) (if h is of class C1 and assumption (Hi) holds): This is a direct conse-
quence of Definitions 4.1, 4.1' and Corollary 3.3 where S is replaced by Ns(xo), J is
replaced by Jo and functions / , , gj and hs are replaced by

/"/(•) =/,°(*o;-), &•(•) = S"(JCO;0, M- ) = *;(*<>;•)• (4.7)
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(b) =• (c): Let k, > 0 (i 6 /) , /*, ^ 0, 0' e y0), r, e R, (s s L), u, € df,(x0),
Vj € dgj (x0), ws e dhs(x0) and y e Ns(xo) be such that

iel JZJQ seL

that is, let x0 be a Kuhn-Tucker point of (VOP). Suppose to the contrary that x0 6 Si
is not efficient for (VOP). Then f (x) < f (x0) for some x e Sx. From (4.2)'-(4.4)',
we have (£,)?) < 0 for suitable J7 € rs(x0) while (4.8) yields (f, /?> = (->>, JJ) ^ 0.
Thus we obtain a contradiction and the efficiency of x0 is proved.

(c) =>• (b) (if (Hi)' holds): If*,, e 5, is a Kuhn-Tucker point of (VOP), then by
statement (c), there is no x e Si such that/ (x) < / (x0)- This obviously means that
(VOP) is GKT-pseudoinvex-infine atx0.

Assume now that x0 e 5( is not a Kuhn-Tucker point of (VOP). Then, for any
ut, Vj and ws satisfying (4.5), the following system has no solution:

R (seL),

iel jzJo seL

Observe that the system

{u,x)^0, (W,JC)^O, (w,x)=0, xeTs(xo)

has a solution x = 0. By Corollary 3.1 the system

( K , J C ) < 0 , {V,X)^0, (W,X)=0, xeTs(xo)

has a solution denoted by r). Thus, for any x e S\ with / (x) < / (JC0), the point r)
satisfies all the requirements of Definition 4.1'.

(a) =• (c) (if h is of class C1): This is obvious since (a) =• (b) and (b) => (c).
(c) => (a) (if h is of class C1 and if (HO holds): If x0 is a Kuhn-Tucker point then

the conclusion is obvious since by statement (c) there is nox 6 Si with/ (x) < f (x0).
If x0 is not a Kuhn-Tucker point then the system

(kihei > 0, (jij)j€Jo ^ 0, r ^ R (5 € L),

has no solution. Observe that the system

ft(x) g 0 (i 6 / ) , ^- (jc) ^ 0 (/• € 70), hs(x) = 0 (5 € L), x €
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has a solution x = 0, whe re / , , gj and hs are defined by (4.7). By Corollary 3.1, with
ft, gj, hs and Ts(x0) in place of/, , gj, hs and 5 respectively, we infer that system

fix) < 0, g(x) ^ 0, h(x) = 0 , x € Ts(;co)

has a solution x = rj. Thus for any x e S\ with / (x) < / (x0) the point t) satisfies all
the requirements of Definition 4.1.

THEOREM 4.1' . (1) Assume that h is of class C1 and the closedness assumption
(Hi) holds. Then the statements (a), (b) and (c) of Theorem 4.1 are equivalent.
(2) If Ns(xo) is a polyhedral cone then the statements (b) and (c) of Theorem 4.1

are equivalent.

PROOF. This is a consequence of Theorem 4.1.

Before going further let us introduce some notation which is close to Definitions 4.1
and 4.1' (see Propositions 4.1 and 4.2).

Let S\ — [x 6 Si : /,-(*) < / ,0c 0 ) for some i € / } .

DEFINITION 4.2. Problem (VOP) is KT-invex-infine at x0 e 5, if for any x e 5|
there exists r) € Ts(xo) such that

/W-/(*o)>/°Oto;r?), (4-9)

O^glixo-r,), (4.10)

O = h\xo;T,). (4.11)

DEFINITION 4.2'. Problem (VOP) is GKT-invex-infine at x0 e 5i if for any x e S ,
and M,, i»j, I*;* satisfying (4.5) there exists rj € Ts(xo) such that

/ O 0 - / ( * o ) > ( « , i ? > , (4-9)'

0^{v,r,), (4.10)'

0=(u>, i?) . (4.11)'

DEFINITION 4.3. Problem (VOP) is HC-invex-infine at x0 e Si if for any x e S\

there exists n € Ts(x0) such that

f(x)-f(xo)>f°(xo;r1), (4.12)

gjo(x)-gj0(xo)^g0j0(x0;r1), (4-13)

O^ft0^;/?). (4.14)
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D E F I N I T I O N 4 .3 ' . Problem (VOP) is GHC-invex-infine at x0 e Si if for any x e Si

and u(, Vj, ws satisfying (4.5) there exists rj e Ts(x0) such that

f(x)-f(x0) >{«,»?), (4.12)'

SJbOO-S*(*o)^(u,»j), (4.13)'

0 = (w,r,). (4.14)'

REMARK 4.2. Let us note [21] that the appearance of equality constraints (1.2) in
problem (VOP) leads to the introduction of a subclass of invex functions, called the
class of infine functions. Recall [21] that a locally Lipschitz function £ : K" —> RL is
called infine on 5 at x0 e S if

Vx € S V£ e dS(xQ) Bn e Ts(xQ) : \ (x) - £(*„) = (£, i?).

Consider now the trivial cone M = {0} of IR and define the M-invexity of £ on 5
at x0 in the sense of Craven [6] (see also [17]) by requiring that

WxeS 3r) e Ts(x0) : £(*) £

It is natural to ask if the class of infine functions coincides with the class of {0}-invex
functions of Craven. The answer is negative: the function £(*) = |JC| is {0}-invex on
S = OS at x0 = 0 but it is not infine in our sense. So a separate definition of infine
functions is needed. The situation is similar to that of the non-coincidence of the class
of convex functions and the class of linear functions.

When dealing with both inequality and equality constraints (1.1) and (1.2) it is
natural to require that each component of g is invex and each component of h is infine,
with the same r\ 6 Ts(x0)- This is nothing more than the notion of invex-infineness of a
vector-valued function introduced in [21]. Recall [21] that the vector-valued function
(gJo; h) is called invex-infine on S at x0 € S if for any x e S, Vj e dgj (xo)(j e Jo)
and ws e dhs(x0)(s e L) there exists r) e Ts(x0) such that gJo(x) - gJo(x0) ^ (v, r})
and h(x) — h(x0) = {w, r]). If in Definition 4.3' Si = 5, then conditions (4.13)' and
(4.14)' mean that (gjo;h) is invex-infine on Si at x0 e Si in the above sense. Indeed,
for x € S| we have h(x) — h(x0) = 0 and hence a combination of this equality with
(4.13)' and (4.14)' shows that all the requirements of the definitions of invex-infineness
of (gJo;h) are fulfilled.

We begin our discussion of the relationship between Definitions 4.1-4.3, and Def-
initions 4.1'-4.3' with the following obvious result.

PROPOSITION 4.1.

(1) HC-invex-infine => KT-invex-infine => KT-pseudo-invex-infine.
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(2) GHC-invex-infine => GKT-invex-infine =>• GKT-pseudoinvex-infine.

The following proposition shows that if m = 1 then KT-invex-infine «£> KT-
pseudoinvex-infine, and GKT-invex-infine •£> GKT-pseudoinvex-infine.

PROPOSITION 4.2. Assume that m = 1 {thatis, f is a real-valued function). Then

(1) The following statements are equivalent:

(a) Problem (VOP) is KT-pseudoinvex-infine at XQ G S\.

(b) Problem (VOP) is KT-invex-infine atx0 6 Sx.

(c) For any x e S\ there exists rj e Ts(x0) such that

f(x)-f(xo)^f\xo;r,), (4.15)

0^g°Jo(x0;r,), (4.16)

O = h°(xo;r)). (4.17)

(2) The following statements are equivalent:

(a)' Problem (VOP) is GKT-pseudoinvex-infine atx0 e 5!.
(b)' Problem (VOP) is GKT-invex-infine atx0 e Su

(c)' For any x € S\ and uit Vj, ws satisfying (4.5) there exists r) 6 Ts(xo) such that

f(x)-f(xo)^(u,r,), (4.15)'

0 ^ (v, IJ), (4.16)'

0 =(u>,»?). (4.17)'

PROOF. Let us prove the first part of Proposition 4.1. The second part can be proved

using a similar argument.

(a) => (b): Since m = 1, 5i = {x e Sx : f (x) < f(x0)}. Let x e Su that is,

/ (x) < / (x0). By Definition 4.1 there exists r? e 7i(^0) satisfying (4.3), (4.4) and

the inequality/°(A:O; *?) < 0. Let y > 0 be such that

f(x)-f(x0) > yf°(xo;r,)=f°(xo;n),

where fj = yrj e Ts(x0). Thus (4.9)-(4.11) hold, with ?j in place of r).

(b) =• (a): Since m = 1, / (x) < f (x0) •#• f (x) < f (x0) (see Section 2). Thus if
x e Si and f (x) < f (x0) then x e St. To complete the proof it remains to note that
conditions (4.9)-(4.11) imply conditions (4.2)-(4.4).

(c) =>• (b): Let x e Si with f (x) < f (x0). Then by (c) there exists r] 6 Ts(x0)

satisfying (4.15M4.17). Since f (x) < f (x0) O f (x) - f (x0) < 0 we derive from
(4.15) that/0(;c0; rj) < 0. As in the proof of implication (a) => (b) we can find y > 0
such that (4.9)-(4.11) are satisfied, with r\ being replaced by r\ = yr] e
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(b) => (c): If x 6 S\ then the fact of the existence of r\ e Ts(x0) satisfying
(4.15)-(4.17) is a direct consequence of Definition 4.2. If x £ Si, that is, x e Si and
f(x)Zf (*o), then t) = 0 € 7S(^O) satisfies (4.15M4.17).

COROLLARY 4.1. Let S = OS". Let f be a real-valued function andf, g and h be
of class C1. Then the following statements are equivalent:

(a) For any x € Si there is rj € R" such that

/ ( * ) - / (*o) ^ / , > . -gJobo) ^ g'xor), 0 = A;OI,.

(b) Ifx0 is a Kuhn-Tucker point then XQ is a minimiser of the {scalar) optimisation
problem (VOP).

PROOF. Since / is a real-valued function an efficient point is exactly a minimiser.
Therefore our corollary is a direct consequence of Theorem 4.1' and Proposition 4.1.
(Observe that for a C1-function the Frechet derivative coincides with the Clarke
subdifferential and that gJo (x0) = 0.)

REMARK 4.3. Corollary 4.1 is a generalisation of a result of Martin [13, Theo-
rem 2.1] to programs with mixed constraints. In [13] Martin restricts himself to
inequality constraints only.

Clearly, if h is of class C1 then KT-pseudoinvex-infine =>• GKT-pseudo-invex-infine,
KT-invex-infine =• GKT-invex-infine and HC-invex-infine =^ GHC-invex-infine. We
have seen from Theorem 4.1 that under suitable assumptions KT-pseudoinvex-infine
•£> GKT-pseudoinvex-infine. It is then natural to ask under which conditions we have

KT-invex-infine o GKT-invex-infine,

HC-invex-infine <$ GHC-invex-infine.

The remainder of this paper is devoted to giving an answer to this question. Our
results (Theorems 4.2 and 4.3) are also interesting from the point of view of sufficiency
conditions for the efficiency property. Indeed, from the implication (b) =• (c) of
Theorem 4.1 and the first part of Proposition 4.1 it is clear that conditions equivalent
to GHC-invex-infineness or GKT-invex-infineness are sufficient conditions for a Kuhn-
Tucker point to be an efficient solution of (VOP). The same is true for the case of
HC-invex-infineness and KT-invex-infineness if h is of class C1 (see Theorem 4.1 and
Proposition 4.1).

Let us introduce the following closedness conditions:
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(H2) For any i e / and x e Si the set

cone U9/.'(*o) x V,-(*o) - / r W l , | J 9g;(*o) x {0}

+ sp ( ( J dh,{x0) x {0}) + [tfs(x0) x {0}]

Vet /

is closed.
(H2)' For any i e I, x e Si and «,--, v;-, iOj satisfying (4.6) the set

cone ( J ur x {fP(x0) -fP(pc)}, \JvjX {0} 1
[•'& je.J0 J

\seL /

is closed.

THEOREM 4.2. Consider the following statements:

(a) Problem (VOP) is KT-invex-infine atx0 € Si.
(b) Problem (VOP) is GKT-invex-infine atx0 € S\.
(c) //(X,),e/ ^ 0, (IAJ)JZJQ ^ 0, (rs)seL e K' are such that (4.1) is satisfied then, for

all x e Si, 5Z,-6/ ̂ -ifi(x) ^ 5Z,e/ ^-ifi(xo) and, in addition, this inequality is strict in
the case when (A,),e/ > 0.

Then

(1) (a) => (b) i/n is of class C1; and (b) => (a) i/n is o/c/ass C1 and (H2) «o/ds.
(2) (b) => (c); and (c) => (b) i/ (H2)' Zio/ds.
(3) (a) =*• (c) i/n is of class C1; and (c) =>• (a) I//I is of class C1 and (H2) /io/ds.

PROOF, (a) =• (b) (if h is of class C1): Obviously.
(b) =* (a) (if n is of class C1 and (H2) holds): This is a direct consequence of

Definitions 4.2, 4.2' and Corollary 3.3 where bt = f{(x) - /,(*<,), c, = 0, as = 0; S
is replaced by Ns(xo)', and/,, g; and /ij are replaced by/ , , g; and hs (see (4.7)).

(b) => (c): Let (A.,),G/ ^ 0; (/Xj)7ey0 ^ 0, (rj)i€i. e OS', u, e 3/,(x0), uy e dgj(x0),
ws e dhs(x0) and y 6 Ns(x0) be such that (4.8) holds. Then using (4.8) and
Definition 4.2', for any x e Si we find rj e Ts(x0) such that

iel

Thus 52,-e/ ^-il/i^) —/i^o)] = 0 and this inequality is strict if (A.,),e/ > 0.
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(c) => (b) (if (H2)' holds): Assume to the contrary that for x e S\ and «,, u;-, ws

satisfying (4.5) the system

f(x)-f(x0) >{u,ri), O^(v,r,), 0=(w,r,), r, e Ts(xo)

has no solution. Then by Theorem 3.1 either the system

> 0, ^ 0, (rs)seL € K',

0 e
ie / seL

1 6 /

or the system

,)I 6 / ^ 0,

= 0

^ 0, (rs)seL e R',

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

has a solution. This contradicts statement (c).
(a) =^ (c) (if h is of class C1): This implication is obvious since (a) => (b) and

(b) => (c).
(c) =$• (a) (if /i is of class C1 and if (H2) holds): Assume to the contrary that for

x e Si the system

i e /

has no solution where/ , £y0 and A are defined by (4.7). Then by Theorem 3.1 either
the system (4.18M4.20) or the system (4.21)-(4.23) has a solution where ws = h'SXo;
and M, e 9/", (JC0) and vj e dgj(xQ) are suitable points. (Observe that the points w,
and Vj which appear in (4.19) and (4.22) may be different points.) This contradicts
statement (c).

We conclude our paper by formulating Theorem 4.3 whose proof is similar to
that of Theorem 4.2 and is omitted. For this purpose, let us introduce the following
closedness conditions:

(H3) For any /' e / and x e Si the set

cone I (j3M*o) * l/Y(*o) -/>(*)}. I J 9&(*o) x [gj(x0) - gj(x)}

( (+ sp (0}) + [Ns(x0) x {0}]
seL
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is closed.

(H3) ' For any i e I, x e Si and M,V, VJ , ws satisfying (4.6) the set

cone I ( J M,-, x {fAx0) - fr(x)}, ( J vj x {gj (x0) - g} (x)} |

+ sp ( ( J 3A,(JC0) x {0}) + [iVsC ô) x {0}]

is closed.

THEOREM 4.3. Consider the following statements:

(a) Problem (VOP) is HC-invex-infine atx0 e Si.
(b) Problem (VOP) is GHC-invex-infine atx0 € Si.
(c) If (Xj)ie, ^ 0, (iJ,j)jej0 ^ 0, {rs)seL e R' are such that (4.1) is satisfied then

for any x 6 Si, £(x) ^ f (x0) anrf, in addition, this inequality is strict in the case
(̂ •i)ie/ > 0 where

X > O-

(1) (a) =>• (b) i/n w o/c/fljj C1; anrf (b) =>• (a) ifh is of class C1 and (H3)
(2) (b) =>• (c); a«d (c) =>• (b) i/ (H3)' AOWJ.

(3) (a) =» (c) i/n w of class C; and (c) => (a) i/n w o/c/ajj C1 and (H3)

REMARK 4.4. Let us observe that the convex cone generated by a finite number
of points is always closed. Hence the closedness assumptions (Hi)', (H2)' and (H3)'
are automatically satisfied for the case when S = X and the equality constraints are
absent. This remark is useful since many practical problems involve only inequality
constraints and hence for such problems we do not need to check these assumptions.
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