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ABSTRACT

Alexander McNeil's (1996) study of the Danish data on large fire insurance losses
provides an excellent example of the use of extreme value theory in an important
application context. We point out how several alternate statistical techniques and plot-
ting devices can buttress McNeil's conclusions and provide flexible tools for other
studies.
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1. INTRODUCTION

McNeil's (1996) interesting study of large fire insurance losses provides an excellent
case history illustrating a variety of extreme value techniques. The goal of my remarks
is to show additional techniques and plotting strategies which can be employed for
similar data.

Our remarks concentrate on the following:
• Diagnostics for assessing the appropriateness of heavy tailed models.
• Diagnostics for testing for independence.

It is customary in many insurance studies involving heavy tailed phenomena to as-
sume independence without actually statistically checking this important fact so some
attention is given to this issue.

2. APPROPRIATENESS OF HEAVY TAILED MODELS

Given a particular data set, there are various methods of checking that a heavy tailed
model is appropriate. The methods given below (these are also reviewed in Resnick
1995, 1996; Feigin and Resnick, 1996) supplement the techniques discussed by
McNeil such as mean excess plots and QQ-plots against exponential quantiles. Unlike
the mean excess plot, the following methods do not depend on existence of a finite
mean for the marginal distribution of the stationary time series. This is important since
it is becoming clear that it is not difficult to find examples of heavy tailed data which
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require infinite mean models for adequate fits. (See for example the teletraffic exam-
ples in Resnick (1995, 1996)).

For the discussion that follows, we suppose {Xn, n > 1} is a stationary sequence and
that

P[X, >x\ = xaL(x), x->°° (2.1)

where L is slowly varying and a > 0. Consider the following techniques:
(1) The Hill plot. Let

be the order statistics of the sample Xu ..., Xn. We pick k < n and define the Hill esti-
mator (Hill, 1975) to be

l £
K , = \ A(k + \)

Note k is the number of upper order statistics used in the estimation. The Hill plot is
the plot of

and if the {Xn} process is iid or a linear moving average or satisfies certain mixing
P 1

conditions then since Hk n >a~ as n —¥ «>, k/n —> 0 the Hill plot should have a
stable regime sitting at height roughly a. See Mason (1982), Hsing (1991), Resnick
andStarica (1995, 1996a), Rootzen et. al (1990), Rootzen (1996). In the iid case, under
a second order regular variation condition, Hk „ is asymptotically normal with asymp-
totic variance I/a2. (See de Haan and Resnick, 1996).

(2) The smooHill Plot. The Hill Plot often exhibits extreme volatility which makes
finding a stable regime in the plot more guesswork than science and to counteract this,
Resnick and Starica (1996a) developed a smoothing technique yielding the smooHill
plot: Pick an integer u (usually 2 or 3) and define

j Uk

smooHk „ y H. „.
• («-i)*y;fr+1

In the iid case when a second order regular variation condition holds, the asymptotic
variance of smooHkn is less than that of the Hill estimator, namely:

a u u
The sensitivity of the Hill estimate to the choice of k corresponds in McNeil's work to
the sensitivity of the fit of the generalized Pareto to the data to the choice of threshold.
Perhaps some comparable smoothing technique would help in GPD fitting.

(3) Alt plotting; Changing the scale. As an alternative to the Hill plot, it is someti-
mes useful to display the infrormation provided by the Hill or smooHill estimation as
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and similarly for the smooHill plot where we write \y] for the smallest integer greater
or equal to y > 0. We call such plots the alternative Hill plot abbreviated AltHill and
the alternative smoothed Hill plot abbreviated AltsmooHill. The alternative display is
sometimes revealing since the initial order statistics get shown more clearly and cover
a bigger portion of the displayed space. However, when the data is Pareto or nearly
Pareto, this alternate plotting device is less useful since in the Pareto case, the Hill
estimator applied to the full data set is the maximum likelihood estimator and hence
the correct answer is usually found at the right end of the Hill plot.

(4) Dynamic and static QQ-plots. As we did for the Hill plots, pick k upper order
statistics

and neglect the rest. Plot

{ ( - l o g ( l - - * — ) , l og X(J) ) , l < j < k } . (2.2)
K \ 1

If the data are approximately Pareto or even if the marginal tail is only regularly va-
rying, this should be approximately a straight line with slope I/a. The slope of the
least squares line through the points is an estimator called the QQ-estimator (Kratz and
Resnick, 1996). Computing the slope we find that the QQ-estimator is given by

a\,n , • {k+l) . ; . (2.3)

There are two different plots one can make based on the QQ-estimator. There is the
dynamic QQ-plot obtained from plotting {k,l/cc~lk,n,l <k<n) which is similar to the
Hill plot. Another plot, the static QQ-plot, is obtained by choosing and fixing k, plot-
ting the points in (3.2) and putting the least squares line through the points while com-
puting the slope as the estimate of cf].

The QQ-estimator is consistent for the iid model if £ —» °° and k/n —> 0 and under a
second order regular variation condition and further restriction on k(n), it is asymptoti-
cally normal with asymptotic variance 2/or2. This is larger than the asymptotic variance
of the Hill estimator but the volatility of the QQ-plot always seems to be less than that
of the Hill estimator.

(5) De Haan 's moment estimator. McNeil discusses the extreme value distributions
(see also Resnick, 1987; de Haan, 1970; Leadbetter et al, 1983; Castillo, 1988; Em-
brechts et al 1997) which can be parameterized as a one parameter family

G^(x) = exp{-(l + £ 0 ~ r ' } , £ e % 1 + fy> 0.

When "t, = 0, we interpret Go as the Gumbel distribution
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A distribution whose sample maxima when properly centered and scaled converges
in distribution to G% is said to be in the domain of attraction of G^ which in McNeil's
notation is written Fe MDA(Gf). If t, > 0 and Fe MDA(G0 then 1 - Fe RV_^. De
Haan's moment estimator 4,« (Dekker's, Einmahl, de Haan, 1989; de Haan, 1991;
Dekkers and de Haan, 1991; Resnick andStarica, 1996b) is designed to estimate t, =
I/a. Note that | t n , like the Hill estimator, is based on the £-largest order statistics.

Since most common densities such as the exponential, normal, gamma and Weibull
densities and many others are in the MDA(G0), the domain of attraction of the Gumbel
distribution, this provides another method of deciding when a distribution is heavy
tailed or not. If | t n is negative or very close to zero, there is considerable doubt that
heavy tailed analysis should be applied and the moment estimator is usually much
more reliable in these circumstances than the Hill estimator. In particular, when £ - 0,
the Hill estimator is not usually informative and the moment estimator does a much
better job of identifying exponentially bounded tails. Smoothed versions of the mo-
ment estimator can also be devised (Resnick andStarica, 1996b) which overcome
volatility in the plot of [k, %kn,\<k<n} .

Danish Dat Danish*

FIGURE 2.1: Tsplot and QQ plot of Danish data.

QQ C3a.nisn.all Parflt Danish

FIGURE 2.2: QQ plot of Danish.all data and parameter estimate.
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Hill and Dynamic QQ

5OO 1000 15OO 2OOO
number of order statistics

5OO 1OO0 15OO 2OOO
number of order statistics

FIGURE 2.3- Hill and QQ-plot of Danish data.

Figure 2.1 gives a time series plot of the 2156 Danish data consisting of losses over
one million Danish Krone (DKK) and the right hand plot is the QQ-plot (2.2) of this
data yielding a remarkebly straight plot. Figure 2.2 gives the QQ-plot of all of the
2492 losses recorded in the data set labeled danish.all and shows why McNeil was
statistically wise to drop losses below one million DKK. (In the left hand plot the data
is scaled to have a range of (0.3134041, 263.2503660) and the dots below height 0
represent the 325 values which are less than 1 in the scaled data.) The right hand plot
in Figure 2.2 puts a line through the QQ-plot of the losses above one million and
yields an estimate of a = 1.386. Using only the largest 1500 order statistics and then
estimating a from the slope of the LS line produces an estimate of a= 1.4.

We next attempted to estimate a by means of the Hill plot. Figure 2.3 shows a Hill
plot side by side with the dynamic QQ-plot. Because the plot in the right side of
Figure 2.1 is so straight, we tend to trust the Hill plot near the right end of the plot.
This is because the straight plot in Figure 2.1 indicates the underlying distribution is
close to Pareto and for the Pareto distribution the maximum likelihood estimator of the
shape parameter is the Hill estimator calculated using all the data. This analysis is
confirmed by the excellent fit achieved by McNeil using a GPD with £ = 0.684 or
a = 1.46 corresponding to losses exceeding a threshold of 20 million DKK. Such a
GPD is a shifted Pareto.

On the other hand, examining the altHill and altsmooHill plots in Figure 2.4 makes
it seem unlikely that a could be as large as 2.01 which is what is given in McNeil's
Figure 7. This corresponds to a E, = 0.497. Our methods indicate a likely value of a -
1.45.

In Figure 2.5 we present four views of the moment estimator %kn of £ = I/a. The

upper right graph and the lower two graphs are in alt scale where k, 1 < k < n is
replaced by \na\ 0 < 0 < 1. Interestingly, we see here and in the four views of the Hill
plot, that when the data are very close to Pareto, the alt scale is not advantageous.
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When the data is close to Pareto, the reliable part of the graph is toward the end and
this is the part of the graph under emphasized by the alt scale. The situation is very
different for something like stable data (Resnick, 1995) where the traditional Hill plot
is incapable of identifying the correct value of abut the alt plot does a superior job.

Based on an amalgam of the QQ, Hill and moment plots, we settle on an estimate of
a = 1.4 or £=.71.

Hill plot AltHill

number of order statistics

AltsmooHill
theta

AltHill and AltsmooHill

0.2 0.4 0.6
theta

0.8 0.2

FIGURE 2 4 Hill and smooHill plots for Danish data

0.4 0.6
theta

0.8 1.0

3. TESTING FOR INDEPENDENCE

We outline several tests for independence which can help reassure the analyst that an
iid model is adequate and that it is not necessary to try to fit a stationary time series
with dependencies to the data. Some of our tests are motivated by our experience
trying to fit autoregressive processes to heavy tailed data.

Here is a survey of several methods which can be used to test independence. Some
of these are based on asymptotic methods using heavy tailed analysis and the rest are
standard time series tests of homogeneity.

(1) Method based on sample acf. An exploratory, informal method for testing for
independence can be based on the sample autocorrelation function p(h) where for h
any positive integer

K V '
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In many studies of heavy tailed data, the centering by the sample mean is omitted
since if mathematical expectation does not exist, there is no advantage or sense to
centering by the sample mean. However, since our chosen value of a = 1.4 implies
E\Xt\ < »°, we have decided to include the centering. From Davis and Resnick (1985a),
if {X,} are iid with regularly varying tail probabilities, then

fl, if/z = O,

Thus, if upon graphing p(h), h = 0, . . . , « - h we get only small values for h ^ 0 there
is no evidence against independence. The limit distribution of p(h), h = 1, ..., q is
known (Davis and Resnick, 1985b, 1986 Corollary 1) but it is somewhat difficult to
work with and the percentiles must be calculated by simulation. It is important to
realize that the 95% confidence bands drawn by a typical statistics package like Splus
are drawn using Bartlett's formula (Brockwell and Davis, 1991) on the assumption
that the data is Gaussian or at least has finite fourth moment. This assumption is to-
tally inappropriate for heavy tailed data and the confidence band must be drawn taking
into account the heavy tailed limit distribution for p(h), A = 1, ...,/.

moment estimator Alt plot

500 1000 1500 2000
number of order statistics

Altsmoo

1.0

Alt and altsmoo plot

0.3 0.4 0.5 0.6 0.7 0.8
theta

0.4 0.6 0.8
theta

FIGURE 2.5: Moment estimator plots for Danish data.

We discuss implementation of the acf based procedure when 1 < a < 2 since in the
case of the Danish loss data we have settled on an estimate of a = 1.4. Suppose {7,,
..., Yn} are iid non-negative random variables satisfying

x] L{x),
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where L is slowly varying. From Corollary 1, page 553 of Davis and Resnick (1986),
if we set pY(h) to be the lag h sample acf for Y,, ..., Yn, then we have

lim P[b-n'b
2
npY(h) <x] = P[Uh /V0<x]

where Uh is a one sided stable random variable with index a = 1.4 and Vo is a positive
stable random variable with index a/2 = 0.7 and bn is the solution to

P[YX >x] = \ / n

and bn is the solution to

P[YXY2 >x] = \ln.

Thus an approximate symmetric 95% confidence window for the sample correlations
of the F s would be placed at ±lbn I b\ where / satisfies

p[\Uh/V0\<l] = .9

We estimate the 95%-quantile of \U/U0\ by simulation and if we assume the distribu-
tion of 7,'s is Pareto from some point on, we find

b2
n [logn

The assumption of a Pareto distribution seems mild in view of Figure 2.2 and the good
fit found by McNeil of the GPD with positive shape parameter.

Figure 3.1 presents this technique applied to the Danish loss data. No spike is
protruding from the band and hence this acf based technique does not provide any
evidence against the assumption of independence.

3

0

•0.
1

•0
.2

1 ,

95% Confidence Band

• | i i • i • i

S 10 IS 2O
Lag

FIGURE 3 1 95% confidence band for the acf of the Danish loss data
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(2) Tests based on asymptotic theory. Estimators of autoregressive coefficients for
heavy tailed time series can be used to fashion tests for independence against autore-
gressive alternatives. If the autoregression is described as

p

/=!

where {Z,} are iid heavy tailed residuals, then we test if

that is independence, by rejecting when the maximal estimated coefficient
p .

is too large. This procedure has been implemented by Feigin, Resnick and Starica
(1996) based on linear programming (LP) estimators under the assumption that the iid
heavy tailed residuals {Z,} are non-negative. See also Feigin and Resnick (1993).

It would not be possible to fix the size of the LP test if the limit distribution of the
LP estimator did not considerably simplify. Fortunately it does under the null hypothe-
sis of independence and we then have

where for x, > 0;; = 1, ..., p we have that

F{dyx)...F{dyp)}. (3.2)

This means that if we want a 0.05 level rejection region, we should reject when
vf=1 I #,.(«) I > K(.O5) where A"(.O5) is defined by

P y|#,.(n)|>«'(.05) =.05

and to find an approximate value of K(.O5) we write

P\ v | 0 » | > *(.O5) U P v A- > W 0 5 )

where c = E(Z^a). This yields

A:(.05)

= pe-
c(b-K<-05^, (3.3)

We need to estimate a, c and bn. One way to do this is to use the QQ-plot (Feigin,
Resnick and Starica, 1996; Kratz and Resnick, 1996) which yields both bn (as the
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intercept of the fitted line) and a (as the reciprocal of the slope of the fitted line) and
then we can get

1=1

The asymptotic test is implemented and shown in Figure 3.2. None of the estimated
coefficient values extend above the bar representing AT(.O5) so this method provides no
evidence against the hypothesis of independence.

Asymptotic Test

A 6
number of coefficients

FIGURE 3 2 Asymptotic test for independence for the Danish loss data

(3) Standard tests of randomness. There are several standard time series tests of
randomness (Brockwell and Davis, 1991, Section 9.4) which are non-parametric and
can be employed in the present context. We give some examples below. We use the
notation

Xn ~ AN(nn,a2
n)

as shorthand to mean that

(1) Turning point test. If T is the number of turning points among X,, ..., Xn then
under the null hypothesis that the random variables are iid we have

T ~ AN(2(n - 2) / 3, (1 6M - 29) / 90)

and this can be used as the basis of a test.
(2) Difference-sign test. Let S be the number of i = 2, ..., n such that X,-X, , is po-

sitive. Under the null hypothesis that the random variables^,, ..., Xn are iid we
have

S~ AN(-(n- l ) , (n
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(3) Rank test. Let P be the number of pairs (i, j) such that Xj > Xt for j > i and i - 1,
..., n - 1. Under the null hypothesis that the random variablesXt, ...,Xn are iid
we have

P ~ AN(- n(n-l), n(n - l)(2n + 5) / 8).
4

We would reject the iid hypothesis at the 0.05 level if any of these standardized varia-
bles had an absolute value greather than 1.96. All of these tests are implemented in the
Brockwell and Davis (1991) package ITSM. Data can easily be imported into their
program and tested within the package for randomness.

We carried out these tests on the Danish loss data using ITSM and achieved the
following results:

Turning points 1409 AN (1436.00, 19.572)
Difference-sign 1079 AN (1077.50, 13.412)
Rank test 1055894 AN (1161545, 50071.902).

The rank test rejects the hypothesis of independence at the 5% level. The turning
points and difference-sign tests fail to reject.

(4) Stability testing on subsets of the data. An informal but useful technique is to
take a statistic, such as the sample acf, and compute it relative to different subsets of
the sample. If the data is iid, the values of the statistic should be similar across diffe-
rent subsets.
For the sample acf, if the graphs of pH (h), h = 1, ..., q look different for different
subsets, then one should be skeptical of the correctness of the iid assumption. Often it
is enough to split the sample into halves or thirds to generate some skepticism. One
could make acf subset plots for the Danish data but since the acf values are not signifi-
cantly different from 0, there seems little point to pursuing this diagnostic in this case.

(5) Permutation test for independence. Another approach to testing for indepen-
dence in time series analysis is based on permutation tests. Here we can use any desi-
red statistic that is designed to measure some form of dependence between successive
data. This statistic might be a maximum autocorrelation or partial autocorrelation, or it
may be a maximal autoregressive coefficient estimated by the linear programming
paradigm.

The permutation test is based on comparing the observed value of the statistic with
the permutation distribution of that statistic — that is with the distribution of values of
the statistic under all the possible permutations of the time series data. If there is no
dependence structure in the data, then the observed value should be a typical value for
this reference permutation distribution. If there is some dependence of the type to
which the statistic is sensitive, then the observed value should be extreme with respect
to this reference distribution.

This approach allows one to perform tests without relying on the asymptotic theory
for the particular statistic. As we have seen earlier, the asymptotic distribution for
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p

V
1=1

involves various parameters that have to be estimated. Moreover, the fact that we are
not sure of the rate of convergence to the asymptotic distribution, also suggests the
precautionary tactic of using a permutation test.

In the implementation we use below, we approximate the p-value of the actually
observed statistic. This is achieved by generating 99 permutations of the time series,
computing the statistic for each one, and counting the number (C) of these that are
greater than or equal to the actually observed statistic. The p-value is approximated by
(1+C)%. The statistics considered are the maximum absolute autocorrelation (macf),
the maximum absolute partial autocorrelation (mpacf), and the maximum absolute
linear programming coefficient estimate (mphi). In each case, one must specify the
value of/?, the order over which the maximum is taken.

For the Danish loss data, we took the order to be 10 and ran the tests yielding the
following p-values:

maximum autocorrelation 0.52
maximum partial autocorrelation 0.51
maximum LP coefficient 0.22

and thus at a reasonable level, none of these tests would reject independence.

4. CONCLUDING REMARKS

There is very little evidence arguing against the hypothesis of independence and it
seems McNeil's presumption that the data were independent was a safe assumption to
make for this data set. Independence is not that common among teletraffic of finance
data in my experience and thus should be treasured in the present insurance context.
Fitting dependent data with a heavy tailed stationary time series model can be a frus-
trating business (see Resnick, 1996b; Feigin and Resnick, 1996) so when one conclu-
des the data can be modelled as iid, a loud sigh of relief is heard.

The sensitivity of the estimation and fitting methods to the choice of threshold or
the choice of the number of order statistics used in estimation is a persistent and
troubling theme in McNeil's and my remarks. This seems inherent in the heavy tail
and extreme value methods. It is not clear at this point how much the techniques can
be improved to reduce sensitivity to choice of k or threshold. Smoothing techniques
and alternate plotting help but are not a universal panacea.

It is encouraging to see the accumulating mass of theoretical and software tools
which can be used to analyze such data sets.
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