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Abstract

A lattice formation is a class of groups whose elements are the direct product of Hall subgroups corre-
sponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties
involving ^-subnormal subgroups, for a lattice formation & of full characteristic, are studied. For a
subgroup-closed saturated formation #', a characterisation of the Sf-projectors of finite soluble groups
is also obtained. It is inspired by the characterisation of the Carter subgroups as the <yK-projectors, «/f
being the class of nilpotent groups.

2000 Mathematics subject classification: primary 20D10.

1. Introduction

All groups considered are finite and soluble.
In this paper ^"-Fitting classes, for a lattice formation &', are defined in a natural

way by closure properties involving ^-subnormal subgroups. A lattice formation is a
class of groups whose elements are the direct product of Hall subgroups corresponding
to fixed pairwise disjoint sets of primes. When & = ^Y, the class of nilpotent groups,
we recover the classical Fitting classes.

This study is motivated by the following concepts and facts:
In [3] an extension of normality for subgroups, called ,^-Dnormality, for a saturated

formation &', was introduced (see Definition 2.2 (b) below). It is associated naturally
with ^"-subnormality in an obvious way. If & is a lattice formation, the set of all
•^"-subnormal subgroups is a lattice in every group. This lattice contains the set of all
^"-Dnormal subgroups as a sublattice.

© 2004 Australian Mathematical Society 1446-7887/04 $A2.00 + 0.00

93

https://doi.org/10.1017/S1446788700008727 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008727
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In fact, the lattice properties of ^"-subnormal subgroups, and also the lattice prop-
erties of ^-Dnormal subgroups, characterize the lattice formations among all the
subgroup-closed saturated formations &'. (See Theorem 2.7.)

Then, given a lattice formation & containing J/', we define ^-Fitting classes in
a natural way by closure operations involving ^"-subnormal subgroups. We also see
that c^-Dnormality can substitute for ^-subnormality in this definition, exactly as
normality substitutes for subnormality in Fitting classes.

Theorem 2.8 states that every lattice formation & containing jY is an ^"-Fitting
class. (In fact, this property provides a characterisation for lattice formations; see
[7].) We construct a large family of Fitting formations $ which are ^"-Fitting classes,
for some related lattice formations &', in particular, whenever & c <g. This family
contains, in particular, lattice formations and the class of p-nilpotent groups, for every
prime p. Other examples of ^-Fitting classes of a different nature are also given.

We complete the paper by providing a characterisation of the ^-projectors, for
a subgroup-closed saturated formation Jtf, which involves the concepts of Jf-
subnormality and ^-Dnormality. This result generalises the characterisation of
the ^-projectors as the Carter subgroups in every group. Other generalisations of
this result for .^-projectors were proposed by Carter and Hawkes (see Theorem 2.14)
and by Graddon in [14, Theorem 2.15].

Our characterisation of ^-projectors has interest in its own right but also finds
application in the study of the injectors associated to ^-Fitting classes. In this
manner, notice that an ^"-Fitting class is also a Fitting class, as the lattice formation
J*" contains jV. In a forthcoming paper [2], the desired behaviour of the associated
injectors, with respect to ^"-subnormal (and ^"-Dnormal) subgroups, is obtained. In
fact, this property characterizes ^"-Fitting classes. This is the natural extension of
the known characterisation of the Fitting classes as the injective classes of groups. A
previous result is Theorem 2.8 (3).

2. Notation and preliminaries

We use standard notation and terminology taken mainly from [12]. The reader is
also referred to this book for the results on saturated formations, projectors and Fitting
classes.

In particular, if ^T is a class of groups, the characteristic of 3C is char(JT) = {p e
P : Zp e 3£\, where IP denotes the set of all prime numbers and Zp the cyclic group
of order p.

If jr is a set of primes, 5? and &„ denote the class of all soluble groups and the
class of all soluble n-groups, respectively, n' — P \ n is the complementary set of
n in P. If H is a subgroup of a group G, oi\G : H\) denotes the set of all prime
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[3] Fitting classes and lattice formations I 95

numbers dividing \G : H\. ^Y denotes the class of all nilpotent groups. For a group
G and a prime q e P, Vq denotes a G-module over F,, the finite field of q elements,
and the group [ Vq]G is always the semidirect product with respect to the action of G
on Vq.

It is well known that a formation <& is saturated if and only if

9 = LF(g) = ynn (f)yp.ypg(p)\ , n =

that is, if # is a local formation defined by a formation function g. In this case, &
has a uniquely determined full and integrated formation function defining &, which is
called the canonical local definition of & and will be identified by G. We write g to
denote the smallest local definition of &. (See [12, IV, Definitions 3.9].)

A lattice formation & of characteristic n is a saturated formation locally defined
by a formation function / given by: f (p) = yni, if p e n, c n, where {7r,}/e/ is a
partition of n, and / (q) = 0, the empty formation, if qr ^ n.

In this case, for a prime p e n, the set of primes 7r, such that p e 7r,-, will be also
identified by n{p).

LEMMA 2.1 ([6, Remark 3.6], [5, Lemma 3.2]). Let & be a lattice formation and
p e n = char(^) . Then:

(a) The canonical local definition F and the smallest local definition f of & are
given by setting:

(i) If\n(p)\ = 1, then F(p) = Yp and fjp) = (1).
(ii) If\n(p)\ > 2, then F(p) = f (p) = Sfn(py In particular, for a group G,

(b) A group G belongs to & if and only if G is a soluble n -group with a normal
Hall nrsubgroup, for every i € I.

Henceforth & will denote a lattice formation and the above notation will be as-
sumed. # will always denote a saturated formation with char($^) = n.

The key concepts and results needed in the paper are the following:

DEFINITION 2.2. (a) [12, III, Definition 4.13] A maximal subgroup M of a group
G is ^-normal in G, if G/ CoreG(M) € CS\ otherwise it is called <£- abnormal,
(b) [3, Definition 3.1] A subgroup H of a group G is S^-Dnormal in G if a(\G :

H\) c 7T and [//£, H^] < H, for every pen, where HP
G = (Gp 6 Sylp (G) : Gp

reduces into H, that is, Gp n H e Sy\p{H)). We write H <#-Dn G.

REMARK 2.3. (1) If H is a maximal subgroup of G, then H tf-Dxi G if and only
if H is ^-normal in G.

https://doi.org/10.1017/S1446788700008727 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008727


96 M. Arroyo-Jorda and M. D. Perez-Ramos [4]

(2) A subgroup H of a group G is «yK-Dnormal in the group G if and only if H is
normal in G.
(3) [3, Theorem 4.8] For a lattice formation &, a subgroup H of a group G is

^"-Dnormal in G if and only if H satisfies:

[O"\G), O^^H)} < O"ip)(H), if |;r(p)| > 2 or

[O"\G), //]<//, if n(p) = {p},

for every p e a{\G : H\) c n.

DEFINITION 2.4 ([12, IV, Definition 5.12]). A subgroup H of a group G is said to
be ^-subnormal in G if either H = G or there exists a chain H = Hn < //„_] <
• • • < HQ = G such that //,-+] is a Sf-normal maximal subgroup of //,, for every
i = 0 n - 1. We write H #-sn G.

REMARK 2.5. (1) [3, Proposition 3.5] A subgroup / /o f a group G is ^-subnormal
in G if and only if there exists a chain / / = 7/ < 7]_i < • • • < To = G such that 7]+i
is a ̂ -Dnormal subgroup of 7], for every j = 0 , . . . , / — 1. In particular, a #-Dnormal
subgroup of a group is ̂ -subnormal in the group.
(2) A subgroup H of a group G is ^-subnormal in the group G if and only if H is

subnormal in G.
(3) If «yK c £?, the normal and the subnormal subgroups of a group are ^-Dnormal

and ^-subnormal, respectively in the group.

LEMMA 2.6 ([13, Lemma 1.1]). Let & be a subgroup-closed saturated formation.
If H is &-subnormal in G and H < U < G, then H is &-subnormal in U.

THEOREM 2.7 ([5, Theorem 3.5], [3, Corollary 4.10]). Let ^ be a subgroup-closed
saturated formation. The following statements are equivalent:

(i) <£ is a lattice formation.
(ii) The set of all <£-subnormal subgroups is a lattice in every group.

(iii) The set of all &-Dnormal subgroups is a lattice in every group.

A previous result to our development of ^-Fitting classes is the following.

THEOREM 2.8 ([5, Theorem 4.1 and Theorem 4.5]). Let &be a lattice formation.

(1) IfH and K are ̂ -subnormal ^-subgroups of a group G, then (//, K) e &.
(2) Ifjf c &, then the & -radical G& of G has the form

G& = {X e & : X is &-subnormal in G).
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(3) Ifj/ C &, V is an ̂ -inje.ctor of G and H is an & -subnormal subgroup of G,
then V D H is an & -injector of H. {For the description of the & -injectors see [15,
Theorem 2.1.1].)

In fact, these properties characterize lattice formations (see [7, Theorem 1]). The
following result will be needed in the sequel.

LEMMA 2.9 ([3, Lemma 4.1]). Let & be a lattice formation and let H and K be
&-subnormal subgroups of a group G = (//, K). Then

GFip) _ (HF<p)t KF(p))t for every p 6

We introduce next some concepts and results needed in Section 4.

DEFINITION 2.10 ([14, Definition], [16, Definition 5.8]). A subgroup H of a group
G is said to be Sf-abnormal in G if every link in every maximal chain joining H to G is
^-abnormal; that is, H is a ̂ -abnormal subgroup of G if, whenever H < M < L < G
and M is a maximal subgroup of L, then M is a'S-abnormal subgroup of L. We write
H #-abn G.

DEFINITION 2.11 ([12, IE, Definition 3.2]). Let 3£ be a class of groups. A sub-
group U of a group G is called an .2T-projector of G if UK/K is ^-maximal in

For a saturated formation Sf, it is well known that ^-projectors and ^-covering
subgroups coincides. In particular, if U is a ̂ -projector of G, then U is a ^-projector
of L, for every subgroup L of G containing U.

LEMMA 2.12 ([12, IV, Theorem 5.18]). Let G be a group whose &-residual G* is
abelian. Then G* is complemented in G and any two complements in G of G* are
conjugate. The complements are the &-projectors of G.

As a consequence, the following result can be easily deduced.

COROLLARY 2.13. If H is a &-projector of a group G and H < U < G, then
HDU* < {If*)'.

THEOREM 2.14 ([11, Lemma 5.1], [16, Satz 5.22]). Let H be a subgroup of a
group G. Then H is a &-projector of G if and only if H e if and H is &-abnormal
in G.
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3. ^"-Fitting classes

DEFINITION 3.1. Let & be a lattice formation containing Jf. A class SCi,^ 0) of
groups is called an ^"-Fitting class if the following conditions are satisfied:

(i) If G 6 SC and H J^-sn G, then H e SC'.
(ii) If H, K Jf-sn G = (H, K) with H and K in SC, then G e SC.

REMARK 3.2. (1) SC is a Fitting class if and only if SC is an ^K-Fitting class.
(2) Let JV c &x c ^ 2 where ^ and «^2 are lattice formations. If SC is an ^ 2 -

Fitting class, then SC is an ^ -F i t t ing class. (Notice that the ^-subnormal subgroups
of a group are ^-subnormal in the group.) In particular, SC is a Fitting class.
(3) For a class SC of groups and a lattice formation & containing jV, we define:

= (G: G ^ - s n / / for some H e SC);

N0,jir(.r) = (G : 3 Ki Jf-sn G (i = 1 r) with K, e ^T

a n d G = {Ku...,Kr)).

A routine computation shows that Sn & and No,̂ - are closure operations.
Obviously the ^"-Fitting classes are the classes of groups which are both Sn ^ - and

No.jf-closed. Thus, SC is an J^-Fitting class exactly if (Sn,^, N^?)3C = SC. (For
details about closure operations see [12, II].)

Henceforth we will moreover assume that the lattice formation & contains *tf.

PROPOSITION 3.3. A class SC& 0) is an ^-Fitting class if and only if the following
two conditions are satisfisfied:

(i') lfGeSCandH &-Dn G, then H e SC.
(ii') IfH, K &-Dn G = (H, K) with H and K in SC, then G e SC.

PROOF. If SC is an ^"-Fitting class, it is clear that SC satisfies (i') and (ii') because
J^-Dnormal subgroups are ^"-subnormal subgroups by Remark 2.5.

Assume now that SC satisfies (i') and (ii').
Let G € SC and H ,^-sn G. By Remark 2.5 there exists a chain of subgroups

H = Hn < //„_, < • • • < Ho- G with Hi+i ^"-Dn Hh for every i = 0 n - l .
Then (i') implies that H e SC.

Assume that condition (ii) in the definition of ^"-Fitting class is not true and
take a group G of minimal order among the groups which do not belong to SC but
are generated by two ^"-subnormal subgroups in SC. Among the pairs (A, B) of
subgroups of G such that A, B <^-sn G = (A, B) and A, B e SC', choose a pair
(//, K) with \H\ + \K\ maximum.
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If H and K are normal in G, then G 6 3E by the hypothesis. So we can assume
that H is not normal in G.

Note that G = (//, //*), for every g € G\ NG(H). Otherwise there exists
g e G \ NC(H) such that (//, //*) < G. By the choice of G, it follows that
(//, Hg) e 3£'. But this contradicts the choice of the pair (//, K) since (//, //*) is
also ^-subnormal in G.

By the hypothesis we can assume that H < M, for some ^"-normal maximal
subgroup M of G. Clearly H < M and so H < Mx. Again the choice of the pair
(//, K) implies that H = Mx.

We claim that H = M% is ^-Dnormal in G, which provides the final contradiction,
since G = (H, H*) with j e G \ A^G(//).

If p\\G : M\, then GF(p) < M because M is ^"-normal in G. Moreover GF{p) =
{HF{p\ (H*)F{p)) by Lemma 2.9, and so GF(p) e 3C by the choice of G, that is,
GF(P) < Mx. Since GF(p) = On{p\G) = (Gq : Gq e Syl9(G), q £ n(p)), it is
clear that GFip) = {MxY^ = HF{P\

In particular, a{\G : H\) c.n{p) and clearly H is ^-Dnormal in G. D

PROPOSITION 3.4. Let SE bean &-Fitting class and let Gbe a group. Then:

(a) 3C is a Fitting class and G% = (H < G : H &-sn G, H e X) = (H < G :
H &-Dn G,He &).
(b) IfH is an &-subnormal subgroup of G, then Hx = H (1 G%.

PROOF, (a) Since «̂T is an ^"-Fitting class, the result is clear taking into account
Remark 2.5 (3) and Remark 2.5 (1).

(b) Obviously Hx < H C\ Gx. But H D Gx is ^"-subnormal in G, then HC\GX

is also ^"-subnormal in both H and Gx by Lemma 2.6. The result is now clear
because X is an ^"-Fitting class and statement (a). •

REMARK 3.5. In [6] the following stronger definition of ̂ -normality, for a saturated
formation &, was introduced.

DEFINITION ([6, Definition 3.1']). A subgroup H of a group G is said to be &-
normal in G if either// = Gor///CoreG(//) e g(p),foreveryprimep S7r(|G:// |).

The subgroup-closed saturated formations which provide lattice properties for these
^-normal subgroups differs in general of the lattice formations (see [6]).

But some remarks should be done:

(1) The ^-normal subgroups are ^-Dnormal subgroups. The converse is not true
(see [3, Remark 3.2 (6)]).
(2) Remark 2.5 (1) is also true if ^-Dnormal is changed by ^-normal. In particular,

for maximal subgroups, ^-normality and ^-Dnormality coincides.
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(3) If J/ c ^ , normal subgroups are also ^-normal.
(4) Propositions 3.3 and 3.4 are also true if we change #-Dnormality by ̂ -normality.

If ^T is a Fitting class with characteristic 7r, then 4 1 c l . The corresponding
result for ^"-Fitting class is the following:

PROPOSITION 3.6. If 36 is an ^-Fitting class with char(^T)=7r, then&r\y*cL36.

PROOF. Suppose that the result is not true and let G be a group of minimal order in
( ^ fl yn) \ 36'. Since G belongs to &', every maximal subgroup of G is .^"-normal.
By the choice of G, there is a unique maximal subgroup of G. This implies that G
is a cyclic p -group, for some pen. Then G e 36, which contradicts the choice
of G. U

REMARK 3.7. (1) In particular, if 36 is an ^"-Fitting class and J/' c 36, then
J ^ c 36.
(2) There exists Fitting classes which are not ^"-Fitting classes for any lattice

formation & containing properly ^f. The class of all metanilpotent groups ^Y2 is
an example. To see this notice that the minimal local definition of J/1, as saturated
formation, is the formation function g defined by

g(p) = Q(G/OP,P(G) : G e / 2 ) = JT9.,

for every prime p, (see [12, IV, Proposition 3.10]). If & is a lattice formation such
that & c JV1, then / (p) c g{p) for every prime p, by [12, IV, Proposition 3.11].
But this implies that & = J/.
A different example with a Fitting class 36, containing a lattice formation &, such
that JV C &, is given below after (3).
(3) Let ^Y c & c <£ be lattice formations. Note that in this case ^"-subnormal

subgroups are ^-subnormal subgroups. Then Theorem 2.8 tells in particular that #
is an ^"-Fitting class.

We wonder which type of formations, related to the class of nilpotent groups and
to lattice formations, satisfy the property stated in Remark 3.7 (3). In [4, 9, 10] the
following formations were taken into consideration:

Let <£ = L F (g) be the saturated formation locally defined by the formation function
ggivenbyg(p) = ya(j,), for some o(p) c Psuchthatp e a(p),if p e n = char(^),
and g(q) = 0, if q <£n.

If J/ c & c <g, it is not true in general that # is an ^"-Fitting class. Take for
instance & = LF(f) locally defined by F(2) = F(3) = y{2^ and F(q) = yq,
for every prime q £ 2, 3, and <g = LF(g) locally defined by g(2) = ^2,3), g(3) =

), £(5) = (̂3,5) and g(q) = yq, for every prime q ^ 2, 3, 5. (Notice that JY
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and & are the unique lattice formations contained in &.) Then <£ is not an ^"-Fitting
class. To see this consider the primitive group [ V2]Z3. By [12, B, Corollary 10.7] this
group has an irreducible and faithful module V5 over F5. Let G = [ V5]([ V2]Z3). Then
H = V5Z3 is ^"-subnormal in G and H e # , but G = (H, Hx), for 1 ^ x e v2, and
Gt<S.

With some restrictions on the sets of primes a(p) which define #', it is possible to
obtain a stronger form of above-mentioned property. The formations which appear
were also studied in [8] with full characteristic.

LEMMA 3.8. Let & be a saturated formation with char(^) = n c (P, locally defined
by the formation function g given by g(p) — <5^o(p), for some o(p) C P such that
p e <r(p), ifp 6 it, and g(q) = 0, ifq & n. (Notice that we can assume without loss
of generality that a (p) C n.)

Assume also that the following property holds: if q e cr(p), then a(q) C a{p),
for every pair of prime numbers p,q e n. Then G e& if and only ifGe ^ and G
has a normal Hall a (p)'-subgroup for every prime number p.

PROOF. Take #i, the saturated formation locally defined by the formation function
gi, given by gx{p) = g(p) = yaip),ifp e n, and gx(q) = yn,ifq &n.

It is clear that G e & if and only if G e % n yn. By [8, Remark] we know that
G 6 ^i if and only if G has a normal Hall a (p/-subgroup, for every prime number
pen, and a normal Hall n -subgroup. Now the result is easily deduced. •

THEOREM 3.9. Let& — LF{g) be a saturated formation with char(#) = n as in
Lemma 3.8. Let & be a lattice formation containing jY'. The following statements
are equivalent:

(i) <£ is an & -Fitting class.
(ii) F(p) c ya(p)i far every pen.

(iii) F(p) C G(p), for every p e n.

c <S, they are also equivalent to & £&.

PROOF. It is not difficult to prove that (ii) is equivalent to (iii) taking into account
that G(p) = ya(p) D <#, for every pen, (see [12, IV, Proposition 3.8]).

Assume that (i) is true and take pen. Iff (p) = (1), then F(p) = yp <z yaip).
Otherwise, F(p) = fjp) - yn(p). Let p j£~r e n(p) and take G = [ Vr]Zp, with
Vr an irreducible and faithful Zp -module over Fr. Zp is an ^"-subnormal ^-subgroup
of G. By hypothesis, G e <3. In particular, r en.

Now a similar primitive group [Vp]Zr belongs also to # , which implies that r €
crip).
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We prove next that (ii) implies (i). Notice first that # is subgroup-closed. We claim
that No,^(^) = <S. Assume that this is not true and take a group G of minimal order
among the groups which do not belong to <£ but are generated by two ^"-subnormal
subgroups in # . Among the pairs (A, B) of subgroups of G such that A, B ^"-sn
G — (A, B) and A, B e ^ , choose a pair (H, K) with \H\ + \K\ maximum.

Since <£ is a Fitting class, we can assume without loss of generality that H is not
normal in G. By the choice of G and the choice of the pair (H, K), we can deduce
that G = {H, //«>, for every g e G\ NG(H). This implies that M = NG(H) is the
unique maximal subgroup of G containing H. Since H is ^"-subnormal in G, then
M is ^"-normal in G. Again the choice of H implies that H = My. Arguing as in
the proof of Proposition 3.3, we deduce that GF(p) < H, Up e a{\G : M\).

Since G does not belong to # , the hypothesis implies that 1 ^ GF(p). Then H
contains a minimal normal subgroup N of G.

By the choice of G, it is clear that G/N e &. Since & is a saturated formation, G
is a primitive group and N is the unique minimal normal subgroup of G.

If Af is a g-group, for some prime q, then H is a CT(g)-group. Otherwise, since
H e &, we know by Lemma 3.8 that H has a normal Hall cr(g)'-subgroup, which
centralizes N, a contradiction. Consequently, H/GF(p) € ya(q) l~l •&*&)•

Assume that there exists r e o{q) n n(p) c n. By the hypothesis n(j>) =
x(.r) ^ o{r) 9 c(g)- This implies that G is a a(^f)-group. Since N is a g-group and
G/N € # , it follows that G e ^ a contradiction.

If cr(q) n 7r(p) is empty, then H = GF(p\ but this is not possible because H is not
normal in G and we are done. •

REMARK 3.10. Lattice formations and also the class of p-nilpotent groups, for every
prime p, are particular examples of the formations # considered in Theorem 3.9. In
particular, this theorem and Proposition 3.4 (a) improve Theorem 2.8, parts (1) and (2).

We show next some more examples of ^"-Fitting classes of a different nature.

EXAMPLE I. Consider the normal Fitting class

9 = ^({3}) = (G ey : fl"=i det($ on M,) = 1, for all g e G, where the
product is taken over the 3-chief factors Mu...,Mn of a
given chief series of G)

(see [12, IX, Example 2.14 (b)]). Let & be a lattice formation containing jV.
Then:

(1) ^ c 0 if and only if 7T (2) ^ TT(3).

PROOF. If & c ^ , it is obvious that n(2) ^ 7r(3). The converse is also clear
because of the structure of ̂ "-groups; see Lemma 2.1. •
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(2) If & c 0 , then 9 is an ^"-Fitting class.

PROOF. sn^(9) = 9. Let G be a group in 9 and // an .^-normal maximal
subgroup of G. It is enough to prove that H e <&. Since // is ^"-normal, HF(p) < G,
if p e a{\G : H\), in particular HF(p) 6 2. If // would not belong to ^ , then
// : Hs\ = 2. Since / / ^ < H®, we would have 2 e 7T(/J), and so 3 $ n{p) by (1).

Consequently HF{p) covers every 3-chief factor of G. Consider now a chief series of
G through HF(p), take the intersection with H and refine it to a chief series of H. An
easy computation shows that H e 9.

No,^(^) = 9. Assume that the result is not true and take a group G & 9 and a
pair of subgroups (//, K) as in the proof of Theorem 3.9. Arguing as in that proof
we deduce from this choice the following facts: we can assume, without loss of
generality, that H is not normal in G, there is a unique maximal subgroup M of G
containing H = M® and GFij>) < H, if p e a(\G : M\). Moreover, GF(p) < G®.
Then 2 e n(p), because \G : G&\ = 2. Consequently 3 £ n(p). This implies
that G ^ ' covers every 3-chief factor of G. But G = HG® because otherwise
M3 = H < G® = A/ which would imply // < G, a contradiction. By a computation
as above if follows that G € @, which provides the final contradiction. •

EXAMPLE II. Consider the dominant Fitting class

9" = (Gey: G/CC(OAG)) e ?n)

for a set of primes n (see [12, IX, Example 2.5 (b) and Theorem 4.16]). Let & be a
lattice formation with ŷf c j?". Then:

(1) ^ c 0* if and only if 7T = \Jp^n(p).

PROOF. Assume that & c ^ . It is clear that 7r c Up^^O5)- Assume that there
is /• € n(p) \ n for some pen. Then the primitive group [Vp]Zr belongs to & but
does not belong to <2)n, a contradiction. Then jr — \Jpenn{p). The converse is clear
taking into account the structure of ^-groups; see Lemma 2.1. •

(2) If & c ^ " , then ^ " is an ^"-Fitting class.

PROOF. %n^{9n) = ^ " . Let // be an ^"-normal maximal subgroup of a group
G in f&*. It is enough to prove that H 6 Qin in order to obtain the result. If
{p} = cr(|G : H\), then //''W < G because// is ̂ "-normal. In particular, / / ^ e ^ .
Distinguish the following cases:

(a) n(p) c n. In this case O"(G) < HF(p) n CC(OW(G)), because G € ^ .
Notice that On(G) H H — On{H), because every Hall n-subgroup of G reduces
in H. Then O"(H) < O"(G) < CH{On{G)) < CH(On(H)), that is, He®".
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(b) 7r(p) g 7i. In this case O"'(G) < HF(p) < H, which implies, O"\G) =
O"'(H) and so (^(G) = On(H). Since G e 0" , we have O"(H) < O*(G) <
CG(OAG)) = CC(OAH)). This means that H e2>".

No &$" = ^ T . Assume that the result is not true and take a group G £ ^"and a
pair of subgroups (//, K) as in the proof of Proposition 3.9. With the usual arguments
of this proof, we can assume, without loss of generality, that H is not normal in G
and G = ( / / , / / * ) , for every g e G\ NG(H). In particular, there is a unique maximal
subgroup M of G containing H = M9« and GF{p) < G®*, if p e cx(|G : M|).

If // < On{G)H < G, then On(G)H is an ^"-subnormal 0*-subgroup of G. But
this contradicts the choice of the pair (//, K).

Assume that G = On{G)H. In this case, p £ n and so n(p) c jr. Conse-
quently, if Gn denotes a Hall n-subgroup of G, we have G = GFip)Gn < G®* GT =
CcCO^CG))^,, e Inj^(G) by [12, IX, Theorem 4.16], that is G e 9", a contradic-
tion.

Consider now the case On{G) < H. Since H 6 9", by [12, IX, Theorem 4.16]
it follows that H is contained in a ^"-injector / of G. But / = CG(On(G))Gn,
for some Hall 7r-subgroup Gn of G. By the choice of G, / < G. Then p g n
and so n c n(p)'. Since M is ^"-normal in G, it is clear that GF(p) < M. In this
case, this implies that M contains every Hall n-subgroup of G. Moreover I < M.
Consequently, if g e G \ M, we have G = (H, Hg) < {I, Ig) < M, which provides
the final contradiction. •

The following results are proved with the similar arguments to those used for the
corresponding classical results, with obvious changes (see [12, IX, Theorem 1.12 (a)
and Lemma 1.13]).

PROPOSITION 3.11. (a) IfJf? and X are two &-Fitting classes, then 3V o & is
an &-Fitting class.
(b) (Quasi-Ro-lemma) Let N\ and N2 be normal subgroups of a group G such that

N] Pi N2 = 1 and G/N\N2 is &-group, and let 3£ be an & -Fitting class containing
G/Nh Then G e SIC if and only ifG/N2 6 3C.

4. A characterisation of ^-projectors

Let <£ be a saturated formation, G a group and H a subgroup of G. It is obvious
that the following statements are equivalent:

(i) Whenever H #-Dn T < G, then H = T.
(ii) Whenever H #-sn T < G, then H = T.

(iii) If H is a 5^-normal maximal subgroup of T < G, then H = T.
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In this case, the subgroup H is said to be self-&-normalizing in G.
We provide in Theorem 4.2 a characterisation of the ^-projectors, for a subgroup-

closed saturated formation <£. It is an extension of the characterisation of the <yK-
projectors as the Carter subgroups. Proposition 4.1 tells that some additional condition
should be satisfied by a self-^-normalizing {^-subgroup to be a ^-projector. The
proposed required condition is motivated by Corollary 2.13. Some related results
were obtained by Carter and Hawkes in [11] (see Theorem 2.14) and by Graddon in
[14, Theorem 2.15].

PROPOSITION 4.1. Let & be a lattice formation containing <sY'. The following
statements are equivalent:

(i) Either & = J/ or & = 5?.
(ii) In every group G, the ^-projectors of G are exactly the self-& -normalizing

^-subgroups of G.

PROOF. It is clear that (i) implies (ii).
Assume that statement (ii) holds. If & ^ ^V, there exists a prime p such that

the corresponding set of primes n(p) defining & satisfies \n{p)\ > 2. Take p ^
q e n(p). If & ^ &', there exists a prime r e n(p)'. Consider the primitive group
X = [Vp]Zq. By [12, B, Corollary 11.7], X possesses an irreducible and faithful
module Vr over Ff such that [Vr, Zq] < Vr. Then Vr = [Vr, Zq] x CVr(Zq), with
1 £ [Vr, Zq\ < Vr, by [12, A, Proposition 12.5]. Take G = [Vr]X the corresponding
semidirect product. Consider the ^"-subgroup H = CVr{Zq)Zq. We claim that
H is self-^"-normalizing in G. Notice that the unique maximal subgroup of G
containing H is VrZq. If H were ^-Dnormal in some subgroup T containing H
properly, then r e a{\ T : H\). Moreover the Sylow /--subgroup Tr of T would verify
[Tr, Zq] < H n [Vr, Zq] = 1. This would imply that Tr < CVr{Zq) < H. But this
contradicts r e o(\T : H\). Therefore, H is a self-«^"-normalizing ^"-subgroup of
G, but H is not an ^"-projector of G. This contradicts statement (ii) and concludes
the proof. •

THEOREM 4.2. Let & be a subgroup-closed saturated formation. For a subgroup
H of a group G, the following statements are equivalent:

(a) H is a &-projector of G;
(b) H is a self-&-normalizing ^-subgroup of G and H satisfies the following prop-

erty:

(*) IfH<K< G, then H n K* < (K*)'.

PROOF. If H is a ^-projector of G, then H is a self-^-normalizing ^-subgroup
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of G by Theorem 2.14. Moreover, H is also a ̂ -projector in every subgroup K of G
containing H. Then statement (2) is clear by Corollary 2.13.

Conversely, suppose that statement (2) holds. We observe first that H is a CS-
maximal subgroup of G. We use induction on \G\. Then we may assume that H is a
^-projector of every proper subgroup of G containing H.

If H were a maximal subgroup of G, then H would be a ^-projector of G by
Theorem 2.14 and we would be done.

Let M be a maximal subgroup of G containing H.
Suppose that M is ̂ -abnormal in G. By [12, V, Lemma 3.4] there exists a <S-

normalizer D of G, and a ̂ -normalizer D\ of M such that D < D\. Since H is a
^-projector of M, we may assume by [12, V, Theorem 4.1] and by the conjugacy of
the ^-normalizers, that D < Di < H. We claim that H is ^-abnormal in G. For
any maximal subgroup L of G containing H, we have that H is S -̂abnormal in L
by Theorem 2.14 because H is a Sf-projector of L. But D < H < L, then [12, V.
Lemma 3.4] implies that L is ^-abnormal in G. This means that H is ^-abnormal
in G. Then H is a ^-projector of G by Theorem 2.14.

Consequently, we can suppose that every maximal subgroup of G containing H is
^-normal in G.

We split the rest of the proof into the following steps:
Step 1. M = H G*. In particular, M is the unique maximal subgroup of G contain-
ing H.

Since G* < M, the result is clear because H is a ̂ -projector of M.
Step 2. We may suppose that CoreG(//) = 1.

Assume that K = CoreG(H) ^ 1. We have that H/K is a self-#-normalizing
^-subgroup of G/K. Moreover, if H/K < T/K < G/K, then

(H/K) n (T/Kf = (HD T*K)/K = (H n T*)K/K

< (T^YK/K = ((T/K)*)'.

By inductive hypothesis, H/K is a ̂ -projector of G/K. Thus H is a ^-projector
of G. Then we may suppose that CoreG(//) = 1.
Step 3. N < G*, for every minimal normal subgroup N of G.

Let N be a minimal normal subgroup of G. Obviously HN < G. Therefore, since
His a ̂ -projector of M, we have that HN = HNHM = HNDHG* = H(NnG*)
by [12, IV, Theorem 5.4]. Thus Step 2 implies that Am G* / 1. Then JV^AfnG*,
that is, N <G*.
Step 4. We ma)/ suppose that for each minimal normal subgroup N of G, there exists
a subgroup T of G such that HN is a &-normal maximal subgroup of T. Otherwise
H is a &'-projector of G.

Let N be a minimal normal subgroup of G and assume that HN/N is self-#-
normalizing in G/N. Moreover, HN/N € &. We claim that HN/N verifies (*) in
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G/N. Consider HN/N < L/N < G/N.
If L < G, then H is a ^-projector of L and the result is clear by Lemma 2.12.
If L = G, then (HN/N) n (G/AT)* = (HN/N) n (G*/A0 = (// n G*)N/N <

(G«)'N/N = ((G/N)*)'.
By inductile hypothesis, HN/N is a ^-projector of G/Af. But // is ^-projector

of HN < G. Consequently, it is well known that H is a ̂ -projector of G. Hence we
may suppose that the statement of Step 4 holds.
Step 5. M = HN, for every minimal normal subgroup N of G.

Let A7 be a minimal normal subgroup N of G and take a subgroup T for N as in
Step 4. If 7 < G, then H is a Sf-projector of T, but this contradicts that HN is
Sf-normal in 7 by Theorem 2.14. Then 7 = G. But this implies that HN = M.
Step 6 G ij monolithic.

If Â i and N2 are two minimal normal subgroups of G, then M = HNi = HN2-
Therefore, M* < Nt (~) N2 = I, that is M e *3. This is not possible because H is
^-maximal in G.
Step 7. The final conclusion.

If (G*)' 7̂  1 and A' is the unique minimal subgroup of G, we would have G* =
G* DM = G* n HN = (G* D H)N < (G*)\ which is not possible because
G is soluble. Hence G* n H = 1 and G* = N. In particular, G = NR is a
primitive group, with R a maximal subgroup of G such that Corec(i?) = 1. Now,
since H is ^-maximal in G, we can apply [12, in, Lemma 3.24] to obtain that
H = (HC\ N)(H n Rg) for some g eNH. Since H n A7 = 1, we have that // < Rg,
but this is not possible by Step 1 and the proof is concluded. •

Acknowledgement

This research has been supported by Proyecto PB 97-0674-C02-02 of DGESIC,
Ministerio de Educacion y Cultura of Spain.

References

[1] M. Arroyo-Jorda\ &'-Normalidad (Ph.D. Thesis, Universitat de Valencia, 2000).
[2] M. Arroyo-JordS and M. D. Perez-Ramos, 'Fitting classes and lattice formations II', 7. Aust. Math.

Soc, to appear.
[3] , 'On the lattice of «^-Dnormal subgroups in finite soluble groups', J. Algebra 242 (2001),

198-212.
[4] A. Ballester-Bolinches, 'A note on saturated formations', Arch. Math. 58(1992), 110-113.
[5] A. Ballester-Bolinches, K. Doerk and M. D. Perez-Ramos, 'On the lattice of ^-subnormal sub-

groups', / Algebra 148 (1992), 42-52.
[6] , 'On ^-normal subgroups of finite soluble groups', J. Algebra 171 (1995), 189-203.

https://doi.org/10.1017/S1446788700008727 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008727


108 M Arroyo-Jorda and M. D. Perez-Ramos [16]

[7] A. Ballester-Bolinches, A. Martinez-Pastor and M. D. Perez-Ramos, 'Nilpotent-like Fitting for-
mations of finite soluble groups', Bull. Austral. Math. Soc. 62 (2000), 427-433.

[8] A. Ballester-Bolinches, M. C. Pedraza-Aguilera and M. D. P6rez-Ramos, 'On ^-subnormal
subgroups and ^-residuals of finite soluble groups', J. Algebra 186 (1996), 314-322.

[9] A. Ballester-Bolinches and M. D. Perez-Ramos, 'On ^"-critical groups', / Algebra 174 (1995),
948-958.

[10] , 'Two questions of L. A. Shemetkov on critical groups', J. Algebra 179 (1996), 905-917.
[11] R. Carter and T. Hawkes, 'The ^-normalizers of a finite soluble group', J. Algebra 5 (1967),

175-202.
[12] K. Doerk and T.Hawkes, Finite soluble groups (Walter De Gruyter, Berlin, 1992).
[13] P. Fdrster, 'Finite groups all of whose subgroups are ̂ -subnormal or ̂ "-subabnormaT, J. Algebra

103(1986), 285-293.
[14] C. J. Graddon, '^-reducers in finite soluble groups', J. Algebra 18 (1971), 574-587.
[15] F. P. Lockett, On the theory of Fitting classes of finite soluble groups (Ph.D. Thesis, University of

Warwick, 1971).
[16] N. Miiller, '^"-Pronormale Untergruppen Endlich AuflosbarerGruppen', preprint, 1985.

Departamento de Matematica Aplicada Departamento d'Algebra
Universidad Politecnica de Valencia Universitat de Valencia
Camino de Vera, s/n Doctor Moliner 50
46071 Valencia 46100 Burjassot (Valencia)
Spain Spain
e-mail: marroyo@mat.upv.es e-mail: dolores.perez@uv.es

https://doi.org/10.1017/S1446788700008727 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008727

