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Abstract

The distributions of discrete, continuous and conditional multiple window scan statistics
are studied. The finite Markov chain imbedding technique has been applied to obtain the
distributions of fixed window scan statistics defined from a sequence of Bernoulli trials. In
this manuscript the technique is extended to compute the distributions of multiple window
scan statistics and the exact powers for multiple pulse and Markov dependent alternatives.
An application in blood component quality monitoring is provided. Numerical results
are also given to illustrate our theoretical results.
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1. Introduction

The literature on scan statistics is substantial and growing rapidly due to the widespread
applications in many areas (see, e.g. [2], [13], and [19]). In particular, scan statistics have
been widely applied in quality control (see, e.g. [18]) to increase the sensitivity of detecting
an out-of-control signal. The development of the scan statistic method on blood component
quality monitoring can be found in [11].

Let N(t) be a Poisson process with intensity λ on (0,1]. For 0 < ω ≤ 1, let S(ω, t) =
N(t + ω) − N(t) denote the number of events that have occurred in the interval (t, t + ω],
where ω is the window size. An unconditional continuous scan statistic is defined as

S(ω) = sup
0<t≤1−ω

S(ω, t).

The exact distribution of S(ω) has been derived (see [20]) over a limited range of parameters.
Many other authors have derived approximations and tight bounds for distribution of S(ω) (see,
e.g. [6], [10], and [12]).

Let X1, . . . , Xn be a sequence of independent, identically distributed Bernoulli trials with
P(X1 = 1) = p and P(X1 = 0) = q = 1 − p. For 1 ≤ r ≤ n, let Sn(r, i) = ∑i+r−1

ν=i Xν .

Received 23 November 2012; revision received 13 February 2013.
∗ Postal address: Department of Statistics, University of Connecticut, Storrs, CT 06269-4120, USA.
∗∗ Postal address: Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Email address: fu@umanitoba.ca
∗∗∗ Email address: tung-lung.wu@uconn.edu
∗∗∗∗ Email address: glaz@uconnvm.uconn.edu

1089

https://doi.org/10.1239/jap/1389370101 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370101


1090 T.-L. WU ET AL.

An unconditional discrete scan statistic is defined as

Sn(r) = max
1≤i≤n−r+1

Sn(r, i).

The unconditional probability P(Sn(r) > a) can be obtained by the conditional probability
weighted by the binomial distribution, i.e.

P(Sn(r) > a) =
n∑

N=0

(
n

N

)
pNqn−N

P

(
Sn(r) > a

∣∣∣∣
n∑

i=1

Xi = N

)
.

The exact unconditional and conditional distributions have been obtained by many authors;
see, e.g. [16] for the conditional case and [4] for the unconditional case. Approximations and
bounds have also been extensively studied; see, e.g. [7] and [9].

For testing the null hypothesis H0 of uniformity against the alternative hypothesis Ha of
presence of clusters, the general likelihood ratio test rejects the null hypothesis if the observed
scan statistic is large. In the discrete case, under Ha , we usually specify a block of r observations
{Xτ , . . . , Xτ+r−1}, of which the probability p1 = P(Xi = 1) > p for i = τ, . . . , τ + r − 1,
where r is a known constant. A variable window scan statistic proposed by Nagarwalla [15]
does not require the length of the scanning window to be fixed, and this motivates us to study the
following general theory: given an integer k and 1 ≤ r1 < r2 < · · · < rk ≤ n, the distribution
of a discrete multiple window scan statistic is given by

P(Sn(rj ) < aj , for all j = 1, . . . , k), (1.1)

where a1 < · · · < ak are constants. For convenience, the probability given in (1.1) is sometimes
denoted by P(Sn(r1, . . . , rk) < (a1, . . . , ak)). A continuous version of the multiple window
scan statistic can be defined analogously. Glaz and Zhang [8] derived simple approximations
for the above probability for one and two dimensional cases.

Although many accurate approximations (see, e.g. [17]) have been proposed for the distri-
bution of a multiple window scan statistic, there is no theoretical result for their exact α level
and power. In this manuscript the finite Markov chain imbedding (FMCI) technique (see, e.g.
[5]) is extended to study the distributions of multiple window scan statistics for both discrete
and continuous, as well as, conditional and unconditional cases. In Section 2 we obtain the
exact distributions of conditional and unconditional discrete multiple window scan statistics.
The approximation for conditional and unconditional continuous cases is given in Section 3. In
Section 4 the exact powers of the unconditional discrete case are obtained for (i) the multiple
pulse alternative and (ii) the Markov dependent alternative. An application in blood component
quality monitoring is given in Section 5. Numerical results are given in Section 6. Section 7
provides a summary and discussion.

2. Discrete multiple window scan statistics

In this section the exact distributions of unconditional and conditional discrete multiple
window scan statistics are obtained through the direct extension of the approaches in [4] and
[6].

Definition 2.1. A compound pattern generated by a set of simple patterns is said to be an
effective compound pattern, denoted by �E , if any simple pattern in �E is not a segment of
another pattern in �E , i.e. the simple patterns in �E are all distinct.
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It follows from the above definition that a compound pattern � generated by a set of simple
patterns can always be reduced to an effective compound pattern �E by removing those simple
patterns which contain another simple pattern as a segment, and, for n ≥ 0,

P(W(�) > n) = P(W(�E) > n), (2.1)

where W(�) is the waiting time until the first occurrence of the compound pattern �.
Given an integer k and 1 ≤ r1 < · · · < rk ≤ n, we are interested in the events {Sn(rj ) <

aj }, j = 1, . . . , k, occurring simultaneously. Following Fu [4], the event
⋂k

j=1{Sn(rj ) < aj }
occurs if and only if none of the compound patterns �rj ,aj

, associated with each fixed window
scan statistic, occur in the sequence of n Bernoulli trials. We give a simple example for
illustration. Given k = 2, r1 = 4, r2 = 6, a1 = 3, and a2 = 4, we scan two windows of
sizes 4 and 6 over a sequence. The event {Sn(4) < 3} corresponds to the compound pattern
�4,3 = {111, 1011, 1101}, and the event {Sn(6) < 4} corresponds to another compound
pattern �6,4 = {1111, 10111,11011,11101,100111,101011,101101,110011,110101,111001}.
Then, {Sn(4) < 3} and {Sn(6) < 4} both occur if and only if the compound pattern generated
by �4,3 and �6,4 does not occur in the sequence of n trials. Note that the above compound
pattern is not an effective one and the corresponding effective compound pattern is given by
{111,1011,1101,110011}.

Lemma 2.1. Given an integer k, 1 ≤ r1 < · · · < rk ≤ n, and 1 ≤ a1 < · · · < ak ≤ rk + 1,
we have

P(Sn(rj ) < aj , j = 1, . . . , k) = P(W(�E
k ) > n) = ξ0(N

E(k; p))n1�, (2.2)

where �E
k is the effective compound pattern associated with the multiple window scan statistic,

NE(k; p) is the essential transition probability matrix of the imbedded Markov chain of W(�E
k ),

ξ0 is an appropriate initial distribution, and 1� is the transpose of the vector (1,…,1).

Proof. Let �k be the compound pattern associated with the multiple window scan statistic.
From Fu [4] together with (2.1) follows

P(Sn(rj ) < aj , j = 1, . . . , k) = P(W(�k) > n) = P(W(�E
k ) > n) = ξ0(N

E(k; p))n1�

and this completes the proof.

The state space and the essential transition probability matrix NE(k; p) of the imbedded
Markov chain can be obtained from [4]. Thus, the exact distribution of the discrete multiple
window scan statistic can be calculated via Lemma 2.1. Note that it is easy to see that the
compound pattern �k is generated by a number of such simple patterns and how many is given
by

k∑
j=1

rj −aj∑
ν=0

(
aj − 2 + ν

ν

)
. (2.3)

In the above example, for k = 2, the resulting effective compound pattern is �E = {111,1011,
1101,110011} consisting of only 4 simple patterns instead of 13 according to (2.3). Thus, the
total number of simple patterns in the effective compound pattern �E

k is substantially less than∑k
j=1

∑rj −aj

ν=0

(
aj −2+ν

ν

)
. Some details on this matter are given in Section 7. In what follows,

when we mention a compound pattern, it always refers to the corresponding effective compound
pattern and is denoted by �, for simplicity, without the superscript E.

https://doi.org/10.1239/jap/1389370101 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370101


1092 T.-L. WU ET AL.

Remark 2.1. Note that {aj } must be in strictly increasing order. If there is some i and j such
that ai ≥ aj and ri < rj , then the occurrence of {Sn(rj ) < aj } implies the occurrence of
{Sn(ri) < ai}. Hence, in this case, the statement Sn(ri) < ai is redundant. On the other hand,
Sn(rj ) ≥ aj is redundant when Sn(ri) ≥ ai is also considered.

Fu et al. [6] extended Fu’s [4] result and showed that the conditional fixed window scan
statistic (k = 1) is finite Markov chain imbeddable. Given

∑n
i=1 Xi = N , window size r, and

a, the distribution of the conditional fixed window scan statistic P(Sn(r) < a | ∑n
i=1 Xi = N)

is treated as the waiting time distribution of the first occurrence of a corresponding compound
pattern �r,a in a [n − N, N ]-specified random permutation π , i.e.

P

(
Sn(r) < a

∣∣∣∣
n∑

i=1

Xi = N

)
= P(W(�r,a) > n | π) = ξ0

( n∏
t=1

Nt (r, a)

)
1�,

where Nt (r, a) is the essential transition probability matrix of the imbedded Markov chain of
W(�r,a). Although they did not point it out, they, in fact, not only obtained the distribution
of the conditional fixed window scan statistic, but also extended the solution of the waiting
time problem of runs and patterns to random permutations. Hence, we can readily adopt their
approach to derive the exact distribution of the conditional discrete multiple window scan
statistic. Given 1 ≤ r1 < · · · < rk ≤ n and a1 < · · · < ak , following Fu et al. [6], we have

P

(
Sn(rj ) < aj , j = 1, . . . , k

∣∣∣∣
n∑

i=1

Xi = N

)
= P(W(�k) > n | π) = ξ0

( n∏
t=1

Nt (k)

)
1�,

(2.4)
where �k is the corresponding effective compound pattern, and Nt (k) can be constructed using
(2.3) from [6].

In some applications, scan statistics are used for two purposes. In a retrospective study where
the total number of successes

∑n
i=1 Xi = N is known, a conditional multiple scan statistic can

be deployed and the test can be implemented exactly based on (2.4). Once a cluster is detected,
its location, where the number of successes is above the threshold, is also revealed. There
are various algorithms to identify the locations of clusters. For example, Cucala [3] proposed
a procedure to identify multiple clustering by removing the existing cluster and rescaling the
spacings between observations so that the procedure can be repeated until no significant cluster
can be found.

In a prospective study, the scan statistic detects the clusters that currently exist. To implement
a prospective scan statistic, we may conduct a pilot study with size n0 or use historical data
to accurately estimate the probability of success p. Suppose that the pilot data is independent
of the current data and they are from the same population. For a given n > 0, it follows from
Slutsky’s theorem that, as n0 → ∞,

P

(
Sn(rj ) < aj , j = 1, . . . , k

∣∣∣∣ p̂ =
∑n0

i=1 Xi

n0

)
→ P(Sn(rj ) < aj , j = 1, . . . , k | p).

The result is based on the fact that the probability of a scan statistic in (2.2) is a polynomial
function of p which is continuous. Using such an estimate, for a given type-I error, a threshold
is determined for detecting clusters according to (2.2). The distribution of a scan statistic is
sensitive to the probability of success p which is closely related to the performance (power) of
the test. An overestimation of p would lead to a loss of power in detecting clusters. In practice,
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Table 1: 10 simulations for P(S100(10, 15, 20) < (3, 5, 7) | p̂ = 0.05).

Simulations 1 2 3 4 5 6 7 8 9 10

Results 0.552 0.773 0.935 0.773 0.935 0.935 0.441 0.935 0.665 0.441

we may expect p ≤ 0.1 which leads to an upper bound, for the standard deviation of the
estimator, of

√
0.09/100 = 0.03 if n0 = 100. The approximate 95% confidence interval is

(0.36, 0.64) if n0 = 1000 and x̄ = 0.05. We ran 10 simulations for the probability of a
multiple window scan statistic of window size (10, 15, 20) when p̂ = 0.05 and n0 = 100. The
numerical results are given in Table 1 and show that the median is an accurate estimate for
P(S100(10, 15, 20) < (3, 5, 7) | p̂ = 0.05) = 0.773. Further theoretical investigations on the
efficiency of estimates may be presented in a subsequent paper.

3. Continuous multiple window scan statistics

For a Poisson process N(t), given N(1) = N , the N points are distributed according to a
uniform distribution on (0,1]. Given an integer k and window sizes 0 < ω1 < · · · < ωk ≤ 1,
we first consider the distribution of conditional continuous multiple window scan statistic

P(S(ωj ) < aj , j = 1, . . . , k | N).

Given a large integer n, the interval (0,1] is divided into n subintervals (0 = t0, t1], . . . , (tn−1,

tn = 1], each of equal length ti − ti−1 = �t = 1/n, i = 1, . . . , n. Then, all the induced
[n − N, N ]-specified permutations are of equal probability. The following lemmas from [6]
will be used to prove our main result, Theorem 3.1.

Lemma 3.1. For all window sizes 0 < ωj ≤ 1, j = 1, . . . , k, the following holds

max
1≤i≤n−[nωj ]+1

Sn([nωj ], i) ≤ sup
0<t≤1−ωj

S(ωj , t) ≤ max
1≤i≤n−[nωj ]−1

Sn([nωj ] + 2, i),

where [nωj ] is the integer part of nωj .

Proof. For each 1 ≤ j ≤ k, the continuous scan statistics S(ωj ) can be expressed as

sup
0<t≤1−ωj

S(ωj , t) = max
1≤i≤n−[nωj ] sup

ti−1<t≤ti

S(ωj , t).

For simplicity of notation, with understanding, the last scanning window stops at time t = 1.
It follows from the definition, for i = 1, . . . , n − [nωj ],

max(Sn([nωj ], i), Sn([nωj ], i + 1)) ≤ sup
ti−1<t≤ti

S(ωj , t).

Taking the maximum yields

max
1≤i≤n−[nωj ]+1

Sn([nωj ], i) ≤ sup
0<t≤1−ωj

S(ωj , t).

Similarly, we also have

sup
0<t≤1−ωj

S(ωj , t) ≤ max
1≤i≤n−[nωj ]−1

Sn([nωj ] + 2, i).

This completes the proof.
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Lemma 3.2. For a given integer k, 0 < ω1 < · · · < ωk ≤ 1, and a1 < · · · < ak < N ,

|P(Sn([nωj ] + 2) > aj | N) − P(Sn([nωj ]) > aj | N)| ≤ 2N2

n
, j = 1, . . . , k.

Proof. See proof of Theorem 3.1 in [6].

In the sequel, we generalize the result of Fu et al. [6] to the conditional continuous multiple
window scan statistic.

Theorem 3.1. For a given integer k, 0 < ω1 < · · · < ωk ≤ 1, and a1 < · · · < ak < N ,

P(S(ωj ) > aj , for some j = 1, . . . , k | N)

= lim
n→∞ P(Sn([nωj ]) > aj , for some j = 1, . . . , k | N).

Proof of Theorem 3.1. It follows, from the definition, that {Sn([nωj ]) > aj } implies that
{S(ωj ) > aj }, and {S(ωj ) > aj } implies that {Sn([nωj ] + 2) > aj } for j = 1, . . . , k. Given
N(1) = N , from Lemma 3.1 follows

P(Sn([nωj ]) > aj , for some j = 1, . . . , k | N)

≤ P(S(ωj ) > aj , for some j = 1, . . . , k | N)

≤ P(Sn([nωj ] + 2) > aj , for some j = 1, . . . , k | N).

Thus, from Lemma 3.2 and the fact that {Sn([nωj ]) > aj } ⊆ {Sn([nωj ] + 2) > aj }, we have

|P(Sn([nωj ] + 2) > aj , for some j = 1, . . . , k | N)

− P(Sn([nωj ]) > aj , for some j = 1, . . . , k | N)|

≤
k∑

j=1

[P(Sn([nωj ] + 2) > aj | N) − P(Sn([nωj ]) > aj | N)]

≤ 2kN2

n
.

This completes the proof.

Remark 3.1. Note that, as remarked in [6], the theorem still holds for fixed integers � ≥ 0 and
h ≥ 2, i.e.

P(S(ωj ) > aj , for some j = 1, . . . , k | N)

= lim
n→∞ P(Sn([nωj ] + h) > aj , for some j = 1, . . . , k | N)

= lim
n→∞ P(Sn([nωj ] − �) > aj , for some j = 1, . . . , k | N).

For the unconditional case, from the viewpoint of the Poisson process with intensity λ, let
{Xi}ni=1 be a sequence of Bernoulli trials with probability pn = λ/n. For 1 ≤ r1 < · · · < rk ≤
n, it follows that

P(Sn(rj ) < aj , j = 1, . . . , k)

=
n∑

N=0

(
n

N

)
pN

n (1 − pn)
n−N

P

(
Sn(rj ) < aj , j = 1, . . . , k

∣∣∣∣
n∑

i=1

Xi = N

)
.
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Taking rj = [nωj ], and since
∑n

i=1 Xi converges in the limit of large n to a Poisson random
variable with parameter λ, the above equation yields the following result: for sufficiently large n

lim
n→∞ P(Sn([nωj ]) < aj , j = 1, . . . , k) =

∞∑
N=0

λN

N ! e−λ
P(S(ωj ) < aj , j = 1, . . . , k | N).

This is equivalent to saying

lim
n→∞ P(Sn([nωj ]) < aj , j = 1, . . . , k) = P(S(ωj ) < aj , j = 1, . . . , k),

or

lim
n→∞ P(Sn([nωj ]) > aj − 1, for some j = 1, . . . , k)

= P(S(ωj ) > aj − 1, for some j = 1, . . . , k).

Theorem 3.2. For a given integer k, 0 < ω1 < · · · < ωk ≤ 1, and a1 < · · · < ak ,

(i) we have

|P(S(ωj ) > aj , for some j = 1, . . . , k)

− P(Sn([nωj ]) > aj , for some j = 1, . . . , k)|

≤ 2k(λ2 + λ)

n
,

(ii) and

P(S(ωj ) > aj , for some j = 1, . . . , k)

= lim
n→∞ P(Sn([nωj ]) > aj , for some j = 1, . . . , k).

Proof. For given n, it follows that

|P(S(ωj ) > aj , for some j = 1, . . . , k) − P(Sn([nωj ]) > aj , for some j = 1, . . . , k)|

≤
∞∑

N=0

λN

N ! e−λ|P(S(ωj ) > aj , for some j = 1, . . . , k | N)

− P(Sn([nωj ]) > aj , for some j = 1, . . . , k | N)|

≤
∞∑

N=0

λN

N ! e−λ|P(Sn([nωj ] + 2) > aj , for some j = 1, . . . , k | N)

− P(Sn([nωj ]) > aj , for some j = 1, . . . , k | N)|

≤
∞∑

N=0

λN

N ! e−λ 2kN2

n

= 2k(λ2 + λ)

n
.

This completes the proof of (i). Result (ii) follows directly from result (i).
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4. Power

In this section we compute the exact powers of unconditional discrete multiple window scan
statistics. The powers of unconditional continuous multiple window scan statistics can then
be approximated by the powers of discrete ones. The approximations for null distributions
of scan statistics have been derived by many authors (see, e.g. [1]), while there are not many
theoretical results for the power in the literature. A pulse alternative was proposed in [21],
where, under Ha , the probability of success p1 in a given window of length d is greater than
p0, the probability of success under H0. We consider the following two generalizations: (i)
the multiple pulse alternative and (ii) the Markov dependent alternative. The details are given
as follows. Given r1, . . . , rk , a1, . . . , ar , under H0, the p-value of a multiple window scan
statistic is defined as

P(Sn(rj ) ≥ aj , for some j = 1, . . . , k | H0).

4.1. Multiple pulse alternative

Let pi denote the probability of success of the ith trial, i = 1, . . . , n. The pulse alternative
is given below. Under H0, the probability of success is the same for all Bernoulli trials and the
null hypothesis is given by

H0 : pi = p0, i = 1, . . . , n.

The alternative hypothesis assumes the presence of a cluster in a certain interval and is given
by

Ha : pi = p0, i = 1, . . . , τ − 1, τ + d, . . . , n, and

pi = p1 > p0, i = τ, . . . , τ + d − 1,

where τ is the starting location of changes and is unknown, and d is the pulse size. For
computing the power of a fixed window scan statistic of window size r , under Ha , we usually
specify a block

B(t, r) = {Xt, Xt+1, . . . , Xt+r−1},
where P(Xi = 1) = p1 > p0, i = t, . . . , t + r − 1.

We generalize the pulse alternative to a multiple pulse alternative by allowing multiple blocks
(clusters) of different sizes. Specifically, for a given m, a multiple pulse alternative is given by

Ha : pi = p1 > p0, i = τν, . . . , τν + dν − 1, ν = 1, . . . , m, and

pi = p0, otherwise.

Note that each block Bν(τ, d) = {Xτν , Xτν+1, . . . , Xτν+dν−1} of size dν does not overlap, or it
will reduce to fewer blocks of larger sizes.

The FMCI technique can be applied to calculate the exact power for a multiple pulse
alternative with a minor modification of the formula in Lemma 2.1. Given τν = tν and
dν, ν = 1, . . . , m, the power is given by

P(Sn(rj ) ≥ aj , for some j = 1, . . . , k | Ha)

= 1 − P(W(�k) > n | Ha)

= 1 − ξ0

m∏
ν=1

[N(k; p0)
τν−τν−1−dν−1 N(k; p1)

dν ]N(k; p0)
n−τm−dm+11�,
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where τ0 = 0, d0 = 1 and N(k; p1) is the essential probability transition matrix of the imbedded
Markov chain associated with the probability of success p1.

Remark 4.1. We can even compute the power for a multiple pulse alternative, where the
probabilities pν are different for blocks Bν(τ, d), ν = 1, . . . , m. The power is then given by

1 − ξ0

m∏
ν=1

[N(k; p0)
τν−τν−1−dν−1 N(k; pν)

dν ]N(k; p0)
n−τm−dm+11�.

4.2. Markov dependent alternative

The Markov dependent alternative tends to form a clump if the Bernoulli trials are positively
correlated. We can model this by Markov dependent trials with high probability from state 1 to
state 1. Hence, a Markov dependent alternative is given by Ha : {Xn} is a sequence of Markov
dependent trials with transition matrix

	 = 0
1

[
p00 p01
p10 p11

]
,

where p11 > p0, and p0 is the probability of success under H0. Let

p0 = (P(X1 = 0), P(X1 = 1)).

Then it follows from the FMCI technique that the power can be computed by

P(Sn(rj ) ≥ aj , for some j = 1, . . . , k | Ha) = 1 − P(W(�k) > n | Ha)

= 1 − ξ0N(k; 	)n1�,

where the essential matrix N(k; 	) can be similarly constructed by replacing p0 and 1 − p0
by p11, p01 and p10, p00, respectively.

5. An application

The scan statistic has been recognized and applied in various areas, such as genetics [11] and
quality control [14]. We consider the problem for the processing of blood and blood components
for transfusion. As noted in [14], the blood component quality monitoring presents several
challenges in practice due to the link between blood component and individual facilities. The
first challenge is the low volume of blood product in some small facilities. The second challenge
is the low expected frequency of nonconforming blood components. The third challenge is to
be able to detect the occurrence of a nonconforming process as soon as possible. Therefore, a
test which can signal the occurrence of a nonconforming process at an early stage needs to be
developed. Lachenbruch et al. [14] compared three models: (i) binomial model, (ii) negative
binomial model, and (iii) scan statistic method. In the binomial model, to assure no more than
5% nonconforming lots, a process is said to be conforming if no failures are observed in 59
consecutive observations, and no failures in 299 consecutive observations assure a conforming
process with no more than 1% nonconforming lots. The binomial and negative binomial
models are not able to detect clusters of failures occurring near the boundaries of two sets of
observations, while scan statistics can overcome this shortcoming. We generalized the scan
statistic method by adopting the multiple window scan statistic to enhance the performance of
detecting nonconforming processes.

https://doi.org/10.1239/jap/1389370101 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370101


1098 T.-L. WU ET AL.

0.4 0.8 1.00.2 0.60.0
p

0.4 0.8 1.00.2 0.60.0
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Po

w
er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
w

er

r = 5
r = 10
r = 15
r = 20
r = (5, 10, 15, 20)

r = 5
r = 10
r = 15
r = 20
r = (5, 10, 15, 20)

Figure 1: OC curves for pulse sizes equal to 5 (left) and 8 (right).

According to Lachenbruch et al. [14], for blood product, the minimal suggested standard
is to test at least 60 units per month for quality assurance and for the blood centers to replace
their equipment about once every three years. This suggests that we should use n = 2000 and
let p0 = 0.05. The powers are computed, for the pulse sizes 5 and 8, based on a randomized
test with type-I error equal to 0.05. Figure 1 is the plot of operation characteristic curves (OC)
of four fixed window scan statistics of window sizes 5, 10, 15, and 20, and a multiple window
scan statistic of window size (5, 10, 15, 20), denoted by Sn(5, 10, 15, 20). It is known that a
fixed window scan statistic of size r is most powerful for the pulse alternative of size equal
to r . For the pulse size equal to 5, the fixed window scan statistic S2000(5) and the multiple
window scan statistic S2000(5, 10, 15, 20) perform equally well and better than other fixed
window scan statistics. In fact, from the numerical results (not provided), S2000(5, 10, 15, 20)

performs slightly better than S2000(5), and we suspect that this is due to the use of a randomized
test. While in the case of pulse size equal to 8, the powers of S2000(5, 10, 15, 20) are slightly
lower than those of S2000(10) but higher than other fixed window scan statistics. Thus, we may
conclude that if the pulse size is unknown, a multiple window scan statistic is preferable to a
fixed window scan statistic.

6. Numerical results

Under H0, let the probability of success p0 = 0.1 and n = 90. Throughout this section
we compare the powers of three fixed window scan statistics of windows sizes 10, 15, and 20,
and a multiple window scan statistic Sn(10, 15, 20). To compare powers, a randomized test is
used to set the type-I error to be 0.05. We consider the following two cases for multiple pulse
alternatives.

Case 1: Let m = 1.

Ha : pi = p1 > p0, i = τ1, . . . , τ1 + d1 − 1, and

pi = p0, otherwise.
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Table 2: Powers for multiple pulse alternative Case 1.

Scan statistics p1 = 0.3 Simulation p1 = 0.5 Simulation

S90(10) 0.3687 0.3692 0.8553 0.8547
S90(15) 0.3981 0.3992 0.8898 0.8895
S90(20) 0.3705 0.3682 0.8572 0.8569

S90(10, 15, 20) 0.3764 0.3754 0.8657 0.8655

Table 3: Powers for multiple pulse alternative Case 2.

Scan statistics p1 = 0.3 Simulation p1 = 0.5 Simulation

S90(10) 0.4754 0.4750 0.9381 0.9384
S90(15) 0.5006 0.5017 0.9502 0.9498
S90(20) 0.4692 0.4693 0.9297 0.9293

S90(10, 15, 20) 0.4848 0.4854 0.9440 0.9438

Table 4: Powers for Markov dependent alternatives with transition matrices 	1 and 	2, n = 90, and
p0 = [0.9, 0.1].

Scan statistics 	1 Simulation 	2 Simulation

S90(10) 0.3063 0.3066 0.8244 0.8256
S90(15) 0.2841 0.2832 0.7953 0.7942
S90(20) 0.2667 0.2657 0.7718 0.7719

S90(10, 15, 20) 0.3130 0.3123 0.8338 0.8356

Case 2: Let m = 2.

Ha : pi = p1 > p0, i = τν, . . . , τν + dν − 1, ν = 1, 2, and

pi = p0, otherwise.

For Case 1, we choose τ1 = 10 and d1 = 15, and the powers are given in Table 2. It is clear
that the multiple window scan statistic outperforms the fixed window scan statistics of window
sizes not equal to 15, as S90(15) is most powerful. Similar results can be seen in Table 3 for
Case 2, where there are 2 clusters with τ1 = 10, τ2 = 50, d1 = 8, and d2 = 16. It can be
expected that the fixed window scan statistic of size 15 would perform well and it turns out to
be the case. While S90(15) is still the most powerful among those tests considered, the multiple
window scan statistic S90(10, 15, 20) performs better than other fixed window scan statistics.
The powers based on 10000 simulation runs are given for comparison. Also note that scan
statistics are insensitive to the locations of clusters.

Table 4 gives the powers for two Markov dependent alternatives where the transition prob-
ability matrices are given by

	1 = 0
1

[
0.9 0.1
0.7 0.3

]
, 	2 = 0

1

[
0.9 0.1
0.4 0.6

]
.

It clearly shows that the multiple window scan statistic is more powerful than other fixed window
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Table 5: The unconditional discrete case with P(X1 = 1) = 0.1.

r1 r2 r3 a1 a2 a3 n FMCI Simulation

5 10 2 3 100 0.0691 0.0692
5 10 15 4 6 10 100 0.9682 0.9683
5 10 20 3 4 8 100 0.6045 0.6049

Table 6: The unconditional continuous case.

ω1 ω2 ω3 a1 a2 a3 λ n FMCI Simulation

0.01 0.02 0.03 2 3 4 3 500 0.9177 0.9176
0.01 0.02 0.03 2 3 4 5 500 0.7924 0.7915
0.02 0.04 3 4 3 500 0.9954 0.9949
0.02 0.04 3 4 5 500 0.9794 0.9773
0.03 0.06 3 6 3 300 0.9905 0.9893
0.03 0.06 3 6 5 300 0.9596 0.9558

scan statistics. Tables 5 and 6 provide probabilities for unconditional discrete and continuous
multiple window scan statistics, respectively, for various combinations of parameters.

7. Summary and discussion

We have extended the FMCI technique to discrete and continuous multiple window scan
statistics for both conditional and unconditional cases. The exact and approximate distributions
of discrete and continuous multiple window scan statistics are obtained, respectively. The exact
power of unconditional discrete multiple scan statistics is also derived. One of the new results
established in this manuscript is the rate of convergence for unconditional continuous scan
statistics associated with a Poisson process.

The distribution of a multiple window scan statistic is connected to the waiting time dis-
tribution of the corresponding compound pattern. The corresponding compound pattern is
generated by compound patterns associated with each fixed window scan statistic of window
sizes included in the multiple window scan statistic. The computational load is not proportional
to the number of window sizes k. When k increases, the number of simple patterns in the
effective compound pattern is significantly less than

∑k
j=1

∑rj −aj

ν=0

(
aj −2+ν

ν

)
as many of them

are redundant. However, there is no simple rule to calculate the total number of simple patterns
comprising the effective compound pattern. The method based on compound patterns for
exact results may become computationally infeasible when the window size is too large. An
accurate approximation based on a smaller essential transition probability matrix remains an
open question.

A multiple window scan statistic should not be blindly used for an arbitrarily large k and
a wide range of consecutive integers for {rj }. It turns out that an arbitrarily large value of
k leads to a decrease in power. For example, in the discrete case if we select k = 15 and
(r1, . . . , r15) = (5, . . . , 20), the power for multiple pulse alternative Case 1 is decreased to
0.3687, while the power of the multiple window scan statistic of window size (10, 15, 20) is
0.3764.
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It is known that a fixed window scan statistic is most powerful under the pulse alternative
if the cluster size is equal to the window size. An application in the quality control of blood
components in Section 5 shows that a multiple window scan statistic is a better choice if the
cluster size d is unknown. In contrast to the binomial and negative binomial models, scan
statistics offer constant monitoring during the entire period of a monitoring process. If there is
a plausible cluster size d , then we suggest using slightly larger window sizes; as seen from the
OC curves in Figure 1, S2000(10) performs better than S2000(5) when d = 8. In addition, we
proposed two alternatives: multiple pulse and Markov dependent alternatives. The numerical
results show that the multiple window scan statistic performs very well under both cases,
especially for the Markov dependent alternative.
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