
Ergod. Tlu & Dynam. Sys. (1982), 2, 99-107
Printed in Great Britain

Repellers for real analytic maps
DAVID RUELLE

Institut des Hautes Etudes Scientifiques, 35, Route de Chartres,
91440 Bures-sur-Yvette, France

{Received 7 December 1981)

Abstract. The purpose of this note is to prove a conjecture of D. Sullivant that
when the Julia set / of a rational function / is hyperbolic, the Hausdorff dimension
of / depends real analytically on /. We shall obtain this as corollary of a general
result on repellers of real analytic maps (see corollary 5).

Let M be a real analytic manifold of finite dimension N,J a compact subset of
Mt and V an open neighbourhood of / in M. We say that / is a (mixing) repeller
for the real analytic map/ : V-*M if the following conditions are satisfied

(a) there exist C>0, a > 1 such that

||(T,n«ll*Calii|| (1)

for allxeJ, u e TXM, n^l (and some Riemann metric on TM),
(b) J = {x e V: fnx e Vfor all n > 0},
(c) fis topologically mixing on J, i.e. for every non-empty open set O intersecting

J there is an n >0such thatfO =>/.
From (b) and (c) it follows that / / = / . Our results would extend easily to the

case where / is topologically + transitive instead of topologically mixing (see [12]).

1. PROPOSITION. Let J be a mixing repeller for the real analytic mapf: V>~*Mt and
let(f>:Vy-+Rbea real analytic function. Then the series

I I "!
n-1 n xeFixf1 k-0

has non-vanishing convergence radius and extends to a meromorphic function of u,
again noted £(n). This function has a simple pole at expP(<£)>0, and every other
zero or pole of £ has modulus >exp P{<f>). Vie function <£>->/>(<£) is convex. Vtere
is a unique Radon measure p on J such that

for all if/, and p is an f-invariant probability measure (Gibbs measure).

To see this, one observes that expanding maps have Markov partitions.^ Markov
partitions permit a study of the periodic points of/. Assuming only that 4> is Holder

t Formulated at the conference on dynamical systems in Rio de Janeiro, 1981, see [15].
X Markov partitions have been introduced by Sinai [13] for Anosov diffeomorphisms. Their existence

for expanding maps is implicit in Bowcn [1]. For an explicit discussion see Ruelle [12]. One may
choose an 'adapted' metric on Af such that C = I in (1). Characterizations of expanding maps as
needed for the existence of Markov partitions arc analysed in [5].
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100 D. Ruelle

continuous one shows, by methods of statistical mechanics, that £ extends to a
circle of radius >expP in which it has no zero and only a simple pole at expP.t
One obtains then p satisfying (2) for all Holder continuous functions <f>, ij/:J-*U.

The real analyticity of / and tf> is needed to prove the meromorphy of £ in C.
Using the Markov partition and complex extensions of / and <f>, one expresses C
in the terms of Fredholm determinants in the form

fc-0

where the S£k have continuous kernels on compact sets, depending analytically on
/ and <f> (see Ruelle [11, theorem 1], the application considered here is much the
same as that of theorem 2 of [11]; the Fredholm theory used is based on Grothen-
dieck [6]). In particular, if / and <f> depend analytically on parameters, then C will
depend analytically on the same parameters.^ We now formulate this result more
precisely.

2. PROPOSITION. With the notation of proposition l,letfand<f> (now noted /A, <fo)
depend on a parameter XeU <= Rm such that (A, x)*-*fKx, <f>(x) are analytic, and fa
has a repellerJx depending continuously on A. We may take U open by Ci stability.
Under these conditions C~^i/fa where du fa a^ entire holomorphic in u and real
analytic in A e £/.

3. COROLLARY. Tlie function X*-*Pis real analytic and A -» p is real analytic in the
sense that \*-*p(tp) is analytic for real analytic tp: V •-> R. / / 0A < 0 on JK the function
\>-*t is analytic, where t is defined by P(t(f>x) = 0.

The analyticity of A »-*• e p (and thus A •-> P) results from the implicit function theorem
applied to the function (\tu)*-*l/£. We consider now two applications of the
analyticity of A *->Pt where A is replaced by (f, A), t e R.

If i£: V-*> R is real analytic, we see that (r, \)*-*P(<f>x+til/) is real analytic, and
therefore also

A *-*—P(<f>K +tij/)\,-o = pW).
dt

This proves the real analyticity of A >-»p as announced.
Similarly (t,X)*-*P(t(f>K) is real analytic. We also have the variational principlett

P(t<f>K) - max {h (ar) + to-{4>K):cr invariant probability measure}

where h is the measure-theoretic entropy. Therefore if <£x < 0 on /*, the function
t*-*P(t<ftx) has derivative < 0 and goes from positive to negative values.tt Its unique
zero is a real analytic function of A by the implicit function theorem.

t See Ruelle [10] or [12], Mayer [8]. For related f-functions sec Chen & Manning [4].
t One could also deduce this from the fact that the periodic points of / depend analytically on the

parameters, and that one has control over their positions when the parameters become complex (sec
lemma 1 in [11]). Therefore the coefficients of C depend holomorphically on the parameters, and the
same is true of (,

tt In its general form, this is due to Walters [16], see also Misiurcwicz [9], Dowen [1], Ruelle [12]
ttTh existence of the Markov partition gives an explicit upper bound on h.
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4. PROPOSITION. Let J be a repeller for a map f: V*-*M. We assume that f is
conformal with respect to some continuous Riemann metric, and of class C1+e (e > 0).
/ / we write

<£(*) = - log ||77(;c)||

the Hausdorff dimension tofJis defined by Bowen's formula P(t<f>) = 0. Furthermore
the t-Hausdorff measure v on J is equivalent to the Gibbs measure p corresponding
to t(f>.

In the formulation of this proposition we have allowed / to be C1+e rather than
real analytic as in our earlier definitions. Apart from this, the proposition is due
to Bowen [2] (who worked with groups of fractional linear transformations of the
Riemann sphere). For the convenience of the reader, appendix 1 reproduces a
proof of proposition 4. See Sullivan [15] for an analogous determination of f.
Actually the results of Bowen and Sullivan allow the map / to be discontinuous,
as we shall indicate below.

5. COROLLARY. LetJx be a repeller for a real analytic conformal map /A, depending
real analytically on A. (Tims (\,x)*-+fxx is real analytic Ux V>-*M and the linear
maps Dfx are of the form '.scalar x isometry.) Tlien the Hausdorff dimension of Jx

is a real analytic function of X.

This follows from proposition 4 and corollary 3.

6. COROLLARY. If the Julia set J of a rational function f is hyperbolic, the Hausdorff
dimension of J depends real analytically on f.

We let f-P/Q where P, Q are polynomials of fixed degrees, so that / can be
parametrized by a family of coefficients varying over Rm. Hyperbolicity means that
condition (a) in the definition of a repeller is satisfied. Conditions (b) and (c) in
the definition of a repeller are satisfied for general Julia sets (see Brolin [3, theorems
4.2 and 4.3]). It follows therefore that the Hausdorff dimension of / depends
analytically on /.

The polynomial map z >-*zq, with ^2:2, has the unit circle

as hyperbolic Julia set. Corollary 6 applies therefore to the maps

z>-*zq+\

for small complex A. A formal calculation (see appendix 2) gives

|A|2
t — i j—LJ f-higher order terms in A.

4 log q

The case q = 2 has been particularly studied (see Brolin [3] and references quoted
there, and Mandelbrot [7] which also contains beautiful pictures of the correspond-
ing / x ) . A computer calculation of t as a function of A (real) for Z>->Z

2+A was
performed by L. Garnett (unpublished) and prompted Sullivan's conjecture that
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102 D. Ruelle

A »-*f is analytic! Sullivan [15] proved that / > 1 when A ^ 0 (and |A| is sufficiently
small).

7. Generalization
As mentioned above, Bowen originally established the formula P(t(f)) = O for the
Hausdorf! dimension of a repeller / in the context of groups of fractional linear
transformations of the Riemann sphere. (The Hausdorf! dimension results were
extended by Sullivan to more general groups of conformal maps [14].) In Bowen's
study, / is the quasi-circle associated with a quasi-Fuchsian group G, and there is
a Markov partition {Sa} of / such that / is a different fractional linear transformation
on each Sa, and thus discontinuous. Arguments similar to those given above show
in this case that the Hausdorff dimension of the quasi-circle depends real analytically
on G or, equivalently, on pairs of points in Teichmuller space.

Acknowledgements. I am indebted to A. Manning, P. Sad, and especially D. Sullivan
for discussions which were at the origin of this paper.

Appendix 1: Proof of proposition 4
The pressure (function P) and Gibbs state p occurring in proposition 4 translate
to similar concepts for the symbolic dynamical system associated with a Markov
partition of / . A Markov partition {5"a} is a finite collection of closed non-empty
subsets of / such that {JSa=J and intSa is dense in Sa (int denotes the interior
in / ) . Furthermore,

(i) int Sa n\ntSp = 0iia^ p,
(ii) each fSa is a union of sets Sp.
For a study of symbolic dynamics, the reader must be referred to Bowen [2] or

Ruelle [12].
Let {Sa} be a Markov partition of / into small subsets. We call K the maximum

number of Sp which intersect any Sa:

K = max card {Sp :SanSp^0}.
a

Let Sa be a small open neighbourhood of Sa in V, for each a, such that

= 0 whenever Sa n SP - 0 .

We assume that for all a the diameter of Sa is <A, and that Sa contains the
<5-neighbourhood of Sa (0<5<A). If £0, f i , . • •, in is an admissible sequence of
elements of the Markov partition, i.e. /£/_i =>£/ for/ = 1,. . . ,«, we define

/-o

/ - o

t The results of the calculation suggest / » 1 +C|A|2 and arc compatible with / « 1 +|A|J/(4 log 2).
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The sets E(g0,..., £„) which intersect a given £"(£*, • • . , £*) are determined success-
ively as follows:

(a) choose £n such that £n n£* = 0 ,
(6) £/ is uniquely determined for k = n — 1 , . . . , 1, 0 by

/-fc

In particular the sets E(£o>... i £«) which intersect H(£*, . . . , £*) correspond pre-
cisely to the sets E(£o>. • •. &) which intersect E(g*, , . . , £ * ) , and there are at most
K of those. We also see that, if A has been taken sufficiently small, there are
/? €(0,1) and G > 0 03 and G independent of «, £*•. . . , £*) such that

dist (£ e)^G(3n if £€£(&>, . . . , & ) and ̂ € £ ( ^ , . . . , £*) (A.I)

(use part (a) of the definition of a repeller). In particular,

diam $ *
Let

be the inverse of the restriction of fn to .E(£o,..., in)> If x 6 £„ we have, since / is
conformal,

logllFto....
it

k

where we have denoted

we have thus,
* v£o> • • • , <

using (A."

Z n
-0

- 0

the

6.)r

D.

tangent

•CFf c .

map by

iy

...fi.(jc))lla

a dash. If

^ 0 and

Jc-0

(A.2)

(A.3)
where Ct is the e-H61der norm of <£. In particular, ifx* e^n, the ball of radius

centred at

is entirely contained in

t We assume here for simplicity that <£ <0.
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104 D. Ruelle

The Gibbs measure p corresponding to tcf> is determined (since P(tcf>) = 0) by the
fact that there is a constant y such thatt

\\ogp(E(€o €n))-"i t<f>(F(k,.... (nx)\<y (A.4)
fc-0

where y is independent of n, E(£-o, •. •»&)> and x e £n. Using (A.2) and (A.4) we
have, for each E($Q,..., £„), the following estimate of the f-Hausdorff measure u:

lim £ (diam

lim Y

n+p-l

exp X
fc-0

This shows that v is absolutely continuous with respect to p.
On the other hand t>(E(£0,.. •, In)) is the infimum of

I (diam £//)'
/-i

for an open cover {£//} of E(g0,..;, £,) when diam £// •* 0. For each / take

and notice that i s ( £ o . . . . , | n ) is covered by the balls

5 y / (diam t//).

For each / let «y be the smallest integer such that if

then
/y. (A.5)

(We may assume that diam L/} is small, and therefore

the further & depend on /.) By assumption

e-D8\r* it,(/>/)!>diam Uh

Therefore, the set E(£o,..., £„) is covered by the E(g*t..., £%) and, using (A.5)
and (A.2) we see that

I (diam£/i)
l=£«.-|V Z expr 2 <f>{Fit tt^r

/-i y-i fc-o

/-I

t See Bowcn [2] or Ruclle [6].
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where E is an upper bound to |<£(x)|. We recall that each E(go,..., £*,) intersects
at most K sets E(£ o , . . . . £«,)• Redistributing the contribution of the index / among
those, and using (A.2) and (A.3) we find

-1 <T2D'-E'S'E (diam Ufy *K-1 <T2D'-E'S' I exp t Y <f>(F(i ^
/-I A k-0

where the E(£o, . . . . £ i j cover E(£ o , . . . , £„). So, finally, using (A.4), we obtain

Tliis shows that p is absolutely continuous with respect to u, completing the proof
of the proposition. •

Appendix 2: Hausdorff dimension of the Julia set J of the map f:z*-*zq —p.
We shall formally show that the Hausdorff dimension of / is

t -1 +— +terms of order > 2 in p.
4 log 4

For small \p\, f has a fixed point a close to 1, so that

a+p=aq and a = lH - + • • • .
q-1

Write y = exp lirr/q. With e< = 0 , 1 , . . . , q -1 we define

= ex

where

£„) 2 T .

r(ei,..., en) = -Kei , . . . . en_i)+-log (l+p/^Cd en))
q q

( . . . , en-i)+-p/C (ei, . . . , e n )

- p exp ( - Q G ? i , . . . , £ „ ) • 2/TT)
1

to first order in p. Therefore, if« =exp(-O(ei , . . . , en)«2tV),

q q~

Writing
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106 D. Ruclle

we have

(f>(C(eu . . . , en)) = -\ogq - R e (q - l ) r (e u . . . . e«-i),

hence
n n

Z <f>(C(eu • • •» £fc)) = - / i l o g q — R e (<j — 1) £ r ( e i , . . . , £ * _ ]
fc-l k - l

We have, to first order in p,

Re(<?-1) £
fc-i

where

q

To second order in p we have, using the induction formula,

X r (e i , . . . , e n ) = - I [ r ( d , . . . , en-i){l-pu)+pu -
t\,....tn q « ! . . • -.tn

so that, for large n,

I ^ ^ / - ( s i , . . . , e fc -O-Ofa" ) .

The Hausdorf! dimension r = 1+/3 of the Julia set / of z *-*zq - p is determined by

I exp(l+0) t
*i «„ fc-i

for large n or, to second order in p,

k - l

i r,, L fc-l

We have used

I (RepHq"l)(Rep//'|t"t) = 0 if U r < s s « + 1,
* » tn

I (Repl,"-)>= I
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Thus, omitting negligible terms

giving

o r , =+ , o r , 1 +

4 log q 4 log q
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