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Abstract

We study the postcritically finite maps within the moduli space of complex polynomial dynamical
systems. We characterize rational curves in the moduli space containing an infinite number of
postcritically finite maps, in terms of critical orbit relations, in two settings: (1) rational curves
that are polynomially parameterized; and (2) cubic polynomials defined by a given fixed point
multiplier. We offer a conjecture on the general form of algebraic subvarieties in the moduli space
of rational maps on P1 containing a Zariski-dense subset of postcritically finite maps.

2010 Mathematics Subject Classification: 37F45 (primary); 11G50, 30C10 (secondary)

Overview

In this paper we address the question ‘Which algebraic subvarieties of the moduli space Md of
degree-d rational maps contain a Zariski-dense set of special points?’ Here, a special point is the
conjugacy class of a postcritically finite map f : P1→ P1; that is, every critical point of f has finite
forward orbit under iteration. Postcritically finite (PCF) maps play an important role in complex
dynamics, and in recent years there has been an explosion of work around them. It has been known
since the foundational work of Thurston based on Teichmüller theory that PCF maps come in two
flavors, the flexible Lattès maps (associated with elliptic curves and arising in one-dimensional
families) and the rest (which are rigid). The rigid PCF maps form a countable Zariski-dense subset
of the moduli space Md . From an arithmetic point of view, PCF maps are in several ways similar
to elliptic curves with complex multiplication, and one can therefore view the above question as a
dynamical analog of the André–Oort conjecture in arithmetic geometry. We formulate a conjectural
answer to the above question: the special subvarieties V having a dense set of special points should
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be those for which the number of dynamically independent critical points does not exceed the
dimension of V .

As evidence for our general conjecture, we study rational curves within the parameter space
of critically marked, monic, centered, degree-d polynomials. Our main result provides an explicit
description of the polynomially parameterized rational curves that are special: they are those for
which there is exactly one active critical orbit, up to polynomial symmetries. (We in fact prove
a more general result about marked but not necessarily critical points that are simultaneously
preperiodic.) We provide examples showing that the ‘up to symmetries’ condition is necessary,
and we illustrate how one can check that a given curve is special. We also study the family
of curves Per1(λ) inside the space of cubic polynomials. First introduced by Milnor, Per1(λ) is
defined as the set of maps with a fixed point of multiplier λ. The curve Per1(0), defined by the
condition that one critical point is fixed, is special, and we prove that Per1(λ) is not special for all
λ 6= 0.

The proofs of these results rely on several ingredients, including: (1) an arithmetic
equidistribution theorem (due to Baker and Rumely, Chambert-Loir, and Favre and Rivera-
Letelier) for Galois orbits of points of small canonical height over product formula fields;
(2) complex potential theory and distortion estimates for univalent functions; and (3) the
decomposition theory for polynomials, originally due to Ritt and recently expanded upon by
Medvedev and Scanlon. The use of (1) and (2) are inspired by our earlier work, as well as a
subsequent paper by Ghioca, Hsia, and Tucker.

1. Introduction

For each integer d ≥ 2, let MPcm
d denote the moduli space of critically marked

complex polynomials of degree d. We are interested in the postcritically finite
(PCF) polynomials within MPcm

d , that is, those polynomials whose critical points
all have a finite forward orbit under iteration. Such maps play a fundamental
role in the theory of polynomial dynamics. The PCF polynomials form a
countable and Zariski-dense subset of MPcm

d ; see Proposition 2.6 below. Our
ultimate goal is to characterize algebraic subvarieties of MPcm

d containing a
Zariski-dense subset of PCF maps. In this paper, we take some concrete steps
in this direction, focusing on certain kinds of algebraic curves in MPcm

d . We
also offer Conjecture 1.10 for the general setting of subvarieties in the space
of rational functions.

The moduli space MPcm
d is the space of complex polynomials of degree d

modulo conjugacy by conformal automorphisms of C. It is a finite quotient of
P cm

d ' Cd−1, the space of critically marked, monic and centered polynomials.
Indeed, P cm

d may be parameterized by tuples (c1, . . . , cd−1, b) ∈ Cd such that
c1 + · · · + cd−1 = 0. The associated polynomial is given by f (z)= d · ∫ z

0

∏
i(ζ −

ci) dζ + b, with critical points at {c1, . . . , cd−1} and b = f (0). Conjugating f by
z 7→ ωz where ωd−1 = 1 induces an action of the cyclic group Z/(d−1)Z on P cm

d

(coordinatewise multiplication by ω), and the moduli space MPcm
d is the quotient

of P cm
d under this action.
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1.1. Statement of the main results. To illustrate the idea, consider the
following family of algebraic curves (introduced by Milnor in [Mi1]) in the space
of critically marked cubic polynomials:

Per1(λ)= {f ∈MPcm
3 : f has a fixed point with multiplier λ}

for each λ ∈ C. (Recall that the multiplier of a fixed point is simply the derivative
of f at the fixed point.)

THEOREM 1.1. The curve Per1(λ) contains infinitely many postcritically finite
cubic polynomials if and only if λ= 0.

The idea of the proof is as follows. For λ= 0, one critical point is fixed for all
f ∈ Per1(0), so there is exactly one ‘active’ critical point along each irreducible
component of Per1(0). By a classical complex dynamics argument, the active
critical point must have finite forward orbit for a dense set of parameters in the
bifurcation locus, so there are infinitely many PCF polynomials f ∈ Per1(0). For
the converse direction, assume there are infinitely many postcritically finite maps
in Per1(λ). Then λ ∈ Q, and we apply an arithmetic equidistribution theorem
(Theorem 3.1) to conclude that these PCF maps are equidistributed with respect
to the bifurcation measure of each bifurcating critical point. In particular, if
λ 6= 0, then the two critical points define the same bifurcation measure along
Per1(λ). But the two critical points are dynamically independent and must define
distinct bifurcation measures, so we conclude that λ = 0. See Section 4 for
details.

In general, we expect that an algebraic subvariety V in MPcm
d contains a

Zariski-dense subset of PCF maps if and only if V is cut out by critical orbit
relations. Unfortunately, pinning down a precise notion of ‘critical orbit relation’
is a bit delicate, as we need to take into account the presence of nontrivial
symmetries. In the next result, we provide a precise formulation for polynomially
parameterized curves in the space P cm

d ' Cd−1, a branched cover of MPcm
d ,

consisting of all monic and centered polynomials with marked critical points.
We emphasize the equivalence of statements (1) and (4) in Theorem 1.2 below.

In order to state the result, we first need the following definitions. A
holomorphic family of polynomials is a holomorphic map V→ P cm

d , t 7→ ft, from
a complex manifold V to the space of polynomials. A marked point along V is
a meromorphic function a: V → P1. The marked point a is said to be passive
if the sequence of functions {t 7→ f n

t (a(t)): n ≥ 1} forms a normal family on V;
otherwise it is active. In the algebraic setting, where V is quasiprojective and the
family ft is algebraic (and nonconstant), a marked critical point of ft is passive if
and only if it is persistently preperiodic [Mc1, Lemma 2.1], [DF, Theorem 2.5].
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THEOREM 1.2. Fix d ≥ 2. Let

ft = (c1(t), . . . , cd−1(t), b(t)) ∈ P cm
d

be a holomorphic family of polynomials with marked critical points, defined for
t ∈ C, where each coordinate function lies in C[t]. The following are equivalent:
(1) ft is postcritically finite for infinitely many parameters t;

(2) for every pair of active critical points ci and cj, the normalized bifurcation
measures are equal;

(3) the connectedness locus for {ft} is equal to

Mi =
{

t: sup
n
|f n

t (ci(t))|<∞
}

for any choice of active critical point ci;

(4) for every pair of active critical points ci and cj, there exist a polynomial
ht(z) ∈ C[t, z] and integers k > 0, n,m≥ 0, such that

ht ◦ f k
t = f k

t ◦ ht and f n
t (cj(t))= ht(f

m
t (ci(t)))

for all t.

In plain English, the equivalence of (1) and (4) means that there is a
Zariski-dense set of parameters t ∈ C for which ft is PCF if and only if there
is exactly one active critical orbit, up to symmetries (the h term). In particular,
the critical point ci has finite orbit for ft if and only if cj has finite orbit for ft. If
degz h= 1, then ht must be a symmetry of the Julia set of ft; these were classified
in [Be1]. If degz h > 1, then ht must share an iterate with ft for all t [Ri2]; it
follows that condition (4) is symmetric in i and j. In Section 1.3, we provide
examples of polynomial families ft satisfying the conditions of Theorem 1.2, and
we illustrate how we can use Theorem 1.2 to conclude that there are only finitely
many postcritically finite maps in certain explicit families.

Theorem 1.2 is a special case of the following result which concerns marked
(but not necessarily critical) points which are simultaneously preperiodic.

THEOREM 1.3. Let ft be a one-parameter family of polynomials of degree d ≥ 2,
parameterized as

ft(z)= zd + b2(t)z
d−2 + · · · + bd(t)

with bj(t) ∈ C[t] for each j. Let a1(t), a2(t) ∈ C[t] be a pair of active marked
points, and define

Si := {t ∈ C: ai(t)is preperiodic for ft}.
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The following are equivalent:

(1) |S1 ∩ S2| =∞;

(2) S1 = S2; and

(3) there exist a polynomial h ∈ C[t, z] and integers k > 0, n,m≥ 0 such that

ht ◦ f k
t = f k

t ◦ ht and f n
t (a1(t))= ht(f

m
t (a2(t)))

for all t.

Theorem 1.3 is an extension of the results [BD, Theorem 1.1] and
[GHT1, Theorem 2.3], where stronger hypotheses guaranteed that the
symmetries {ht} must be trivial. The article [GHT2] is closely related, showing
that (1) ⇐⇒ (2) for certain families of rational functions. As in the case of
marked critical points, the activity of ai(t) in Theorem 1.3 is equivalent to the
statement that ai is not persistently preperiodic (Proposition 2.1).

The idea behind our proof of Theorem 1.3 is as follows. If we assume
condition (3), then (2) follows immediately and (1) follows from Montel’s
theorem, showing that an active point must have finite orbit at infinitely many
parameters t. For the implication (1)⇒ (3), we begin by applying an arithmetic
equidistribution theorem (Theorem 3.1) that implies an ‘almost (2)’ statement:
S1 and S2 can differ by at most finitely many elements. This step, which uses
Berkovich analytic spaces in a crucial way, appeared in [GHT1] and we refer the
reader there for details.

To complete the proof that (1) implies (3), we use classical techniques from
complex analysis to, first, deduce an analytic relation between the orbits of a1

and a2 and, then, promote this to an invariant algebraic relation. Finally, via
recent results of Medvedev and Scanlon [MS], employing methods of Ritt [Ri1]
to classify invariant subvarieties for a certain class of polynomial dynamical
systems, we may simplify the form of our algebraic relation to the statement
of condition (3).

Theorem 1.1 is not a special case of Theorems 1.2 and 1.3, because the rational
curves Per1(λ) in P cm

3 are not parameterized by polynomials for λ 6= 0.

1.2. Motivation from results in arithmetic geometry. In arithmetic
geometry, there are numerous results which fit into the following paradigm. One
is given a complex algebraic variety X and a countable Zariski-dense collection
of ‘special’ algebraic points on X. The question then arises of which algebraic
subvarieties of X can contain a Zariski-dense set of special points. Usually one
knows a family of ‘special subvarieties’ of X which do contain a Zariski-dense set
of special points, and the problem is to determine whether an arbitrary subvariety
of X containing a Zariski-dense set of special points must itself be special.
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The canonical example of this paradigm is the ‘Manin–Mumford conjecture’,
first established by Raynaud [Ra1, Ra2]. If X is an abelian variety then the torsion
points of X are countable and Zariski dense, and if Y is a torsion subvariety of X
(meaning a translate of an abelian subvariety by a torsion point) then Y contains
a dense set of torsion points. Conversely, Raynaud’s theorem asserts that if an
algebraic subvariety Y of X contains a Zariski-dense set of torsion points, then Y
must be a torsion subvariety. An analogous result when X is an algebraic torus
(so that torsion points are algebraic points of X whose coordinates are all roots of
unity) was proved by Laurent, and extended to semiabelian varieties by Hindry
[Hi, La].

A more recent (and in general still conjectural) illustration of the special point
and special subvariety formalism is the ‘André–Oort conjecture’; see for example
[An, Pi]. If X is a Shimura variety then the CM points form a countable dense set
of algebraic points on X, and likewise for any Shimura subvariety Y of X. The
André–Oort conjecture asserts conversely that an algebraic subvariety containing
a dense set of CM points must be special, that is, a Shimura subvariety. A
concrete special case of this conjecture, proved by André, is that an irreducible
algebraic curve Y in X = C2 containing a Zariski-dense set of points whose
coordinates are both j-invariants of CM elliptic curves must be either horizontal,
vertical, or a modular curve X0(N).

Ghioca, Tucker, and Zhang have put forth some conjectural dynamical analogs
of the Manin–Mumford conjecture [GTZ]. The main results and conjectures in
the present paper can be thought of as dynamical analogs of the André–Oort
conjecture. The Shimura varieties, which for our purposes can be thought of
as moduli spaces for abelian varieties with certain additional structure, get
replaced by moduli spaces for polynomial dynamical systems, and CM points
get replaced by PCF maps. As in some approaches to the Manin–Mumford and
André–Oort conjectures, equidistribution theorems for Galois orbits of special
points play a crucial role in our approach to the dynamical version of these
problems.

1.3. Examples. We now provide examples to illustrate Theorem 1.2. The first
few are basic examples of families satisfying the conditions of Theorem 1.2.
We include examples where the symmetries ht are necessarily nontrivial. We
conclude with two examples illustrating how Theorem 1.2 might be used to show
that there are only finitely many postcritically finite maps in a given family.

EXAMPLE 1.4 (Infinitely many postcritically finite maps in degree two). In
degree two, there is a unique critical point, so the space MPcm

2 ' P cm
2 is itself

of dimension one. The polynomial ft(z)= z2+ t is postcritically finite if and only
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if t satisfies the polynomial equation

f n
t (0)= f m

t (0)

for some n > m. There are infinitely many such t; in fact, a simple argument
involving Montel’s theorem shows that they accumulate everywhere in the
boundary of the Mandelbrot set.

EXAMPLE 1.5 (Maps with an automorphism). Let ft(z)= z3− 3t2z; so c1(t)= t,
c2(t) = −t. The orbits of c1 and c2 are generally disjoint, though they are
symmetric by ht(z)=−z. That is, we have ht ◦ ft = ft ◦ ht and

f n
t (c1(t))= ht(f

n
t (c2(t)))

for all t and any choice of n ≥ 0. There are infinitely many postcritically finite
maps in this family.

EXAMPLE 1.6 (Symmetry of the Julia set). Let ft(z)= z2(z3 − t3). The Julia set
of ft has a symmetry of order three, but ft has no nontrivial automorphisms for
t 6= 0. Set β = (2/5)1/3 and choose ζ 6= 1 so that ζ 3 = 1. Then ft has a fixed
critical point at c1(t) = 0 for all t, and the other critical points are c2(t) = βt,
c3(t)= ζβt, c4(t)= ζ 2βt. Then ft(ζ z)= ζ 2ft(z) for all t, so h(z)= ζ z commutes
with the second iterate f 2

t and

f 2
t (c3(t))= ζ f 2

t (c2(t)), f 2
t (c4(t))= ζ f 2

t (c3(t)) and f 2
t (c2(t))= ζ f 2

t (c4(t))

for all t. There are infinitely many postcritically finite maps in this family.

EXAMPLE 1.7 (Symmetry h of degree > 1). Let gt(z) = z2 − t2 and ft(z) =
g2

t (z) = (z2 − t2)2 − t2 of degree four, with c1(t) = 0, c2(t) = t, c3(t) = −t.
None of the critical points are persistently periodic, and there are infinitely many
postcritically finite parameters for the family ft (being just the second iterate of
the quadratic family). The critical points c2 and c3 land on c1 after one iterate of
gt, but their orbits under ft are disjoint from the orbit of c1 for all t 6= 0; however,
if we set h(t, z)= gt(z), then ft ◦ ht = ht ◦ ft for all t, with

ft(c2(t))= ft(c3(t)) and ht(ci(t))= c1(t)

for all t and i= 2, 3.

EXAMPLE 1.8 (Finitely many PCF polynomials). In the example of Figure 1, the
boundaries of the sets M1 and M2 appear to have a great deal of overlap. Recall
that the parameters where critical point ci has finite forward orbit are dense in
the boundary of Mi (or see Lemma 2.4). However, there are only finitely many
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Figure 1. Left: the connectedness locus for ft(z) = z3 − 3t2z + 0.56, of Example 1.8, is shown in
black in the region {|Re t|, |Im t| ≤ 1.2}; gray indicates that only one critical point remains bounded
under iteration. Right: the boundedness locus M1 for the critical point c1(t)= t is shown in black.
The boundedness locus M2 for c2(t) = −t is the image of M1 under t 7→ −t. The support of the
bifurcation measure µi is the boundary of Mi, i= 1, 2.

PCF maps, where both critical points have finite forward orbit, by condition
(3) of Theorem 1.2. Indeed, there are obvious gray regions in the picture
at left, where one critical point remains bounded while the other escapes to
infinity.

EXAMPLE 1.9 (Finitely many PCF polynomials). In the family ft(z)= z3−3t2z+
i, we can employ condition (4) of Theorem 1.2 to show that (1) fails. Specifically,
if (4) were to hold, the critical point at t would be preperiodic if and only if the
critical point at −t is preperiodic. So it suffices to find a single parameter t0 at
which one critical point is preperiodic while the other has infinite forward orbit.
For the parameter t0 = i, the critical point at −i is fixed while the critical point at
i lies in the basin of infinity.

1.4. A conjecture for postcritically finite rational maps. Let {ft: t ∈ V} be
an N-dimensional algebraic family of critically marked rational maps of degree
d ≥ 2. In other words, V is a quasiprojective complex algebraic variety, the map
t 7→ ft defines a regular map V→ Ratd ⊂ P2d+1

C to the space of rational functions
on P1 of degree d, and the image of V in the moduli space Md has dimension
N, where Md is the quotient of Ratd by the conjugation action of PSL2C.
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Furthermore, the critical points of ft are the images of regular maps

ci: V→ P1

for i = 1, . . . , 2d − 2. A family as above defines a rational function f: P1
k → P1

k

of degree d (where k = C(V) is the function field of V) with critical points
ci ∈ P1(k), i= 1, . . . , 2d − 2.

If PCF maps play the role of the ‘special points’ in the space of rational
maps, then the following conjecture provides a characterization of the ‘special
subvarieties’ in the space of critically marked rational maps Ratcm

d . An n-tuple of
marked critical points (ci1, . . . , cin) is said to have dynamically dependent orbits
if there exists a nonzero algebraic relation {P = 0} ⊂ (P1

k)
n, which is invariant

under the map (f, . . . , f), such that

P(ci1, . . . , cin)= 0.

Otherwise, we say that the n critical points are dynamically independent on V .
Invariance of X under a map F means that F(X) ⊂ X. Note that when n = 1,
this definition states that a single critical point is dynamically independent (from
itself) if and only if it has infinite orbit for f; that is, if and only if it is active.
Moreover, for any n, dynamical independence of n critical points forces all n
critical points to be active.

CONJECTURE 1.10. Suppose {ft: t ∈ V} is an N-dimensional algebraic family of
critically marked rational maps of degree d ≥ 2, with V irreducible. Then ft is
postcritically finite for a Zariski-dense subset of t ∈ V if and only if there are at
most N dynamically independent critical points on V .

In Theorem 1.2, our conclusion (4) is stronger than that of Conjecture 1.10
because we can appeal to the classification results of Medvedev and Scanlon
[MS] to obtain a more precise form for the relation P.

One implication of Conjecture 1.10 (dynamical dependence of any active
(N + 1)-tuple of critical points implies Zariski density of PCF maps) follows
easily from an argument mimicking the proof of Proposition 2.6 and the
following observation. If N+1 critical points have dynamically dependent orbits
along V , and if N of them have finite forward orbits at a given parameter t ∈ V ,
then the (N + 1)-st critical point will also have finite orbit at t.

We remark that the flexible Lattès maps, in the case where d is a square, form
a one-dimensional algebraic family of postcritically finite maps. Thus, the use
of ‘at most N’ in Conjecture 1.10 (rather than ‘exactly N’) is necessary. By
Thurston’s rigidity theorem, this is the only positive-dimensional family with
no active critical points; see [Mc1, Theorem 2.2], [DH].
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2. Activity and normal families

In this section we prove the ‘easy’ implications in Theorem 1.3; the key
ingredient is Montel’s theory of normal families. In Proposition 2.1, we show
that a marked point is passive if and only if it is persistently preperiodic. We
conclude the section with a proof that the PCF polynomials form a countable
and Zariski-dense subset of P cm

d (Proposition 2.6).

2.1. Activity and bifurcation. Let ft be a holomorphic family of polynomials
of degree d ≥ 2, parameterized by t ∈ C. Let a: C → C be a holomorphic
function. Let

Gt(z)= lim
n→∞

1
dn

log+|f n
t (z)| (2.1)

denote the escape-rate function for ft. Associated with the marked point a is a
bifurcation measure

µa = 1
2π
1Gt(a(t)), (2.2)

where the Laplacian is with respect to t, taken in the sense of distributions.
The name ‘bifurcation measure’ comes from the special case where a(t) is a

critical point of ft for all t. In that case, the support of µa coincides with the
activity locus of the critical point, the set of parameters where the critical point
is ‘passing through’ the Julia set of ft [MSS]. See [De1, DF] for background on
bifurcation currents. Similarly for any marked point, the support of the measure
can be characterized by a bifurcation in its dynamical properties; see for example
[De2, Theorem 9.1].

Recall that a point a(t) is passive if the sequence of functions t 7→ f n
t (a(t)),

n ≥ 0, forms a normal family for t ∈ C; otherwise the point a is active. For the
special case where a(t) is a critical point of ft, the following proposition was
established in [DM, Proposition 10.4] (and a version for rational functions was
proved in [DF, Theorem 2.5]). We give a different proof, appealing to properties
of the function-field height of ft.

PROPOSITION 2.1. Let ft be a family of polynomials, parameterized
polynomially as

ft(z)= zd + b2(t)z
d−2 + · · · + bd(t)

with bj(t) ∈ C[t] for each j. Fix a marked point a(t) ∈ C[t]. The following are
equivalent:
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(1) a(t) is active;

(2) there exists a parameter t0 ∈ C for which the forward orbit of a(t0) under ft0
is infinite;

(3) Gt(a(t))= q log |t| + O(1) as t→∞, for some positive q ∈ Z[1/d]; and
(4) the bifurcation measure

µa = 1
2π
1Gt(a(t))

is nonzero.

Proof. We begin with the most delicate implication, that (2) implies (3). View
f = {ft} as a polynomial defined over the function field k = C(t), so f ∈ k[z] and
a = a(t) ∈ P1(k). Assuming condition (2), the point a is not preperiodic for f.
Note that f is not isotrivial, as ft is affine conjugate to fs for only finitely many
values of s (where fs(z) = ζ−1ft(ζ z) with ζ d−1 = 1). We may therefore apply
[Be2, Theorem B] to conclude that the function-field height of a is positive. That
is,

ĥf(a)= lim
n→∞

1
dn

log(degt f n
t (a(t))) > 0

so, in particular,

degt f n
t (a(t))→∞

as n→∞; see Remark 2.2 for more information. Choose n0 such that m0 :=
degt f n0

t (a(t)) >maxj degt bj(t). Then for all n≥ 0,

degt f n+n0
t (a(t))= m0dn.

This shows that (2) implies (3) with

q= m0

dn0
.

Condition (1) clearly implies condition (2) (since the field C is uncountable).
Condition (3) implies condition (4), because the function Gt(a(t)) cannot be
harmonic on all of C if it has nontrivial logarithmic growth. If {t 7→ f n

t (a(t))}
were normal on C, then there would be a subsequence f nk

t (a(t)) that converges
locally uniformly in C to an entire function or to the constant infinity. But
then the escape rate Gt(a(t)) would be everywhere 0 or everywhere infinite.
In particular, the measure µa would be trivial. So (4) ⇒ (1) and the circuit of
implications is closed. �

REMARK 2.2. We explain briefly the relation between function-field height and
degree growth. Recall that if k = C(t)with its standard product formula structure
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and f ∈ C[t, z] has degree d as a polynomial in k[z], the canonical height
ĥf: P1(k)→ R≥0 is defined for a ∈ C[t] by

ĥf(a)= lim
n→∞

1
dn

∑
v∈Mk

log+|fn(a)|v.

We can identify Mk with C ∪ {∞}. For an absolute value v corresponding to a
point z ∈ C, we have log+|fn(a)|v = 0 since log |fn(a)|v =−ordz(fn(a)) ≤ 0. For
v corresponding to the point at infinity, we have log+|fn(a)|v = log |fn(a)|∞ =
deg(fn(a))≥ 0. Thus

ĥf(a)= lim
n→∞

1
dn

deg(fn(a)).

REMARK 2.3. When the conditions of Proposition 2.1 are satisfied, the measure
µa will be compactly supported in the parameter space C. Indeed, the function
Gt(a(t)) is necessarily harmonic where it is positive, as it is a locally uniform
limit of harmonic functions. The set

Ma = {t ∈ C: sup
n
| f n

t (a(t))|<∞} = {t ∈ C: Gt(a(t))= 0}

will be compact. Up to a multiplicative constant (namely, the q of condition (3)),
t 7→ Gt(a(t)) defines the Green’s function for Ma with respect to infinity, and µa

(up to scale) is the harmonic measure of Ma with respect to infinity.

2.2. Normality and preperiodic points. Using Montel’s theory of normal
families, it is straightforward to prove that the conditions of Proposition 2.1
guarantee infinitely many parameters for which a(t) has finite forward orbit. For
a proof of Montel’s theorem, see [Mi2, Section 3].

LEMMA 2.4. Suppose a: D→ C is holomorphic and f : D × C→ C defines
a holomorphic family of polynomials of degree d ≥ 2, parameterized by the
unit disk D. Suppose that a is active. Then there exists a sequence of distinct
parameters tn ∈ D for which a(tn) is preperiodic for ftn for all n ∈ N. In fact, we
can choose the parameter tn such that a(tn) lands on a repelling cycle of ftn for
each n.

Proof. Let U be the largest open set in D on which {t 7→ f n
t (a(t))}n≥1 is normal;

it might be empty, and by the definition of active we know that U 6= D. Choose
t0 ∈ D \ U, and let {p1(t0), p2(t0), . . . , pr(t0)} be any repelling cycle for ft0 of
period r > 1. By the implicit function theorem, the repelling cycle persists for t
in a small neighborhood of t0; let pi(t) denote the ith point in the corresponding
repelling cycle for ft. Note, in particular, that p1(t) 6= p2(t) for all t near t0.
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The failure of normality on D and Montel’s theorem imply there exist a parameter
t1 ∈ D and an integer k > 1 such that

f k
t1
(a(t1)) ∈ {p1(t1), p2(t1)}.

That is, the point a(t1) is preperiodic for ft1 and the cycle that it lands on is
repelling. Now we repeat the argument: choose any repelling cycle for ft0 of
period r2 > r and follow it holomorphically in a small neighborhood of t0. We
obtain a parameter t2 such that a(t2) lands on a repelling cycle for ft2 . As ft0
has repelling cycles of arbitrarily high period, we may repeat the argument
indefinitely. By induction, we obtain a sequence {t1, t2, t3 . . .} of parameters
where a(tn) is preperiodic for ftn , and for each n, a(tn) lands on a repelling cycle
of period rn > rn−1. �

PROPOSITION 2.5. Let ft be a one-parameter family of polynomials as in
Theorem 1.3, and suppose that active points a1(t), a2(t) ∈ C[t] satisfy condition
(3) of the theorem. Then both conditions (1) and (2) are satisfied.

Proof. Because ht commutes with the iterate f k
t for all t, condition (3) implies

immediately that a1 has finite orbit for ft if and only if a2 has finite orbit for ft.
Thus, condition (2) holds. For condition (1), it suffices to show that the orbit of
a1(t) is finite for infinitely many parameters t. This is an immediate consequence
of Lemma 2.4. �

2.3. Countability and density of PCF maps. To conclude this section, we
provide a proof that the set of PCF maps forms a countable and Zariski-dense
subset of the moduli space of (critically marked) polynomials of degree d.
A sketched proof of density appears in [Si, Proposition 6.18], based on
the transversality results of Adam Epstein (as appearing in [BE]), for the
corresponding statement in the space of all rational functions of degree d.
We provide a more direct argument for density here, from the equivalence
of persistently preperiodic and normality of iterates, as first appeared in
[Mc1, Lemma 2.1]. A similar proof shows that PCF maps are Zariski dense in
the moduli space of rational maps. The argument that the set of PCF maps is
countable (after excluding the flexible Lattès maps) requires Thurston’s rigidity
theorem in the case of rational maps, while we can appeal to compactness of the
connectedness locus for polynomials.

PROPOSITION 2.6. The PCF polynomials form a countable, Zariski-dense
subset of MPcm

d . The coordinates of each PCF polynomial in P cm
d lie in Q.

Proof. It is convenient to work in the space P cm
d ' Cd−1, a branched cover of

MPcm
d of degree d − 1. A postcritically finite polynomial f ∈ P cm

d is a solution
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to d − 1 equations of the form

f ni(ci)= f mi(ci)

for integers ni < mi, i = 1, . . . , d − 1. As equations in the coordinates of
P cm

d , they are polynomials defined over Q. Each postcritically finite polynomial
has connected Julia set; and the connectedness locus is compact in P cm

d

[BH1, Corollary 3.7]. Consequently, the PCF maps form a countable union of
algebraic sets, each contained in a compact subset of P cm

d . As any compact affine
variety is finite, the collection of PCF maps is countable, and each is defined
over Q.

We now show Zariski density. Let S be any proper algebraic subvariety of
P cm

d , and let Λ be its complement. It suffices to show that there exists a PCF
polynomial in Λ. Consider the critical point c1. Either it is preperiodic along the
quasiprojective varietyΛ or it is active; see [Mc1, Lemma 2.1] or [DF, Theorem
2.5]. In either case, by applying Montel’s theorem if active (as in Lemma 2.4
above), there exists a parameter λ1 ∈ Λ where c1 is preperiodic. Suppose c1

satisfies the equation f n1(c1) = f m1(c1) at the parameter λ1. Let Λ1 ⊂ Λ be
the subvariety defined by this equation. Then Λ1 is a nonempty quasiprojective
variety, of codimension ≤ 1 in P cm

d , and c1 is persistently preperiodic along Λ1.
We continue inductively. Suppose Λk is a quasiprojective subvariety in P cm

d

of codimension ≤ k on which c1, . . . , ck are persistently preperiodic. If ck+1 is
persistently preperiodic along Λk, set Λk+1 = Λk. If not, apply Lemma 2.4 to
find a parameter λk+1 ∈ Λk where ck+1 is preperiodic, and define Λk+1 ⊂ Λk by
the critical orbit relation satisfied by ck+1 at λk+1. Then Λk+1 has codimension at
most k + 1 in Λ, and the first k + 1 critical points are persistently preperiodic
along Λk+1. In particular, Λd−1 is a nonempty subset of Λ and consists of PCF
polynomials. �

REMARK 2.7. Another proof of the Zariski density in Proposition 2.6 follows
from the following theorem of Dujardin and Favre: the closure of the set of
postcritically finite polynomials (in the usual analytic topology) contains the
support of the bifurcation measure in MPcm

d [DF, Corollary 6]. The bifurcation
measure µbif cannot charge pluripolar sets [DF, Proposition 6.11], and so the
PCF maps are Zariski dense.

3. Arithmetic equidistribution

In this section we recall a general arithmetic equidistribution theorem which
will be used in the sequel. We state this result in a form which is a hybrid of the
terminologies from [BR, FRL]; the proof follows directly from the arguments in
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either of those works. (A closely related equidistribution theorem was proved
independently by Chambert-Loir [CL].) The result is most naturally formulated
using Berkovich spaces; see [BR] for an overview.

Let k be a product formula field. This means that k is equipped with a set
Mk of pairwise inequivalent nontrivial absolute values, together with a positive
integer Nv for each v ∈Mk, such that:

(1) for each α ∈ k×, we have |α|v = 1 for all but finitely many v ∈Mk; and

(2) every α ∈ k× satisfies the product formula∏
v∈Mk

|α|Nvv = 1.

Examples of product formula fields are number fields and function fields of
normal projective varieties.

Let k (respectively ksep) denote a fixed algebraic (respectively separable)
closure of k. For v ∈Mk, let kv be the completion of k at v, let kv be an algebraic
closure of kv, and let Cv denote the completion of kv. For each v ∈Mk, we fix
an embedding of k in Cv extending the canonical embedding of k in kv. For each
v ∈Mk, we let P1

Berk,v denote the Berkovich projective line over Cv, which is a
canonically defined path-connected compact Hausdorff space containing P1(Cv)

as a dense subspace. If v is Archimedean, then Cv
∼= C and P1

Berk,v = P1(C).
For each v ∈ Mk there is a naturally defined distribution-valued Laplacian

operator 1 on P1
Berk,v. For example, the function log+|z|v on P1(Cv) extends

naturally to a continuous real-valued function P1
Berk,v \ {∞}→ R and

1log+|z|v = δ∞ − λv,
where λv is the uniform probability measure on the complex unit circle {|z| = 1}
when v is Archimedean and λv is a point mass at the Gauss point of P1

Berk,v when
v is non-Archimedean.

A probability measure µv on P1
Berk,v is said to have continuous potentials if

µv − λv = 1g with g: P1
Berk,v → R continuous. If µ has continuous potentials

then there is a corresponding Arakelov–Green function gµ: P1
Berk,v×P1

Berk,v→ R∪
{+∞}which is characterized by the differential equation1xgµ(x, y)= δy−µ and
the normalization

∫∫
gµ(x, y) dµ(x) dµ(y) = 0. The function gµ is finite-valued

and continuous outside of

Diagv := {(z, z) ∈ P1(Cv)× P1(Cv)} ⊆ P1
Berk,v × P1

Berk,v.

If ρ, ρ ′ are measures on P1
Berk,v and µ = µv is a probability measure with

continuous potentials, we define the µ-energy of ρ and ρ ′ by

(ρ, ρ ′)µ := 1
2

∫∫
P1

Berk,v×P1
Berk,v\Diag

gµ(x, y) dρ(x) dρ ′(y).
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One can show that if ρ and ρ ′ have total mass zero then ((ρ, ρ ′)) := (ρ, ρ ′)µ is
independent of µ; in this case our definition and notation coincide with those of
Favre and Rivera-Letelier [FRL].

An adelic measure on P1 (with respect to the product formula field k) is a
collection µ= {µv}v∈Mk of probability measures on P1

Berk,v, one for each v ∈Mk,
such that:

(1) µv = λv for all but finitely many v ∈Mk; and

(2) µv has continuous potentials for all v ∈Mk.

For a finite subset S of P1(ksep) and v ∈ Mk, we denote by [S]v the
discrete probability measure on P1

Berk,v supported equally on all elements of
the Gal(ksep/k)-orbit of S. The canonical height of S associated with the adelic
measure µ is defined by

ĥµ(S) :=
∑
v∈Mk

Nv · ([S]v, [S]v)µv .

(For a justification of the term ‘canonical height’, see for example
[BR, Lemma 10.27].) This is a Weil height function, in the sense that there is
a constant C such that |h(z)− ĥµ(z)| ≤ C for all z ∈ ksep, where h is the standard
logarithmic height on P1.

THEOREM 3.1 [BR, FRL]. Let ĥµ be the canonical height associated with an
adelic measureµ. Let {Sn}n≥0 be a sequence of finite subsets of P1(ksep) for which

#(Gal(ksep/k) · Sn)→∞ and ĥµ(Sn)→ 0

as n→∞. Then [Sn]v converges weakly to µv on P1
Berk,v as n→∞ for all

v ∈Mk.

REMARK 3.2. When k is a number field, Theorem 3.1 is essentially the same as
[FRL, Theorem 2]. Special cases of Theorem 3.1, for arbitrary k, are proved in
[BR, Theorems 7.52 and 10.24]. It is straightforward to prove the general case
of Theorem 3.1 (for arbitrary k) by using [BR, Lemma 7.55] in conjunction with
the proof of [FRL, Theorem 2], as in the proof of [BR, Theorem 7.52].

REMARK 3.3. If k is a number field and Sn is the set of Gal(k/k)-conjugates of
zn, then #Sn→∞ follows automatically from the assumption that ĥµ(Sn)→ 0
by Northcott’s theorem and the fact that hµ is a Weil height.

In order to apply Theorem 3.1 in practice, one often needs to know how to
explicitly compute the Arakelov–Green functions gµv (x, y) for v ∈Mk. There is
a particularly nice way to do this when each µv is the equilibrium measure of
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a compact set Ev ⊂ A1
Berk,v, which will always be the case for the applications

in the present paper. In order to explain how this works, we introduce some
terminology.

Fix a place v of k and suppose thatµv is the equilibrium measure for a compact
set Ev ⊂ A1

Berk,v. Let Gv: A1
Berk,v → R be the Green’s function for Ev, which

by assumption is continuous (that is, we assume that Ev is a regular set). Let
γv be the Robin constant of Ev, so the logarithmic capacity of Ev is e−γv and
Gv(s)= log |s|v + γv + o(1) as s→∞.

Define Hv: C2
v→ R by

Hv(s, t)=
{

Gv(s/t)+ log |t|v t 6= 0

log |s|v + γv t = 0.

Then Hv is continuous and scales logarithmically, that is, Hv(αs, αt)= Hv(s, t)+
log |α|v.

The following formula comes from a straightforward calculation which we
omit.

PROPOSITION 3.4. The normalized Arakelov–Green function gµv (x, y) with
respect to µv is given, for x, y ∈ P1(Cv), by the explicit formula

gµv (x, y)=− log |x̃ ∧ ỹ|v + Hv(x̃)+ Hv(ỹ)− γv, (3.1)

where x̃, ỹ are arbitrary lifts of x, y to C2
v \{0} and (s1, t1)∧ (s2, t2)= s1t2−s2t1.

REMARK 3.5. For v Archimedean, the fact that gµv (x, y) is normalized implies
(and in fact is equivalent to) the statement that e−γv is the homogeneous capacity
(in the sense of [De2]) of the set K = {(s, t) ∈ C2: H ≤ 0}. This is proved in a
slightly more roundabout way in [De2, Section 4].

Applying the product formula to (3.1), we obtain:

COROLLARY 3.6. Let µ = {µv}v∈Mk be an adelic measure such that µv is the
equilibrium measure associated with a compact set Ev ⊂ A1

Berk,v for all v ∈Mk.
Assume that the global Robin constant γ :=∑Nvγv is zero. Let S ⊂ k be a
Gal(ksep/k)-stable finite set such that Gv(z) = 0 for every v ∈ Mk and every
z ∈ S. Then ĥµ(S)= 0.

4. Cubic polynomials and fixed point multipliers

Our goal in this section is to prove Theorem 1.1. We begin with the ‘easy’
implication, as in Section 2, and prove in Proposition 4.1 that there are infinitely
many PCF maps in Per1(0). We then show that for each λ 6= 0, there are only
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Zoomed
region

Figure 2. At left: an illustration of the connectedness locus in one component of Per1(0) in P cm
3 .

The parameters where the active critical point is periodic are marked in yellow. Proposition 5.1
shows that these parameters are equidistributed with respect to the bifurcation measure. The curve
may be parameterized as ft(z) = z3 − 3t2z + t + 2t3, where the critical point c1(t) = t is fixed for
all t, while c2(t)=−t is active. At right: a zoom of one of the small copies of the Mandelbrot set.

finitely many conformal conjugacy classes of postcritically finite polynomials
with a fixed point of multiplier λ. For this implication, we apply the arithmetic
equidistribution results described in Section 3.

Though our proof of Theorem 1.1 does not use this, we remark that it suffices
to study the curves for |λ|> 1. Indeed, if 0< |λ| ≤ 1, there are no postcritically
finite maps on Per1(λ); see for example [Mi2, Corollary 14.5].

4.1. The case of λ = 0. By definition, the curve Per1(0) consists of all
conjugacy classes of cubic polynomials for which one critical point is fixed. See
Figure 2.

PROPOSITION 4.1. There are infinitely many postcritically finite cubic
polynomials in Per1(0)⊂MPcm

3 .

Proof. It is convenient to work in the space P cm
3 ' C2, which is a degree-two

branched cover of MPcm
3 . In P cm

3 , the curve Per1(0) has two irreducible
components, and throughout each component, one of the two marked
critical points is fixed. Recalling that the connectedness locus C3 = {f ∈
P cm

3 : J(f ) is connected} is compact [BH1, Corollary 3.7], we see that both
of the critical points cannot be persistently preperiodic along a component
of Per1(0). Indeed, one critical point must escape to infinity (and therefore have
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infinite orbit) for parameters outside the connectedness locus. Thus, exactly
one critical point is active on each component of Per1(0). A polynomial in
Per1(0) is postcritically finite if the active critical point has finite forward orbit.
By Lemma 2.4, there are infinitely many postcritically finite polynomials in
Per1(0). �

4.2. Parameterization of Per1(λ). Fix λ ∈ C \ {0}. To study the curve Per1(λ)

in the moduli space of cubic polynomials with marked critical points, we shall
work with the following parameterization:

fs(z)= λ z− λ
2

(
s+ 1

s

)
z2 + λ

3
z3

for s ∈ C \ {0}. The polynomial fs has a fixed point at z = 0 with multiplier λ
and critical points at c+(s) = s and c−(s) = 1/s. It is conjugate to the centered
polynomial

Ps(z)= λ3 z3 +
(
λ

2
− λ

4

(
s2 + 1

s2

))
z+ 1

12

(
s+ 1

s

)(
6− 4λ+ λs2 + λ

s2

)
with critical points at ±(s2 − 1)/(2s). Therefore, the family fs projects to the
curve Per1(λ) within P cm

3 via

s 7→
(√

λ

3
s2 − 1

2s
,−
√
λ

3
s2 − 1

2s
,− 1

12

√
λ

3

(
s+ 1

s

)(
6− 4λ+ λs2 + λ

s2

))
for either choice of

√
λ. This projection is generically one-to-one. This curve in

P cm
3 then projects to Per1(λ) in MPcm

3 with degree two, via the identification of
(c1(s), c2(s), b(s)) with (−c1(s),−c2(s),−b(s))= (c2(s), c1(s),−b(s)).

4.3. The bifurcation measures. Consider the escape-rate functions

G+(s)= lim
n→∞

1
3n

log+|f n
s (s)|

and

G−(s)= lim
n→∞

1
3n

log+|f n
s (1/s)|.

An induction argument shows immediately that f n
s (s) is a polynomial in s for all

n. In fact,

f n
s (s)=

λ

3

(
λ

3

)3

· · ·
(
λ

3

)3n−2(−λ
6

)3n−1

s3n + O(s3n−1) ∈ C[s],
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so

G+(s)= log |s| + log |λ/3|1/6 + log |λ/6|1/3 + o(1) (4.1)

as s→∞ and G+(s) is bounded for s near 0. By symmetry, G−(s) = G+(1/s),
so G− has a logarithmic singularity at s= 0 and remains bounded as s→∞.

LEMMA 4.2. For each λ 6= 0, both critical points of fs are active.

Proof. This follows immediately from the nontrivial growth of G+ and G−. �

The bifurcation measures of the critical points c+(s) = s and c−(s) = 1/s are
defined by

µ+ = 1
2π
1G+

and

µ− = 1
2π
1G−

on C \ {0}. From the growth of G+ and G−, we see that µ+ and µ− define
probability measures on Ĉ= C∪{∞}. The support of µ+ is compactly contained
in C, and it does not put positive mass on s= 0. A similar result holds for µ−.

The bifurcation locus for the family {fs} is the set of parameters s0 where
the Julia sets J(fs) fail to vary continuously (in the Hausdorff topology) on any
neighborhood of s0. The bifurcation locus coincides with (suppµ+)∪ (suppµ−);
see [De1, Theorem 1.1] or [DF, Theorem 3.2] for a proof. See Figure 3 for an
illustration of the bifurcation locus in Per1(6).

We thank Curt McMullen for suggesting the proof of this next lemma.

LEMMA 4.3. The bifurcation measures µ+ and µ− are not equal in Per1(λ).

Proof. Suppose µ+ = µ−. Let B denote the bifurcation locus, so B= suppµ+ =
suppµ− is compactly contained in C \ {0}. The function G+ − G− must be
harmonic on C \ {0}, and from the computation of the escape-rate functions
above, G+−G− grows logarithmically at each end. Therefore, G+(s)−G−(s)=
C + log |s| for some constant C. Therefore B= {G+ = G− = 0} ⊂ {G+ − G− =
0}, so B is a subset of a circle. But the bifurcation locus B must contain
homeomorphic copies of the Mandelbrot set, by the universality of ∂M [Mc2].
This is a contradiction. �

4.4. Proof of Theorem 1.1. For λ = 0, Proposition 4.1 states that there are
infinitely many postcritically finite polynomials in Per1(0).
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Figure 3. Top: Per1(6) in the parameterization of Section 4.2, with |Re s| ≤ 2, |Im s| ≤ 0.5. The
connectedness locus is shown in black, while gray indicates that only one critical point remains
bounded under iteration. Bottom left: the support of µ+ in Per1(6), in the region {−1.8 ≤ Re s ≤
−1.3,−0.2 ≤ Im s ≤ 0.2}, is the boundary of the black set, with level sets of G+ shown in shades
of blue. Bottom right: the support of µ− and level sets of G− in the same region. The polynomial
fs is PCF for s=−(1+√5)/2, where the two critical points form a cycle of period two. As in the
example of Figure 1, there appears to be a great deal of overlap between the activity locus of c+
and that of c−, though Theorem 1.1 tells us that there are only finitely many PCF maps in Per1(6).

Now suppose λ 6= 0. Because all PCF polynomials are defined over Q
(Proposition 2.6), the existence of a PCF map in Per1(λ) implies that λ is
algebraic. We may therefore assume that the family fs is defined over a number
field k.

We now set up the technical apparatus needed to apply arithmetic
equidistribution (Theorem 3.1), to see that parameters where one of the critical
points has finite orbit are equidistributed with respect to its bifurcation measure.
We use homogeneous coordinates on both the parameter space and the dynamical
space. For each place v of k, let Cv be the completion of an algebraic closure of
the completion of k with respect to v, and define

F(s,t): C2
v→ C2

v
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by

F(s,t)(z,w)=
(
λ zw2 − λ

2

(s

t
+ t

s

)
z2w+ λ

3
z3,w3

)
with (s, t) ∈ C∗v × C∗v. Note that F(s,t) = F(t,s) and fs(z) is the first coordinate of
F(s,1)(z, 1). We define

H+v (s, t)= lim
n→∞

1
3n

log ‖Fn
(s,t)(s, t)‖v

and

H−v (s, t)= lim
n→∞

1
3n

log ‖Fn
(s,t)(t, s)‖v,

where ‖(a, b)‖v = log max(|a|v, |b|v). Both H+v and H−v satisfy

H±v (αs, αt)= H±v (s, t)+ log |α|v
for any α ∈ C∗v.

Note that

G+v (s)= H+v (s, 1)= log |s|v + log |λ/3|1/6v + log |λ/6|1/3v + o(1) (4.2)

as s → ∞ by the same calculation as in (4.1), and that G+v (s) extends
continuously to A1

Berk,v. Moreover, one sees easily that:

(G1) G+v (s) is the Green’s function relative to∞ for the set

E+v = {z ∈ A1
Berk,v: G+v (z)= 0}.

In particular, the Robin constant for E+v is γv = log |λ/3|1/6v + log |λ/6|1/3v

by (4.2) and the global Robin constant γ =∑Nvγv is equal to zero by the
product formula.

(G2) G+v (s)= 0 whenever the polynomial fs is PCF.

Let µ+v be the equilibrium measure for E+v (when v is Archimedean, this
coincides with the probability measure µ+ introduced in Section 4.3) and let
µ+ = {µ+v }v∈Mk be the corresponding adelic measure. (Note that this is indeed
an adelic measure, as it is straightforward to verify that E+v is the unit disk
{z ∈ A1

Berk,v: |z|v ≤ 1} in A1
Berk,v for all but finitely many places v of k.) Let ĥ+

denote the associated canonical height function.
Let {sn} ⊂ k be any infinite sequence of parameters such that c+(sn) has finite

orbit for fsn , for all n. Let Sn denote the set of Gal(k/k)-conjugates of sn. By (G1)
and (G2), the hypotheses of Corollary 3.6 are satisfied, and we conclude that
ĥ+(Sn)= 0 for all n. Theorem 3.1 (combined with Remark 3.3) applies to show:
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PROPOSITION 4.4. Fix λ ∈Q\{0}. For any infinite sequence of parameters sn ∈
k for which c+ is preperiodic, the discrete probability measures [Sn]v converge
weakly to µ+v in A1

Berk,v, for all places v of k. In particular, the preperiodic
parameters are equidistributed with respect to the bifurcation measure µ+
on C.

The same considerations apply to G−v and µ−v , so Proposition 4.4 holds also
for c− and the adelic measure µ−.

Finally, suppose that {fsn} is an infinite sequence of PCF maps in Per1(λ), so
that both critical points are preperiodic for all n. The Galois orbits of sn must
be equidistributed with respect to both µ+v and µ−v . In other words, we have
equality of measures µ+v = µ−v at all places v of k. In particular, letting v be an
Archimedean place of k, we have µ+ = µ−, contradicting Lemma 4.3. �

REMARK 4.5. The equidistribution of the postcritically finite maps in Per1(0)
follows from Proposition 5.1 in the proof of Theorem 1.3.

5. From coincidence to an algebraic relation

In this section, we complete the proof of Theorem 1.3. The implications
(3) ⇒ (2) ⇒ (1) are covered by Proposition 2.5. Throughout this section,
we assume condition (1). We combine the arithmetic equidistribution theorem
(Theorem 3.1) with techniques from complex analysis to obtain (3).

5.1. Preliminary definitions. Let Gt denote the escape-rate function for ft, as
defined in (2.1), and set

Gi(t)= lim
n→∞

1
dn

log+|ft(ai(t))| = Gt(ai(t)). (5.1)

Define the bifurcation measure

µi = 1
2π
1Gi (5.2)

on the parameter space; by Proposition 2.1, the activity of ai implies that the
measure is nonzero. In fact, we see from the proof of Proposition 2.1 that the
total mass of µi can be computed from the degree growth of the polynomials
f n
t (ai(t)) as n→∞. If we pass to a high enough iterate f Ni

t (ai(t)), then

degt f Ni+n
t (ai(t))= mid

n

for some integer mi > 0 and all n≥ 0. Then

Gi(t)= mi

dNi
log |t| + O(1)

as t→∞; consequently, the measure µi has total mass mi/dNi .
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For the remainder of the proof, it will be convenient to replace ai with its
iterate f Ni

t (ai(t)). We may therefore assume that

degt(f
n
t (ai(t)))= mid

n (5.3)

for all n≥ 0 and ∫
C
µi = mi. (5.4)

5.2. (1) ⇒ ‘almost (2)’ via arithmetic equidistribution. By assumption,
there are infinitely many parameters t1, t2, . . . ∈ C such that both a1(tn) and a2(tn)

are preperiodic for ftn . Following the arguments in [GHT1], Theorem 3.1 implies
that the sets

S1 = {t: a1(t) is preperiodic for ft}
and

S2 = {t: a2(t) is preperiodic for ft}
differ by at most finitely many elements. If we know that the family ft and marked
points ai are defined over Q, then equidistribution guarantees that S1 = S2.

We explain how this follows from [GHT1]. We have already replaced each
ai by a suitably large iterate such that condition (5.1) from [GHT1] and the
conclusion of their Lemma 5.2 are satisfied for i = 1, 2. Then for any product
formula field k over which ft and ai(t) are defined, [GHT1, Corollary 6.11]
guarantees that the hypotheses of the equidistribution result Theorem 3.1 are
satisfied. This proves:

PROPOSITION 5.1. For each i, the set Si is equidistributed with respect to the
measure µi,v on A1

Berk,v for all places v of k. More precisely, given any sequence
of finite subsets {En} in Si for which #(Gal(ksep/k) · En)→∞ as n→∞, the
discrete probability measures [En]v converge weakly to µv as n→∞, for all
v ∈Mk.

Consequently, we have µ1,v = µ2,v for all places v of k. Here µi,v denotes the
equilibrium measure on the set Mi,v, the closure in A1

Berk,v of the set of t ∈ Cv

for which ai(t) is bounded under iteration of ft. It follows that the associated
canonical heights ĥ1 and ĥ2 must be equal. If k is a number field, the desired
equality S1 = S2 follows, because Si = {t ∈ k̄: ĥi(t)= 0} in this case. The general
case follows from [GHT1, Proposition 10.5]. Note that the hypothesis (i) in
[GHT1, Theorem 2.3] is not needed for any of these conclusions.

5.3. The boundedness locus M. Consider the ‘generalized Mandelbrot set’
associated with ai, defined by

Mi := {t ∈ C: the orbit of ai(t) is bounded}.
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As with the usual Mandelbrot set, the boundary of Mi is the activity locus
for ai; that is, the boundary of Mi is the set of parameters t0 ∈ C for which
{t 7→ f n

t (ai(t))} fails to form a normal family on every neighborhood of t0. The
set Si, where ai is preperiodic, is a subset of Mi. From Lemma 2.4, the closure
of Si contains the boundary of Mi. And, exactly as for the usual Mandelbrot
set, the Maximum Principle guarantees that the complement of Mi is connected.
Thus, the conclusion of Section 5.2 (that S1 and S2 differ in at most finitely many
elements) guarantees that M1 =M2. We let M denote this common set, so

M :=M1 =M2

is the boundedness locus for a1 and a2. From Remark 2.3, the set M is compact.
Recall that the function Gi defined in (5.1) is, up to a multiplicative constant,

the Green function for Mi (see Remark 2.3; and [GHT1, Lemma 6.10]). It follows
that

G2(t)= αG1(t) and µ2 = α µ1

where

α = m2

m1
= deg a2(t)

deg a1(t)
(5.5)

by Equation (5.4).
We will also need the ‘uniformizing coordinate’ ϕM associated with the

compact set M ⊂ C. This is the uniquely determined univalent function defined
in a neighborhood of infinity, with ϕM(t)= t + O(1) near∞, such that

log |ϕM(t)| = 1
mi

Gi(t)

for i= 1, 2. It exists because the periods of the conjugate differential

d∗Gi =−∂Gi

∂y
dx+ ∂Gi

∂x
dy

lie in 2πmiZ (for loops around infinity with t large); see, for example, [Ah, Ch.
4, Section 6.1].

5.4. The analytic relation between a1 and a2. Let ϕt denote the uniformizing
Böttcher coordinate for ft. That is, for each fixed t, ϕt is defined and univalent
in a neighborhood of infinity and is uniquely determined by the conditions that
ϕt(ft(z))= ϕt(z)d and ϕt(z)= z+O(1) for all t. The Böttcher coordinate satisfies

log |ϕt(z)| = Gt(z)

where it is defined. See for example [Mi2, Section 9].
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The following lemma appears as [GHT1, Proposition 7.6], but we include
a proof for completeness. The arguments are similar to our proof of
[BD, Lemma 3.2].

LEMMA 5.2. For each i = 1, 2, there exists an integer ni such that the iterate
f ni
t (ai(t)) lies in the domain of ϕt for all sufficiently large t.

Proof. For each t, let M(ft) denote the maximal critical escape rate, so

M(ft)=max{Gt(c): f ′t (c)= 0}.
The natural domain of ϕt is

{z ∈ C: Gt(z) >M(ft)}.
The polynomial growth of the coefficients of ft implies that M(ft) grows
logarithmically in t. Indeed, by passing to a finite cover of the punctured
disk {|t| > R} for some R � 0, we may assume that the critical points of ft

are holomorphic functions of t. Applying [DM, Proposition 10.4], which uses
standard distortion estimates for univalent functions, we conclude that

M(ft)= e log |t| + O(1)

as t→∞ for some e> 0.
From Proposition 2.1, for each i we know that

Gt(ai(t))= qi log |t| + O(1)

for some qi > 0 as t→∞. Choosing ni such that

qid
ni > e,

we conclude that f ni
t (a(t)) lies in the domain of ϕt for all t sufficiently large. �

For the rest of this section, we will replace ai(t) with its iterate f ni
t (ai(t)) from

Lemma 5.2.
Write each polynomial as

ai(t)= ζit
mi + o(tmi)

for some nonzero ζi ∈ C and t near infinity. Define

Φi(t)= ϕt(ai(t))

so that we have

Φi(t)= ζit
mi + o(tmi)

for t near infinity. Set

L= lcm{m1,m2}
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and write

L= k1m1 = k2m2.

Now Φ1, Φ2 are analytic maps near infinity, and each satisfies

|Φi(t)| = exp(Gt(ai(t)))

so

Φi(t)= ζi ϕM(t)
mi

for each i, where ϕM is the uniformizing coordinate for M, defined in Section 5.3;
this is because an analytic map is uniquely determined by its absolute value, up
to a rotation. Therefore,

ϕt(a2(t))
k2 = ζ

k2
2

ζ
k1
1

ϕt(a1(t))
k1 .

Set ζ = ζ k2
2 /ζ

k1
1 . Then for every n, we have

ϕt(f
n
t (a2(t)))

k2 = ϕt(a2(t))
k2dn = (ζϕt(a1(t))

k1)d
n = ζ dn

ϕt(f
n
t (a1(t)))

k1 . (5.6)

We will refer to (5.6) as the analytic relation between the orbits of a1(t) and
a2(t).

LEMMA 5.3. The ζ of the analytic relation (5.6) satisfies |ζ | = 1.

Proof. Recall that the constant α from (5.5) is given by α = m2/m1 and the
integers k1 and k2 were chosen such that k1m1 = k2m2. Consequently,

log |Φ2(t)| = Gt(a2(t))= αGt(a1(t))= k1

k2
Gt(a1(t))= k1

k2
log |Φ2(t)|

and so

|ζ2|k2 |ϕM(t)|m2k2 = |Φ2(t)|k2 = |Φ1(t)|k1 = |ζ1|k1 |ϕM(t)|m1k1 .

We see that

|ζ | = |ζ2|k2/|ζ1|k1 = 1,

so

|ϕt(a2(t))|k2 = |ϕt(a1(t))|k1

from (5.6). �

5.5. Properties of the Böttcher coordinate. Our next goal will be to promote
the analytic relation (5.6) to an algebraic relation between the orbits of a1 and a2.
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To achieve this, we need some estimates on ϕt. Write the expansion of ϕt for z
near∞ as

ϕt(z)= z+
∞∑

s=1

gs(t)z
−s.

The constant term is 0 because all ft are centered. Note that ϕt(z) is analytic in
both t and z, where defined.

LEMMA 5.4. The coefficient gs(t) is polynomial in t for all s.

Proof. Recall that

ϕt(f
n
t (z))= (ϕt(z))

dn
,

for any n. Expand both sides as series in z, so we have

f n
t (z)+ O(z−dn

) = zdn + cg1(t)z
dn−2 + cg2(t)z

dn−3 + (cg3(t)+ c′g1(t)
2)zdn−4

+ (cg4(t)+ c′′g1(t)g2(t))z
dn−5 + · · ·

for nonzero constants c, c′, c′′, . . . depending only on d and n.
As the coefficients of the principal part of the left-hand side are polynomials,

an induction argument allows us to conclude that the gs(t) is polynomial for
every s. �

Let m=min{m1,m2}, where mi is the degree in t of ai(t).

LEMMA 5.5. The degree of gs(t) in t is no greater than m(s+ 1).

Proof. For fixed t, choose R= Rt minimal such that {z: |z|> R} lies in the domain
of the univalent function ϕt. Then

ψ(z)= R/ϕt(R/z)

defines a univalent function on the unit disk, with ψ(0) = 0 and ψ ′(0) = 1.
Expand ψ in a power series around 0, so

ψ(z)= z+
∞∑

n=2

bnzn.

Littlewood’s theorem implies that |bn| ≤ e n for all n and any such ψ ; see
[Du, Section 2.4]. In fact, by the Bieberbach conjecture (a theorem of de
Branges), we know that |bn| ≤ n, but this is not necessary for us.

In our case, the first few terms in the expansion of ψ are

ψ(z)= z− g1R−2z3 + g2R−3z4 + (g2
1 − g3)R

−4z5 + (2g1g2 − g4)R
−5z6 + · · ·.
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An induction argument implies that

|gs| ≤ CsR
s+1

for some constant depending on s, where gs and R both depend on t.
Now, recall that ai(t) lies in the domain of ϕt for all t sufficiently large,

by Lemma 5.2 (and the comment following the proof). From the traditional
distortion arguments applied to ϕt (applying the estimate |b2| ≤ 2; see
[BD, Lemma 3.2] or [BH1, Section 3]), the region

{z: Gt(z) > d M(ft)}
lies outside the disk of radius Rt for all t large. And so we may assume that ai(t)
lies outside the disk of radius Rt for all t large. That is, we have Rt ≤ |ai(t)| for
|t| � 0, and we conclude that

|gs(t)| ≤ Cs|ai(t)|s+1

for i= 1, 2. Finally, then, the degree of gs must be no greater than the degree of
ai(t)s+1. �

5.6. The polynomial relation between a1(t) and a2(t). Expand each power of
the Böttcher coordinate ϕt(z) in Laurent series near infinity as

(ϕt(z))
k = Pk

t (z)+
∞∑

s=1

bk
s(t)z

−s.

By Lemma 5.4, the expression Pk
t (z) is polynomial in both t and z; in z it is monic

and centered of degree k. By Lemma 5.5, we may conclude that

degt bk
s(t)≤ m(s+ k). (5.7)

Indeed, bk
s is a sum of products

∏l
i=1 gsi for some l ∈ {1, . . . , k} where

∑
si =

k− l+ s, and each product has degree at most
∑l

i=1 m(si + 1)= ml+m
∑

si =
ml+ mk − ml+ ms= m(s+ k).

Setting z= f n
t (ai(t)), we have

(ϕt(f
n
t (ai(t))))

k = Pk
t (f

n
t (ai(t)))+

∞∑
s=1

bk
s(t)(f

n
t (ai(t)))

−s.

By (5.7), the infinite-sum term is O(t−m(dn−k−1)). Recall from Equation (5.6) we
have

ϕt(f
n
t (a2(t)))

k2 = ζ dn
ϕt(f

n
t (a1(t)))

k1
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for all n≥ 0. Expanding both sides in t implies that the polynomial parts of both
sides must be equal for any n. Thus, for all n� 0, we have

Pk2
t (f

n
t (a2(t)))= ζ dn

Pk1
t (f

n
t (a1(t))). (5.8)

It will be convenient to replace a1 and a2 with higher iterates so that Equation
(5.8) holds for all n.

We would like to know that the polynomial relation (5.8) between f n
t (a2(t))

and f n
t (a1(t)) is independent of n, or at least that the constants ζ dn

cycle through
only finitely many values. We thank Dragos Ghioca for suggesting the strategy
for this proof of Lemma 5.6.

LEMMA 5.6. The ratio ζ = ζ k2
2 /ζ

k1
1 is a root of unity.

Proof. We combine the analytic relation (5.6) and the polynomial relation (5.8)
to obtain

∞∑
s=1

bk2
s (t)(f

n
t (a2(t)))

−s = ζ dn
∞∑

s=1

bk1
s (t)(f

n
t (a1(t)))

−s (5.9)

for all n. Let s1 be the smallest s for which bk1
s is nonzero and s2 the smallest s

for which bk2
s is nonzero. Let C(s, k) denote the degree of the polynomial bk

s(t);
recall from (5.7) that C(s, k) ≤ s(m + k). Expanding both sides of (5.9) in t, the
leading term on the left-hand side is

c2ζ
−s2dn

2 tC(s2,k2)−s2m2dn

for some constant c2 ∈ C∗, while the leading term on the right-hand side is

c1ζ
dn
ζ
−s1dn

1 tC(s1,k1)−s1m1dn

for some constant c1 ∈ C∗. As we have equality in (5.9) for all n, it follows that
s2m2 = s1m1. As L = k1m1 = k2m2 is the least common multiple of m1 and m2,
we may write s1 = `k1 and s2 = `k2 for some positive integer `. Furthermore, the
coefficients of the leading terms must coincide, so

c2

c1
= ζ dn

(
ζ

k2
2

ζ
k1
1

)`dn

= ζ dn+`dn

for all n. Therefore, ζ is a root of unity. �

REMARK 5.7. The proof of Lemma 5.6 is elementary but somewhat
unenlightening. When the points ai(t) are critical (that is, in the setting of
Theorem 1.2), one can give a more conceptual proof that ζ is a root of unity,
as follows. From Lemma 5.3, we know that |ζ | = 1. From (5.6), the argument
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of ζ is equal to the difference in argument between ϕt(a2(t))k2 and ϕt(a1(t))k1 ,
independently of t. We are assuming that there are infinitely many parameters t
such that ft is PCF, and all periodic cycles for a PCF map must be superattracting
or repelling [Mi2, Corollary 14.5]. From Section 5.2 and Lemma 2.4, there are
infinitely many t ∈ ∂M such that both a1(t) and a2(t) are preperiodic to repelling
cycles. Such a parameter t0 will be a landing point of a ‘rational external ray’ for
ϕM (see for example [Mi2, Ch. 18]). In other words, the points a1(t0) and a2(t0)

will be landing points for rational external rays in the Julia set of ft0 . It follows
that the difference in argument between ϕt(a1(t)) and ϕt(a2(t)) is rational, and
therefore that ζ is a root of unity.

Lemma 5.6 implies that the sequence {ζ dn
: n ≥ 0} will eventually cycle.

Replacing a1 and a2 with iterates will allow us to assume that ζ itself is periodic
for zd. That is, we may assume there exists a positive integer k such that

ζ dk = ζ.
Equation (5.8) can be formulated as

Pk2
t (f

kn
t (a2(t)))= ζ Pk1

t (f
kn
t (a1(t))) (5.10)

for all n.

5.7. Simplifying the algebraic relation (5.10) and concluding the proof.
Define polynomials

At(z) := Pk1
t (z) Bt(z) := ζPk2

t (z).

Then (5.10) implies that the algebraic curve (or a subset of the irreducible
components of this curve)

{(x, y): At(x)= Bt(y)} ⊂ P1 × P1

is invariant for the map

(f k
t , f k

t ): P1 × P1→ P1 × P1

for every t.
If the polynomial At(x)−Bt(y) is reducible for all t, let Qt(x, y) denote a factor

such that Qt(a1(t), a2(t)) = 0 and Qt is irreducible for general t. There are only
finitely many irreducible components, so by passing to higher iterates (of the ai

and of the f k preserving ζ ), we may assume that the curve

Ct = {Qt(x, y)= 0}
is invariant for (f k

t , f k
t ) for all t, and Ct is irreducible for general t.
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We now appeal to the classification of (f , f )-invariant curves in P1 × P1 for
polynomials f . It was treated in great generality by Medvedev and Scanlon
in [MS], applying Ritt’s study of polynomial decompositions from [Ri1]. As
the family ft is nontrivial, the polynomial f k

t cannot be conjugate to zdk
or a

Chebyshev polynomial for all t. Therefore, the curve Ct must be a graph, of
the form {y = ht(x)} or {x = ht(y)}, for a polynomial ht that commutes with f k

t

[MS, Theorem 6.24].
In other words, there exists a polynomial h ∈ C[t, z] such that ht ◦ f k

t = f k
t ◦ ht

for all t and such that either a2(t)= ht(a1(t)) or a1(t)= ht(a2(t)) for all t. (Recall
that we have repeatedly replaced the original ai with an iterate f ni

t (ai(t)).) If the
conclusion is that a1(t) = ht(a2(t)), then the proof of condition (3) is complete.
Suppose instead that a2(t) = ht(a1(t)). If degz h = 1, then we may replace ht

with h−1
t to achieve the conclusion of condition (3). If degz ht > 1, then from

Ritt’s work we know that ht must share an iterate with ft; say hq
t = f r

t [Ri1, Ri2].
Then hq−1

t (a1(t)) = f r
t (a2(t)), so we again achieve the conclusion of condition

(3), taking the new h to be hq−1
t (z). This concludes the proof.

6. Proof of Theorem 1.2

In this final section, we provide the proof of Theorem 1.2. In most respects,
Theorem 1.2 is a special case of Theorem 1.3.

(1)⇒ (2). Let a1(t) and a2(t) denote any pair of active critical points of ft. At
each postcritically finite polynomial ft, both a1(t) and a2(t) have finite forward
orbit. From Theorem 1.3, condition (1) implies that the sets S1 and S2 coincide.
In addition, as observed in Section 5.3, the sets M1 and M2 must coincide, and
therefore so do their harmonic measures (relative to∞). From Remark 2.3, the
harmonic measure on Mi is exactly the bifurcation measure for the critical point
ai, normalized to have total mass 1.

(2) ⇒ (3). For each active critical point ci, the support of the bifurcation
measure µi is equal to the (outer) boundary of the set Mi. Each Mi is full
(meaning that its complement is connected): indeed, on a bounded component
of C \ Mi, the Maximum Principle guarantees that the magnitude of f n

t (ci(t))
never exceeds its maximum value on Mi. Therefore the measure µi determines
Mi as a set. And so Mi does not depend on the choice of active critical point.
In particular, all critical points have bounded forward orbit for ft if and only if
t ∈Mi for some active critical point i. Therefore, Mi is the connectedness locus
for ft.

(3) ⇒ (4). This implication is exactly as in the proof of Theorem 1.3.
Specifically, the arguments of Sections 5.3–5.7 start with the assumption that
the sets Mi coincide and conclude with the desired algebraic relation (4).
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(4)⇒ (1). If a critical point is not active, then Proposition 2.1 shows that it is
preperiodic for all parameters t ∈ C. If there is only one active critical point, then
Lemma 2.4 implies that it has finite orbit for infinitely many t, and therefore ft

is postcritically finite for infinitely many t. If there are at least two active critical
points, then Theorem 1.3 guarantees that they are simultaneously preperiodic at
infinitely many parameters t. Again we conclude that ft is postcritically finite for
infinitely many t.
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