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ON THE TEMPERATURE PROFILE AND THE AGE PROFILE
IN THE CENTRAL PART OF COLD ICE SHEETS

By K. PuiLBerta* and B, FEDERER
(Eidg. Institut fiir Schnee- und Lawinenforschung, Davos, Switzerland)

ApstracT. The generalized Glen’s law € = €,7" exp (£8) is used to calculate the horizontal and vertical
velocity profiles and from these the temperature and age profiles of cold ice sheets. It is shown that, by
substituting for  a function increasing linearly with height, velocity profiles for all ice sheets are obtained
which represent excellent approximations to the true ones, since, above a critical height ke where the deviation
[rom linearity becomes large, the influence of temperature on ice flow becomes negligible. In a comparison
of the present theory with Robin’s (1955) treatment a larger temperature difference A7 of up to 30%, is
obtained. Furthermore the present theory yields an age considerably increased compared with Nye’s model ;
e.g. more than 509, at a relative height of i/ = o-1.

RESUME. Sur les profils de température et d’dge dans la région centrale des calotles glaciaires. La loi généralisée
de Glen ¢ = 7" exp (k#) est employée pour calculer les profil de vitesse horizontale et verticale et, 4 partir
d’cux, les profils de température ct d’age des calottes glaciaires froides. Il est démontré qu’on peut obtenir
des profils de vitesse qui représentent des approximations excellentes des profils réels pour toutes les calottes, si
I'on substitue & # une fonction qui croit linéairement avee la hauteur au-dessus du lit rocheux. Au-dessus
d’une hauteur critique ke, ou la température réelle s’écarte de la linéarité, 'influence de la température sur
le fluage de la glace est en effet négligeable. En comparant la présente théorie avec celle de Robin (1955) on
abtient des différences de température AT, qui peuvent étre jusqu’a 30%, plus grandes. La théorie permet
en plus de calculer Iige de la glace qui est considérablement supérieur a 'age calculé d’aprés le modéle de
Nye; par exemple il est plus de 509, supéricur & une hauteur relative A/H = o-1 au-dessus du lit rocheux.

ZusaMMENFASSUNG.  Uber das Temperatur- und Altersprofil des Eises im Zentralbereich kalter Eiskalotten. Die
allgemeine Form des Glen’schen Gesetzes € — €,7" exp (k8) wurde beniitzt, um die Profile der Horizontal-
und der Vertikalgeschwindigkeiten und von diesen die Temperatur- und Altersprofile zu berechnen. Es
wird gezeigt, dass durch Substitution von # durch eine linear mit der Hohe ansteigende Funktion Gesch-
windigkeitsprofile fiir alle Eiskappen erhalten werden, welche die wahren Verhiltnisse ausgezeichnet
approximieren. Uber einer kritischen Héhe h¢, wo die Abweichung von der Linearitit gross wird, ist der
Einfluss der Temperatur auf das Flicssen des Eises schon vernachlissigbar klein. Beim Vergleich der
beschriebenen Theorie mit derjenigen von Robin (1955) erhilt man Temperaturdifferenzen AT, die bis zu
30%, grosser sind. Ausserdem ergibt dic jetzige Theorie Eisalter, welche gegeniiber denjenigen des Nye-
Modells erheblich héher liegen; z.B. ergibt sich fiir eine relative Hohe iiber dem Felsboden von k/H — o-1
ein um mehr als 50%, héheres Eisalter.

I. InTRODUCTION

Concerning the movement of large ice sheets, two limiting cases have heen calculated,
pure gliding over the bedrock (Nye, 1952) and the behaviour of the ice like a Newtonian
liquid (Philberth, 1956). These can hoth be considered special cases of Glen’s law, with the
exponent n = o0 and n = 1 respectively. As has been shown by Haefeli (1961[a], [b]) and
by Philberth and Federer (1970), an excellent agreement with the real surface profile of the
Greenland ice sheet is obtained if the exponent is taken as n = 3.5.

The temperature profile depends on the horizontal and the vertical velocity profiles
(Robin, 1955). These velocities are functions of the shear strain-rate, which is itself a function
of the shear stress and the temperature. An exact calculation of the mutual dependence of
temperature and velocity profiles would lead to very complicated expressions. Therefore one
has to rely on simplified models. In the following we shall present such a model, which is
sulliciently accurate and relatively simple.

Since the fundamental calculation of the temperature profile by Robin (1955), a number
of different refinements have been published (Weertman, 1961, 1968; Lliboutry, 1968).
But so far the significance of the vertical velocity for the temperature profile has not been
taken into account sufficiently. Generally one still uses the simplified assumption that the
vertical velocity decreases in proportion to the distance from the bedrock. This assumption
leads to a rather imprecise temperature profile. In a recent paper by Dansgaard and Johnsen
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(1969[b]) the vertical velocity vy has been calculated from a simplified v.-profile by use of
the continuity equation for incompressible media. The simplification consists in the assump-
tion, that o, increases linearly up to a certain height from the bedrock and then remains
constant up to the surface. If this height is chosen correctly, the derived y is a good approxi-
mation to the true z. It is difficult, however, to determine the value of this height, if the
vg-profile is not known from measurement or from the theory. Dansgaard and Johnsen
(1969[a]) also calculate the temperature profile with their improved function for oy, and
obtain good agreement with measurement. In the vicinity of the bedrock the vertical
temperature gradient is approximately given by the sum of geothermal heat and the heat of
friction, divided by the thermal conductivity of the ice (Nye, 1951; Lliboutry, 1968). Above
this lower region the temperature profile has a monotonic curvature. The curvature lies in
the region where the conflict between heat conduction from the lower parts and transport
of cold ice from above is most pronounced, i.e. where the product of height & above the
bedrock and vertical velocity vy, of the ice has an absolute value of the order of the diffusivity
« of the ice (cf. Appendix A). The vertical velocity oy, in this region has a large influence on
the temperature profile. Thus the calculations in this paper aim at a more accurate estimate
of the vertical velocity in this region.

II. SyMBOLS USED IN THIS PAPER

Symbol Uhnits Description

X km Horizontal coordinate, distance from ice divide.

h m Vertical coordinate, height above bedrock.

4 ma’ Long-time average of total accumulation (in ice thickness).

—4 ma-t Vertical downward velocity, measured from the surface.

Uy ma! Horizontal velocity.

i ma! Mean horizontal velocity.

Un ma-! Vertical velocity.

—vH ma! Vertical downward velocity in the immediate vicinity of the
surface for a profile which moves with vym.

y = kG(H—h) Running dimensionless depth parameter.

Y = kGH Full dimensionless depth parameter,

H m Total height of ice sheet, H = H(x).

H; m Standard total height (2 500 m).

he m Critical height, where curvature of temperature profile has its
maximuim.

gz— Oy bar Longitudinal stress.

T, Tzh bar Shear stresses.

&l a! Shear strain-rates.

e Base of natural logarithm.

g 1§ A Acceleration due to gravity.

p Mg m3 Density of ice.

G deg m™! Real thermal gradient near the bottom.

G, deg m—! Standard value of G (1/44 deg m™1).

Gg deg m! Geothermal gradient.

Gy deg m? Thermal gradient due to heat generation in shear layer.

n Stress exponent.

K a1 Thermal diffusivity of ice (38 m? a=71).

¢ a Age of the ice.

ps bar Hydrostatic pressure.

o* J mol—! Activation energy of creep.
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Symbol Units Description

R J mol~tdeg~! Universal gas content.

k deg—? Temperature coefficient. (0.1-0.25 deg—').

7 K Temperature.

T K Temperature at the bottom.

AL deg Real temperature difference between bedrock and a point
vertically above.

R deg Temperature difference as read from Table 1.

Ry K Pressure melting point.

0 deg Difference between actual temperature and pressure melting
point.

a ° Surface slope relative to horizontal plane.

B ° Slope of bedrock relative to horizontal plane.

d(, ¥) Profile function for horizontal flow,

Yy, 1) Profile function for vertical flow.

I1I. AssumpTIONS

(1) The surface slope « and its horizontal gradient ¢«/2x are small.

(2) The bedrock is horizontal (8 = o).

(3) The ice sheet does not glide over the bedrock (v, = o at & = o).

(4) The density p is constant throughout the ice sheet.

(5) ¢T/dx and ¢G/2x are very small.

i 4 : : < 10 (G'J:* Uy) 7

(6) The horizontal gradient of the longitudinal stress z  isvery small.

(7) The horizontal gradient of the accumulation £4/éx is small.

(8) Only the two-dimensional case is considered.

(9) All the values are stationary.

Assumption (2) is made to simplify the calculations, although these will be approximately
valid for small g and very small ¢8/éx. If B # o the x-coordinate is parallel and the A-
coordinate orthogonal to the bedrock. For the case of a circular ice sheet the same values for
on, @T/ch, T and { are obtained if the linear distance x is changed into the radial distance 7.

The validity of assumption (6) is a matter of discussion in the vicinity of the ice divide,
and also in the outer regions of ice sheets where ice flows (Haefeli, 1968) and other types of
spatial instabilities (Lliboutry, 1968) may occur.

IV. CarLcuraTiOoNs
We start from the generalized Glen’s law (Weertman, 1968):
é = éyr exp (—Q*/RT).
In the region of interest the temperature interval and the gradient of the pressure melting
point are relatively small, so we can use (Budd, 1968; Lliboutry, 1968):

€ = é;mm exp {k(T—S8)}. (1)
Now for T in equation (1) we use the linear expression

The pressure melting point depends on H—4h. This dependence being very small, however,
we shall neglect it, so that § depends only on x. For the factor G we put numerically the
geothermal gradient Gy or, for the case of an additional heat of friction, Gg-}-Gy. If heat of
friction is present the linear form (2) differs slightly from the true temperature profile in the
immediate vicinity of the bedrock, because the heat of friction is not formed at the interface
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between bedrock and ice, but in the lowermost layers; the deviation from the linear profile,
however, is small (Lliboutry, 1968).

Above a certain height 4 the linear form (2) ceases to be a valid description of the true
temperature profile. Nevertheless we can use Equation (2) for a rather precise calculation
of v and vy, in the whole range of s This is proved in Appendix A.

Using assumption (6) and Equation (B1) (see Appendix B) one obtains, upon integration

r2n = pg sin a(H—h). (3)
As shown in Appendix B, Equation (3) can be inserted into Equation (1) which becomes
vz/oh = é,(pg sin «)m exp {k(Tp—S)}(H—h)" exp (—kGh). (4)

In the following, the movement of the ice will not be calculated from the slope « but by means
of the mass budget. The first three factors of Equation (4) are merely a function f(x) which
is of no further interest. With n = g Equation (4) becomes:

Busfoh = f (x) (H—h)3 exp (—kGh). (5)
Upon substitution of 1" = kGH and y = kG(H—h), integration of Equation (5) gives

iy s f Adx H¢(p, ¥) = vamd(, 1), (6)

where 7,m is the mean value of v, and
$(», 1) = Y[—Crexp 0— 1) (' —3p*+6y—6) +Ca),

with C, = (Y+—4Y3+1212—24V+24—24[e") 7,
and C, = C(Yi—3Y2}6Y—6).
Differentiation of Equation (6) with respect to x yields:

ab'x avzm agﬁ

BV T
or

vy R oH (¢ o¢)

B e g (ﬁ_‘éﬁ)' (7)
The third term in Equation (7) is smaller than the second term for all values of y, ¥ and x,
but in the central region both terms are small compared with the first one. In many cases,
especially if H > 2 000 m, the 6¢/0H term is only a small (positive) correction to the ¢/H

term so that we shall neglect it in further calculations.
Equation (7) now reads

avz BH q5
a-: (A-—-I)xma) ﬁ (8)
We define
o
—ovg = A—vzm ';E: (9)
or:
x oH
—vg = A\ 1—5 =) (9a)

where vzm 2H/8x is the change of ice thickness per unit time considered for a profile which
moves with the mean horizontal velocity 2gm, and —ug is the vertical downward velocity of
ice particles in the immediate vicinity of the surface considered for a profile which moves
with the mean horizontal velocity zzm. —uvg is measured from a horizontal plane and in
the case of B # o from a plane parallel to the bedrock.
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Under normal conditions —o,m 8H/0x increases a little more than linearly with x, while
4 can be assumed to be almost independent of x. Therefore 5 is nearly constant as long as
4 in Equation (g) is the predominant term, i.e., according to Equation (ga), as long as

H
L <W (IO)

Because of assumption (4) the continuity equation can be written
divv = o, Ovz[0x = —vp/0h.
Integration of Equation (8) and using Equation (g) yields:
on = vad(y, T)
where
(3, ¥) = Ge~1(5*—6*+18y—24) —C, y+24Cfe" + 1. (11)
The equation of stationary heat transport reads:

V2T='—ivgrad Z; (12)

2

eT T
Under the condition (10) and with assumption (5), o and %\:_2 can be neglected. On the

E.G.L.G. profile in Greenland, for example, the gradient #7p/éx is very small (Philberth
and Federer, 1970). Equation (12) now reads:

2T Up od i
ey \ies)
which yields, upon integration,
oT logH| C, . C.p* 24y »
Pl ORPE b)) W8 —a92 i o i A ’
o= G exp [ - 7 {e-‘ (»3—9*+36y—60) At e +C[ C‘J} (13)
where
C; = ¥3—9g¥2{-36¥—60—C,12/2C, 4247 [e¥+ ¥/C,.
From Equation (13) the temperatures at all heights are obtained by integration;
h H
T (k T ETd!z i T aTc!!z
(h) = T+ 5 9 8= In—| = di (14)

The age ¢ of the ice at any height can be calculated by means of the vertical velocity relative
to the surface, i.e. —4 (3, 1) (see Equation (11)).
h hiH

1 H d(h/H)
T .[—A $(», ) #i=3 f —{Y(1=h/H), T} (15)
H I

The integrals in Equations (14) and (15) do not have exact solutions (see also Robin, 1955).
The values for T(k) and for the age ¢ were therefore calculated on the digital computer
coc 1604 of the Rechenzentrum der E.'T.H., Ziirich,

V. REesvuLts
The values calculated with Equations (13) and (15) are shown in Tables I and 1I. In
ATG.H
order to obtain the maximum information from Table I the product AT, :# is

given for 7 values of ¥ = AGH as a function of the relative heights 4/H for thin
(lorH| = 75 m? a~'), medium (|vyH| = 375 and 750 m* a—') and thick (JogH| =
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1 500 m* a~') ice sheets. AT is the difference between the temperatures at the
bedrock and the height h/H, G, is the standard thermal gradient taken as 1/44 deg m~" and
H, = 2 500 m. In order to find AT for any thermal gradient G at the bedrock and any
total height H of a particular point on an ice sheet, the value of AT,, which is read from the
appropriate Table, has to be multiplied by 44GH/2 500 deg™, so that
AT = AT (GH1.76 x 1072 deg™). (16)

Values of |vgH| which are between those given in Table 1, a—d, are best interpolated
graphically, where one has to note that, by Equation (13), for logH| = o, AT = Gh and
for vgH — @: AT — 0. Column (1) for ¥’ = oo gives the temperature profile of Robin
(1955), while column (7) for " = o represents the temperature profile obtained by Glen’s
law € = const. 73.

TaARLE 1. TEMPERATURE DIFFERENCES T, IN DEGREES BETWEEN BEDROCK AND THE RELATIVE HEIGHT hiH,
For Hy aND G,

(a) |ear.H| = 75 m? a™! (b) |om.H| =375 m? a™!

) (2 (3 @ (B © O M (=@ @ @ 6 © 0
kH Y=o 95 142 8.5 5 083 0 @ 25 14.2 B8.53 5 0.83 0
1 426 434 438 44.4 450 459 46.2 22.7 24.1 248 257 266 284 289
0.95 41.5 42.2  42.7 431 437 446 449 22,7 24.1 248 257 265 283 288
0.9 40.3 41.0 41.4 41.8 424 432 434 22.6 24.0 248 256 264 282 287
0.85 38.9 39.6 400 404 409 41 6 419 226 23.9 247 255 263 281 286
0.8 37.5 38.1 385 388 39.3 40.0 402 22,5 238 245 254 =262 279 284
075 859 36.4 368 37.1 375 38.1 383 203 237 244 252 259 276 280
0.7 34.2 347 350 353 357 362 374 20,1 23.4 241 249 256 272 276
065 324 329 33.1 334 337 342 343 21.8 23.1 236 244 252 266 270
0.6 g0.5 30.9 3I.1 31.3 31.6 32.0 32.1 214 22.6 232 239 245 258 262
0.55 28.4 288 290 292 294 29.7 20.8 20.9 =21.9 22.5 231 238 249 252
0.5 26.3 26.6 =26.7 26,9 271 27.3 274 20.1 21.1 21.6 =22.2 22,7 23.7 239
0.45 24.0 24.2 24.3 245 246 248 24.9 19.1 20.1 205 21.0 2I.4 222 22,
0.4 21,6 21.8 21,9 22.0 221 222 22.3 8o 188 19.1 19.5 19.9 =205 20
0.35 19.1 19.3 19.4 19.4 19.5 196 19.6 165 172 175 178 180 185 186
0.3 16,6 167 167 168 168 169 169 149 154 156 158 159 162 163
0.25 13.0 140 T14.0 141 141 141 T4.1 12,9 13.2 13.4 135 13.6 13.8 13.8
0.2 1.2 ang I3 ILg 119 1L3 113 107 10.9 IL.0 ILI II.1 112 1IL2
0.15 B 85 85 85 85 85 B85 82 83 84 84 84 85 85
0.1 57 87 59 57 59 57 57 56 56 56 57 57 57 57
0.05 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 28 2.8 2.8 2.8
o (o] o0 (8] 0 L8] (8] 0 0 (6] ] 0 0 (o] (6]

(¢) |og-H| = 750 m2 a~! (d) |og.H| — 1500m2a!

1) @ @6 @ 6 © 0 M @ @3 @ 6 6 @
WH Y=o 25 142 85 5 0.83 0 o] 25 142 8.5 5 0.83 o
1 16,1 176 183 192 200 21.8 223 11.4 12,9 136 144 152 168 173
0.95 16.1 17.6 18.3 19.2 =200 21.8 223 11.4 12,9 136 144 152 168 17.3
0.9 16.1 176 18.3 19.2 200 21.8 223 11.4 12.9 136 144 152 168 17.3
0.85 161 17.6 183 192 200 21.8 223 11.4 129 136 144 152 168 173
0.8 16.1 176 18.3 19.2 =200 21.7 22.2 11.4 12.9 136 14.4 152 168 173
0.75 16.1 17.6 183 19.2 =20.0 21.7 222 11.4 129 136 144 152 168 172
0.7 16.1 17.5 183 19.1 19.9 216 221 11.4 129 136 144 152 168 172
065 160 175 182 191 19.9 2.5 220 11.4 129 136 144 152 168 17.2
0.6 160 17.4 181 1Bg 197 21.3 218 1.4 129 136 144 152 168 172
0.55 15.9 17.3 180 187 19.5 21.0 214 11.4 129 136 14.4 152 167 17.2
0.5 15.7 170 17.7 184 19.1 205 20.9 11.4 129 136 144 151 166 171
0.45 15.4 166 17.2 179 185 19.7 200 1.4 128 135 143 150 164 168
0.4 149 160 166 17.2 17.7 187 18.9 1.3 12,7 13.4 141 148 160 164
0.35 142 152 156 161 165 17.3 174 1.1 12.4 13.0 137 143 153 156
0.3 13.2 140 143 147 150 156 156 10.7 11.g 124 130 134 142 144
0.25 1.8 124 127 129 131 134 135 101 LI 115 18 1222 12 128
0.2 101 105 10.6 108 109 I11.0 11O 9.0 9.7 100 102 104 107 10.7
0.15 80 8.2 82 83 83 84 84 e 709 Bo 81 8.2 .3 83
0.1 55 56 56 56 57 57 57 53 55 56 56 56 56 56
0.05 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 28 2.8 2.8 2.8
a (o] o o] (0] (0} o 0 (o] 0 (o] 0 (0] 0 (8]
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Tasre II. AGE OF ICE IN YEARS AS A FUNCTION OF RELATIVE HEIGHT i/H. THE VALUES REFER TO H[4 = 2 500 a

(1) (2) (3) (4) (5) (6) ()
h|H Y=o 25 14.2 8.5 5 0.83 ¥=8
I [¢] (o] (6] (8] 0 (o] 0
0.95 128 128 128 129 129 129 129
0.9 263 264 264 265 265 266 267
0.85 406 408 408 409 411 414 415
0.8 558 560 562 564 567 573 575
0.75 719 723 726 730 734 745 749
0.7 892 898 903 go8 915 933 940
0.65 1 080 1 090 I 004 1102 1 112 1 140 1150
0.6 1 280 1 290 1 300 1313 1 330 1370 1 380
0.55 1 500 I 520 1 530 1 546 1 569 1 630 1 650
0.5 1730 1 760 1 780 1 810 1 840 1 920 1 954
0.45 2 000 2 040 2 obo 2 100 2 140 2 260 2 310
0.4 2 290 2 350 2 380 2 430 2 500 2 670 2 730
0.35 2 630 2 700 2 760 2 820 2910 3 160 3 250
0.3 3 010 3 120 3 200 3 300 3 430 3 780 3 oo
0.25 3 470 3 620 3 740 3 890 4 080 4 boo 4 780
0.2 4 030 4 260 4 440 4 670 4 970 5 750 6 030
0.15 4 760 5 140 5 430 5810 6 300 7 560 8 or1o0
0.1 5 780 6 500 7 0bo 7 780 8 670 10 gbo 11 770
0.05 7 550 9 500 10 950 12 770 14 gbo 20 530 22 500
0.01 11 8go 25 QOO 35 200 46 300 50 400 92 400 104 100

Example 1
If we take Station Jarl Joset, Greenland, where H = 2 500 m, |vg| = 0.3 m of ice a 1,

k = o.1 deg ! and G = 1/30 deg m~', we have to use Table Ic (|og H| = 750), column (4).
AT, at 1 500 m above ground (h/H = 0.6), i.e. 1 000 m below the surface is 18.9 deg. So
the real AT becomes

AT = 18.9X1/30 X2 500X 1.76 X 1072 = 27.8 deg.
At a height of 1 500 m above the bedrock, i.e. at a depth of 1 000 m, a temperature of —30.0°C.

has been measured (Philberth, 1970). Therefore the bottom temperature at Station Jarl-Joset
is —30.0+27.8 = —2.2°C, which is slightly below the pressure melting point.

Example 2

At the ice divide (Créte) in Greenland H = 3o00om, |vn| = o0.25m of ice a™!,
G = 1/44 deg/m and k£ = o.15 deg™".

Table Ic gives for A/H = 1 and 1 = 10.2 an interpolated value of AT, = 18.7 deg, so
that, according to Equation (16):

AT = 22.4 deg,

which is the temperature difference between the bedrock and the surface. In comparison,
Robin’s (1955) paper gives AT = 19.4 deg.

Example 3

According to Haefeli (1961[b]) the center of the Jungfraujoch Eiskalotte has the following
values: H=j50m, [vu|=1.5ma™’, G=1/44degm and k =o.15deg™’, so that
louH| = 75 m?a' and ¥ = 0.17. In order to find the temperature difference between
bedrock and surface we use Table Ia, column (7) which yields AT, = 46.2 deg and
AT = 0.93 deg for the temperature difference over the whole thickness.

Example 4
In order to obtain the age at A/ = o.1 for a station with £ = o.1 deg™', G = 1/50 deg
m~', H = 400m and 4 = 0.6 m of ice a~' we have to use column (6) of Table II which
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yields 10 g6o a. This is the value for /4 = 2 500 a. For the present values, i.e. for
H|A = 400/0.6 a the age is
10 960 % 400 X 1

-_——-— h k'
¢ 0.6 X2 500 2 920 years 40 m above the bedroc

With Nye’s model (column (1)), an age of 1 540 years would be obtained.

Lxample 5

According to Hansen and Langway (1966), the temperature difference between the
bedrock and the surface at Camp Century is AT = 11.0 deg. Let us compare this value
with the one given by the present theory.

1400
h/k4

-03

1200

Robin theory

\
1000+

&
E 800
© ~0,5
o]
g 600
2
$ 400-F03
o
w - : nt theory
(@ 5
200 i \ \\e.
0,1 R \
. =
e, Py

0
~26% 24" 42 20 -1 A8¢ <Y 20
Temperature, °C

Fig. 1. Measured (by B. L. Hansen) and theoretical temperature profiles for the Camp Century bore hole.

According to Weertman (1968), H = 1 4oom, k = o.1deg?, G = 1/56 degm™! and
|vp| = 0.36 ma~'; thus |vy H| = 504 m?a~t and 1" = 2.5. To obtain the AT, for these
values, we have to interpolate in each Table a—d the individual AT’s between columns (5)
and (6) and plot them on logarithmic paper. From the plot AT, = 24.5 deg is obtained for
|vir H| = 504. This yields a AT = 10.8 deg which is in good agreement with the measured

Since in Camp Century there exists a measured temperature profile, we compare in
Figure 1 the temperature profile obtained by the present theory with the measurement.
Figure 1 also shows the temperature profiles obtained by Robin (1955) and Weertman
(1968). For the special case of Camp Century, Weertman used the shear stress and the
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temperature to calculate dv,/0h and v;. From our Equation (5) we obtain exactly the same
vz profile. But Weertman does not use this v, profile to determine vy, for the calculation of
the temperature and age profiles. Instead he uses—as did Robin—the simpler equation
vp = vph/H based on Nye’s theory, which yields 3 values which are too large. Therefore,
the temperatures obtained by Robin and Weertman are too low (Fig. 1) and the ages
obtained by Nye’s theory are too small (Fig. 2).
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Fig. 2, Measured (by Dansgaard and Fohnsen) and theoretical age profiles for the Camp Century bore hole. The distance in
melres from bollom refers lo a lotal ice value of 1 370 m.

Dansgaard and Johnsen (1g6g[a]) have used the measured age profile for the determina-
tion of the vz and temperature profiles (see below). The resulting curve does not differ
appreciably from our temperature profile.

Figure 2 shows the age profiles. Dansgaard and Johnsen (1969[b]) used for their
calculation a linearized 2, profile, the parameter /4 of which is chosen such that their age
profile is identical with their measured values. For the most important range below 300 m
above the bedrock, this requires v, values which differ considerably from the v, profiles
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given by Weertman and by the present theory. The difference between the measurement
and the present theory implies that, for the conditions at Camp Century, the value for the
temperature coefficient £ must be smaller than o.1 deg~".

V1. Discussion

In previous papers the profiles for the temperature and the age have been calculated
from v,-functions which have either been special cases (Dansgaard and Johnsen, 196g[a],
[b]) or rough approximations (Robin, 1955). In contrast, Equation (5) is a relatively simple
function for v, which sufficiently takes into account the influences of temperature and shear
stress. Possibly there is no simpler function for »; which yields satisfactory temperature
and age profiles for all real values of /1, 4 and G, because there exist ice sheets where the
temperature influence is predominant (large kGH) and those where the shear-stress influence
is predominant (small /GH ) and those in between the two cases. The Tables and the examples
show that the temperature and age profiles for these cases differ widely. In the columns (1)
of the Tables the Nye flow model (¢v/dh = 0) and in the columns (7) the flow according
to Glen’s 73-law are given as limiting cases (kGH = oo and kGH = o respectively).

Equation (g) shows that —oy differs from — A4 if v, and 9H/0x are both non-zero. The
temperature profile (13) contains vy = vgi(y, 1), the age profile, however, —Ay(y, TI).
This difference can be viewed in the following way:

The surface receives the accumulation A d¢ per unit time. Therefore each ice layer in
the vicinity of the surface migrates by A df below the new surface. The increase in age d¢
of an ice layer in the surface region is thus equal to the distance from the surface divided by 4.
For deeper layers the product of A with the normalized profile function (y, ¥) has to be
taken instead of 4.

The situation is quite different in the calculation of the temperature profile. The thermal
interaction of the different ice layers depends on their relative separation which is calculated
from the vertical velocity vy, It is unimportant whether the separation between the layers
is shortened because of the accumulation A or because of their movement into a region with
decreasing total height. Both influences together result in the quantity vy and therefore
vp = og P(p, V) for the calculation of the temperature profile.

The temperature in the upper layers of ice sheets are influenced by short-time fluctuations
of the climate. Furthermore, for x = o the upper layers tend to have a small negative
temperature gradient in the downward direction (de Quervain, 1968, p. 176; Weertman,
1968). Because of these reasons, the value of Ty calculated by Equation (14) becomes more
realistic if it is possible to fit the calculated part of the profile to one measured down to a
reasonable depth. This is done for the measured 1 ooom profile at the E.G.I.G. station
Jarl Joset in Greenland (to be published in Meddelelser om Gronland).

MS. received 3 Seplember 1969 and in revised form 16 June 1970
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APPENDIX A

Above a certain height the linear form of Equation (2) differs considerably from the true temperature profile.
As a characteristic height where the deviation becomes important, we take A which is the height of maximum
curvature of the temperature profile. /e can be calculated by use of the Equation (12a)

2T wvpoT

S = o B (A1)
Differentiating with respect to k, the left-hand side becomes zero at the maximum of the curvature:
2T vy 16T oup
= B TR (%)
Using Equation (Ar) in (A2) yields:
= 2 [y 201 e
"= (.c "k ok
or
2 = —«k ovnfoh. (A3)
If we use the approximate expression v, = —Ak/H we arrive at the relationship described in the Introduction:
he he = —& (Ag)
and he = (xH[A)L (As)

(The indices ¢ denote the point of maximum curvature.)

Thus, from the bedrock to ke the linear form (Equation (2)) is a very good approximation for the true
temperature profile.

Above ke the deviation is large. If we want to use Equation (2) in the calculations of the horizontal and
vertical velocity profiles, we must prove that, above fe, the temperature does not influence the vy profile to any
appreciable extent. In order to prove this, we will show that at he the shear velocity dv./dh has decreased by at
least a factor 1/e = 0.368 with respect to its value at the bedrock (in most real situations the factor is essentially
smaller than this). If this is the case the increase of vz between ke and the surface (h = H) is very small. Therefore
we are not committing any important errors by using the linear form (2) which, above he, yields a lower tempera-
ture and therefore a larger rigidity of the ice than the true values. A larger rigidity above he, however, further
reduces the difference of v between h = h. and h = H.

Suppose now that the shear strain-rate (Equation (5)) has decreased by a factor less than 1/e. Division of
Equation (5) for & = he by the value for & = o yields:

{(H—he)|HY exp (—kGh) < 1fe. (A6)
From Equation (As), kGhe = kGhe?lhe = kﬁ;H and inserting this into inequality (A6) we obtain:
&
1o/t exp (—550) < e, (A7)
C
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If condition (A7) is fulfilled, the linear form (2) can be used in calculating the velocity and temperature profiles.
It can be seen that (A7) is fulfilled for every possible value of h./H if
AlkGk < 12 (A8)
The magnitude of the error in Equation (5) cannot very well be estimated by using the foregoing considerations.
The error is equal to the difference D between the real value of d2,/dh and the one given by Equation (5). The
function D depends on the true temperature profile, which can be calculated by Equation (A1). In this way
the following approximation is obtained:
D = f(x)H3 exp (— Yh/H) (h/H)3Y24/(6kGKk). (Ag)
The precise calculations show that the neglected terms of higher order (in the temperature function and in the
exponential expression) nearly compensate each other, so that Equation (Ag) is rather accurate for all real ice
sheets.
Comparing Equation (5) with the function f(x)(H—#h)" exp (—kT ), where T is the real temperature profile
and n is chosen such that the values of this function are equal in the region where D has its maximum, yields the
exponents n given in Table II1.

Tasre ITI. VALUES FOR n IN THE FUNCTION [(x) (H-h)" exp (—kT) corresponDING To EQUaTION (5)

A
kG Y=o 25 14.2 85 5 3 2 0.83 0
1 (3.0) (4.0) 3.8 3.5 3.3 3.2 3.1 3.0 (3.0)
3 (3.0) (5.9) (5-2) 45 3.9 3-4 3.2 3.1 (3.0)
5 (3-0) = (6.3) (5.2) (4.3) 3.6 3.3 3.1 (3-0)
10 (3-0) = B (4.9) 4.0 3.6 3.2 (3-0)

Numbers in brackets are n-values for unreal ice sheets, Only Antarctica and Greenland have Y-values = 3;
but for these ice sheets A is smaller than 0.35 m a~1, and therefore 4/(kGx) < 3. Thus, for all existing ice sheets
n-values between 3 and 5 are obtained.

These estimates need the following comment: Robin’s treatment is the zeroth approximation to the velocity
profile, because the temperature is not taken into account and 7 is taken to be co. Equation (5) with the linear
temperature profile is the first approximation if the exponent in Glen’s law is taken to be 3. On the other hand,
Equation (5) is already the second approximation if it is taken to describe the true physical mechanism with the
real temperature profile instead of —Gh and an exponent n taken from Table IT1.

Since laboratory and field experiments yield an exponent n between 3 and 4, we arrive at the following con-
clusion: Equation (5) gives a very accurate description of the temperature profile for all ice sheets; in many
cases (especially il n = 3.5) the description of the temperature profile by Equation (5) is even better than if
one had substituted —G#h by the true temperature profile.

APPENDIX B

In this Appendix it is shown that, because of assumption (6), it is justified to put 73 for 7 in Equation (1)
and 0v,/oh for €. In recent papers (Budd, 1968; Nye, 1969) detailed studies on the stress in ice sheets have been
published. Here an intuitive description of the ice flow is given. The ice sheet is considered to consist of a pile
of thin horizontal layers. These are subject to the shear stress 7,5 and the shear strain-rate dv,/8h between the
layers and to the longitudinal stress o, — ox and the longitudinal strain-rate duv./dx—v,/38y — 2 dv,/0x within
the layers.

At the ice divide (x = 0) «, vz, 802/2k and 745 are zero; o, — o and 2 Jv,/dx are non-zero. Therefore for the
ice divide we can state that the longitudinal stress o;— o4 drives the longitudinal strain-rate 2 dv;/x and the
shear stress 74y, drives the shear strain rate 8o,/2h. This statement is approximately valid for the whole central
region of the ice sheet. In order to prove this fact we consider, as a first approximation, not only 7 but also
2 dvz/0x to be independent of x and consequently the longitudinal stress for the maintenance of 28v,/dx to be like-
wise independent of x. This last mentioned longitudinal stress and the longitudinal stress o,— o) both being
independent of ¥ and both being identical for x — o we can conclude that they are identical also for x == o.

There could be an objection: for our prool we have neglected some values which have been called small.
For large values of x these could add up to an amount which could be not negligible. In principle this objection
is right. It must be realized, however, that o, — oy and 2 @2./dx are nearly independent of x while 7,5, and 2u./2h
increase with x. Calculations have shown that under conditions which exist on the E.G.1.G. profile in central
Greenland, for x > 10 H the longitudinal force (i.c. az— an = 20, ps integrated over a vertical cross-section)
is smaller than the total shear force (i.e. the bottom value of 7z, integrated over a horizontal cross-section). In
consequence, even if an influence of ox— op on 9,/0k exists, this influence remains small with respect to that of
7en. € and 7 in Equation (1) can therefore be understood as d0,/2h and 7, respectively. In Nye’s (196g) equation

(3) %-{- a;’;k-ﬁ- pgsin « = 0, foz/0x can be neglected because oz = (0z— on+ps)/2, where pg is nearly inde-

pendent of x, so that it reads
dran/oh = — pg sin a. (B1)
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