ENLARGEABLE BANACH-LIE ALGEBRAS AND FREE TOPOLOGICAL GROUPS

VLADIMIR G. PESTOV

We characterise in terms of free topological groups those Banach-Lie algebras with finite-dimensional centre coming from Lie groups.

INTRODUCTION

A Banach-Lie algebra g is called *enlargeable* if it comes from a Banach-Lie group [6, 10, 20-23, 24, 25]. The Lie-Cartan theorem [4] says that finite-dimensional Lie algebras are enlargeable; a similar statement is no longer true for infinite-dimensional Banach-Lie algebras [24, 20-23]. There exist various criteria of enlargeability, mainly in cohomological terms [24, 23, 7].

It seems that the question on existence of a "natural" (that is, functorial) proof of the Lie-Cartan theorem, which would be independent of both known proofs (the cohomological one by Cartan [4] and the representation-theoretic one by Ado [1]), is still open; for a discussion see [18]. In this note we reshape criteria for enlargeability of a given Banach-Lie algebra \mathfrak{g} in terms of closedness of a certain subgroup of the free topological group, $F(\mathfrak{g})$, over \mathfrak{g} ; this is done with an idea of paving a way towards a conjectural "direct" proof of the Lie-Cartan theorem.

Let \mathfrak{g} be a Banach-Lie algebra. To be precise, by this term we understand a Lie algebra endowed with a complete submultiplicative norm. The Hausdorff series H(x,y) converges for all x, y from a sufficiently small neighbourhood of zero, U. The resulting binary operation $(x, y) \mapsto x.y$ makes U into a local analytic Lie group, and therefore a Lie group germ, $loc(\mathfrak{g})$ (in the sense of [19, 23]), associated to \mathfrak{g} , comes into being; the functorial nature of the correspondence $\mathfrak{g} \mapsto loc(\mathfrak{g})$ (which turns out to be an equivalence of categories) is well known [3, 24, 20].

According to the Świerczkowski's Theorem on Extension of Analytic Structure [20], if a local Banach-Lie group U can be embedded into a topological group G as a local topological subgroup, then G can be given a structure of an analytical Banach-Lie

Received 16th July 1992

This investigation was stimulated by the paper [8] by Elyahu Katz (which the author studied in 1983) and partially supported by 1992 research grant V212/451/ RGNT/594/153 from the Internal Grant Committee of the Victoria University of Wellington.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

group extending the structure of the original local Lie group. Therefore, the problem of enlarging a Banach-Lie algebra is reduced to the problem of embedding the corresponding local Lie group into a topological group as a local topological subgroup. Ever since the paper [11] by Mal'cev it has been known that not every local topological group admits extension to a global group; the same is true relative to local Banach-Lie groups [24, 22, 23].

It is natural to consider a universal morphism, i_g , from a Lie group germ, g, to a topological group, say G_g ; this mapping is a morphism of group germs such that any other morphism $f: g \to G$ of this kind, where G is a topological group, factors through i_g uniquely, that is, for some unique continuous homomorphism $\hat{f}: G_g \to G$ one has $i_g \circ \hat{f} = f$. This construction is but one example of what in category theory is referred to as universal arrows, see [13]. From Świerczkowski's theorem the following result is an easy corollary. (We shall write i_g instead of $i_{loc(g)}$, and G_g instead of $G_{loc(g)}$.)

THEOREM 1. A Banach-Lie algebra g is enlargeable if and only if the restriction of the universal morphism i_g to an appropriately small local Lie group V representative of the Lie group germ loc(g) is one-to-one. In this case the topological group G_g can be given the structure of a simply connected Banach-Lie group in such a way that the restriction of the universal morphism i_g to V is a local diffeomorphism.

The universal character of the construction of i_g makes it a very convenient but highly non-constructive device. We shall show that this construction can be performed by means of free topological groups, and it leads to a new criterion of enlargeability for Banach-Lie algebras with finite-dimensional centre in terms of the closedness of a certain subgroup of the free topological group over the underlying topological space of \mathfrak{g} (Theorem 8). This criterion fails in the case where $\dim c(\mathfrak{g}) = +\infty$ (Example). In order to give an independent proof of an auxiliary result on the structure of the topological group $G_{\mathfrak{g}}$ (Theorem 5), which can be also deduced from earlier results by Świerczkowski and van Est [21], we invoke another kind of universal arrows — the free Banach-Lie algebras [17].

We prove in passing the following curious result: a Banach-Lie algebra is enlargeable if and only if all its separable Banach-Lie subalgebras are (Theorem 7).

Since the structure of free topological groups $F(\mathbb{R}^n)$ is well understood [12, 9], then there is some hope that a "direct" proof of the Lie-Cartan theorem is within reach.

MAIN CONSTRUCTION

If X is a Tychonoff topological space then by F(X) we denote the free topological group over X in the sense of Markov. (Our construct makes sense for free topological groups in the sense of Graev as well.) For an overview of the theory of free topological groups and a relevant bibliography, see [2, 5, 9, 12].

Let g be an arbitrary Banach-Lie algebra. Fix a neighbourhood of zero, U, which is "small" in the following sense:

(*) the Hausdorff series H(x,y) converges for every $x,y \in U$.

(For example, U may be an open or closed ball of radius less than (1/3)log (3/2)[3].) Denote by \mathcal{N}_g a normal subgroup generated by all elements of the form $x^{-1}[x.(-y)]y, x, y \in U$. The following statement admits a straightforward verification.

ASSERTION 1. The subgroup \mathcal{N}_{g} does not depend on the particular choice of a neighbourhood U with property (*).

Denote by $G_{\mathfrak{g}}$ the topological group quotient of $F(\mathfrak{g})$ by $\mathcal{N}_{\mathfrak{g}}$, and by $\phi_{\mathfrak{g}}: \mathfrak{g} \to G_{\mathfrak{g}}$ the restriction of the quotient homomorphism $\pi_{\mathfrak{g}}: F(\mathfrak{g}) \to G_{\mathfrak{g}}$ to \mathfrak{g} . Let $i_{\mathfrak{g}}$ stand for the morphism of group germs from $loc(\mathfrak{g})$ to $G_{\mathfrak{g}}$ of which a representative is $\phi_{\mathfrak{g}}$.

THEOREM 2. The pair (i_g, G_g) is a universal morphism for group germ morphisms from the Lie group germ associated to a Banach-Lie algebra \mathfrak{g} to topological groups. In other words, if G is a topological group (not necessarily Hausdorff) and $i: loc(\mathfrak{g}) \to G$ is a morphism of group germs, then there exists a unique continuous homomorphism $\tilde{i}: G_g \to G$ making the diagram commutative:

PROOF: Let U be an open convex neighbourhood of zero in \mathfrak{g} , a local Lie group representative of the Lie group germ $loc(\mathfrak{g})$. Then the morphism i may be thought of as a continuous local group homomorphism from U to G. For every $x \in \mathfrak{g}$ there is an $n \in \mathbb{N}$ such that x/n is in U; by putting $i(x) =_{def} [i(x/n)]^n$ one obtains a mapping from the whole of \mathfrak{g} to the group G which we shall still denote by i. It does not depend on the choice of n and is continuous at every point $x \in \mathfrak{g}$ as a composition of three continuous mappings: $x \mapsto x/n \mapsto i(x/n) \mapsto [i(x/n)]^n$, if the number n has been chosen uniformly in a neighbourhood of x. It extends to a continuous homomorphism of topological groups $\hat{i}: F(\mathfrak{g}) \to G$. Obvisouly, the kernel of \hat{i} contains the subgroup $\mathcal{N}_{\mathfrak{g}}$ and therefore \hat{i} factors through $\pi_{\mathfrak{g}}$ giving rise to a continuous homomorphism $\tilde{i}: G_{\mathfrak{g}} \to G$. Since clearly $\hat{i}|U = i$ then the above diagram commutes.

THEOREM 3. The following conditions are equivalent for a Banach-Lie aglebra g.

(i) g is enlargeable;

V.G. Pestov

- (ii) the intersection $\mathcal{N}_{\mathfrak{g}} \cap \mathfrak{g}$ is discrete in \mathfrak{g} ;
- (iii) the restriction of ϕ_{g} to a neighbourhood of zero in g is one-to-one;
- (iv) the topological group $G_{\mathfrak{g}}$ can be given a structure of an analytical Banach-Lie group in such a way that $\phi_{\mathfrak{g}}$ is a local analytical diffeomorphism. In this case Lie $(G_{\mathfrak{g}}) \cong \mathfrak{g}, \phi_{\mathfrak{g}} = exp_{G_{\mathfrak{g}}}, \text{ and } G_{\mathfrak{g}}$ is simply connected.

PROOF: $(i) \Rightarrow (iii)$: Let G be a simply connected Banach-Lie group associated to g, and let exp_G be the corresponding exponential mapping. Since obviously $\mathcal{N}_g \subset$ $\{x \in g : exp_G(x) = e_G\}$, then for all x, y in a small enough neighbourhood of zero in g one has: if $\phi_g(x) = \phi_g(y)$ then $exp_G(x) = exp_G(y)$. Since exp_G is locally one-to-one, then so is ϕ_g .

 $(ii) \Leftrightarrow (iii)$: an immedeate check.

 $(iii) \Rightarrow (iv)$: see Theorem 1.

 $(iv) \Rightarrow (i)$: obvious.

As a matter of fact, all these characterisations were discovered decades ago, perhaps in a different form [4, 24, 20–23, 25, 6]. For example, the set $\mathcal{N}_{\mathfrak{g}} \cap \mathfrak{g}$ forms an additive subgroup of \mathfrak{g} isomorphic to the *period group Per* (\mathfrak{g}) of the Lie algebra \mathfrak{g} [24]. What is new, is our suggestion to consider topology on the group $F(\mathfrak{g})$. Traditionally, the abstract free group over an arbitrarily small neighbourhood of zero in \mathfrak{g} was given full attention (see [22, 23]) rather than the *free topological group over the Lie algebra* \mathfrak{g} . Free topological groups over neighbourhoods of the identity in finite-dimensional Lie groups were first considered in [8].

If a Banach-Lie algebra \mathfrak{g} is enlargeable, then the subgroup $\mathcal{N}_{\mathfrak{g}}$ of the free topological group $F(\mathfrak{g})$ is easily checked to be closed; indeed, it is the kernel of the homomorphism $\pi_{\mathfrak{g}} : F(\mathfrak{g}) \to G_{\mathfrak{g}}$, and according to Theorem 2 and item *(iv)* of Theorem 3, $\pi_{\mathfrak{g}}$ is continuous while $G_{\mathfrak{g}}$ is endowed with a Hausdorff topology.

It turns out that the closedness of $\mathcal{N}_{\mathfrak{g}}$ is not sufficent for enlargeability of \mathfrak{g} , as the following example shows.

EXAMPLE. Let g be a Banach-Lie algebra with the following properties.

(a) the extension

$$0 \to \mathfrak{c}(\mathfrak{g}) \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{c}(\mathfrak{g}) \to 0$$

is topologically split (c(g) is the centre of g;

(b) g is enlargeable, and the centre of the corresponding connected simply connected Banach-Lie group G contains a circle, T.

For examples of such Lie algebras, see [24, 25, 3, 6]. Fix a submultiplicative norm on \mathfrak{g} and define for every $n = 1, 2, \ldots$ a submultiplicative norm $\|\cdot\|_n$ on \mathfrak{g} by

$$\|x+y\|_{n} =_{def} \|x\|_{\mathfrak{g}/\mathfrak{c}(\mathfrak{g})} + \|y\|_{\mathfrak{c}(\mathfrak{g})} (x \in \mathfrak{g}/\mathfrak{c}(\mathfrak{g}), y \in \mathfrak{c}(\mathfrak{g}))$$

0

[4]

Denote by \mathfrak{g}_n the Lie algebra \mathfrak{g} with the norm $\|\cdot\|_n$, and by \mathfrak{g}_∞ the l_1 -type sum of the Lie algebras \mathfrak{g}_n , that is, the completion of the direct sum $\bigoplus_{n=1}^{\infty} \mathfrak{g}_n$ with respect to the submultiplicative norm

$$\left\|\left(x_{n}\right)_{n\in\mathbb{N}}\right\|=_{def}\sum_{n\in\mathbb{N}}\left\|x_{n}\right\|_{n}$$

Denote for every n = 1, 2, ... by p_n the canonical projection $\mathfrak{g}_{\infty} \to \mathfrak{g}_n$, and by \widehat{p}_n its continuous homomorphic extension $F(\mathfrak{g}_{\infty}) \to F(\mathfrak{g}_n)$. We shall show now that

(1)
$$\mathcal{N}_{\mathfrak{g}_{\infty}} = \bigcap_{n=1}^{\infty} \widehat{p}_n^{-1}(\mathcal{N}_{\mathfrak{g}_n})$$

Since all the Lie subalgebras \mathfrak{g}_n of \mathfrak{h} commute with each other, then (1) is derived from the following simple observation: the subgroup $\mathcal{N}_{\mathfrak{g}_{\infty}}$ is generated by a subset with the property (*) of the form $\bigcap_{n=1}^{\infty} \widehat{p}_n^{-1}(U_n)$; just pick for every n an $U_n \subset \mathfrak{g}_n$ satisfying (*).

The property (1) implies that the subgroup $\mathcal{N}_{\mathfrak{g}_{\infty}}$ is closed. Another corollary of (1) is the fact that the period group $Per(\mathfrak{g}_{\infty}) \cong F(\mathfrak{g}_{\infty})/\mathcal{N}_{\mathfrak{g}_{\infty}}$ of the Lie algebra \mathfrak{g}_{∞} is the (completed) infinite direct sum of circles T_n sitting in the centres of the Lie algebras \mathfrak{g}_n . Since the radii of those circles approach zero as $n \to \infty$ then the group $Per(\mathfrak{g}_{\infty})$ is non-discrete and therefore $G_{\mathfrak{g}_{\infty}}$ is non-enlargeable.

However, things are different for Banach-Lie algebras \mathfrak{g} with finite-dimensional centre, $\mathfrak{c}(\mathfrak{g})$, in which case the discreteness of the interesection $\mathcal{N}_{\mathfrak{g}} \cap \mathfrak{g}$ can be deduced from closedness of $\mathcal{N}_{\mathfrak{g}}$ in $F(\mathfrak{g})$.

LEMMA 1. Let V be a closed local subgroup of a finite-dimensional local Lie group U such that the intersections of V with all one-parameter Lie subgroups are discrete. Then V is discrete.

PROOF: Obviously follows from compactness of a unit sphere in a finite-dimensional Euclidean space.

THEOREM 4. Let \mathfrak{g} be a Banach-Lie algebra. Then $\mathcal{N}_{\mathfrak{g}} \cap \mathfrak{g} \subset \mathfrak{c}(\mathfrak{g})$.

PROOF: Actually, this is a classical observation, and the proof of it is "functorial" (see [24]). It stems from the fact that the group $\mathcal{N}_{\mathfrak{g}}$ is contained in the (closed!) kernel of the continuous homomorphism $ad_{\mathfrak{g}} \circ exp_{Aut} \mathfrak{g} : G_{\mathfrak{g}} \to Aut \mathfrak{g}$ where $ad_{\mathfrak{g}}$ is the adjoint representation $\mathfrak{g} \to Der \mathfrak{g}$. Therefore, $\mathcal{N}_{\mathfrak{g}} \cap \mathfrak{g} \subset ker ad_{\mathfrak{g}} = \mathfrak{c}(\mathfrak{g})$.

THEOREM 5. Let g be a separable Banach-Lie algebra. Then $\mathcal{N}_g \cap \mathfrak{g}$ contains no one-parameter local subgroups of $loc(\mathfrak{g})$.

PROOF: First of all, we shall recall some of our earlier results [17].

THEOREM 6. Let E be a normed space. There exist a complete normed Lie algebra $\mathcal{FL}(E)$ and a linear isometrical embedding $i_E : E \hookrightarrow \mathcal{FL}(E)$ with the following properties.

- (1) $i_E(E)$ topologically generates $\mathcal{FL}(E)$.
- (2) For an arbitrary complete normed Lie algebra \mathcal{L} and any linear operator $f: E \to \mathcal{L}$ of norm ≤ 1 , there exists a Lie algebra homomorphism $\widehat{f}: \mathcal{FL}(E) \to \mathcal{L}$ of norm ≤ 1 such that $\widehat{f} \circ i_E = f$.

The pair $(\mathcal{FL}(E), i_E)$ with the properties (1) and (2) is essentially unique.

The Banach-Lie algebra $\mathcal{FL}(E)$ is termed the free Banach-Lie algebra over a normed space E. It turns out that if $\dim E \ge 2$ then $\mathcal{FL}(E)$ is centreless and therefore, for any normed space E, the free Banach-Lie algebra $\mathcal{FL}(E)$ is enlargeable, the corresponding Banach-Lie group in the case $\dim E \ge 2$ being a Banach-Lie subgroup of the automorphism group of $\mathcal{FL}(E)$ generated by the image of the latter Lie algebra under the exponential mapping. As a result, every Banach-Lie algebra, \mathfrak{g} , is a quotient algebra of an enlargeable Banach-Lie algebra, and in a "functorial way" indeed: the identity mapping $id_{\mathfrak{g}}$ from \mathfrak{g} to its underlying Banach (= complete normed) space extends to a quotient Banach-Lie algebra homomorphism $\widehat{id}_{\mathfrak{g}}: \mathcal{FL}(\mathfrak{g}) \to \mathfrak{g}$, which is easily verified to be an open Lie algebra morphism onto. The Banach-Lie algebra $\mathcal{FL}(E)$ is separable if and only if E so is.

Now suppose \mathfrak{g} is a separable Banach-Lie algebra. Denote the kernel of $id_{\mathfrak{g}}$ by $J_{\mathfrak{g}}$; it is a closed Lie ideal. Now let $\mathcal{G}_{\mathfrak{g}}$ be a connected simply connected Banach-Lie group corresponding to the enlargeable Lie algebra $\mathcal{FL}(\mathfrak{g})$ and let $exp_{(\mathfrak{g})}$ be the exponential mapping $\mathcal{FL}(\mathfrak{g}) \to \mathcal{G}_{\mathfrak{g}}$. Let $J_{\mathfrak{g}}^{\times}$ stand for a subgroup in $\mathcal{G}_{\mathfrak{g}}$ algebraically generated by the image of $J_{\mathfrak{g}}$ under $exp_{(\mathfrak{g})}$. This group is normal but not necessarily closed. Denote by $exp \mathfrak{g}$ the quotient topological group $\mathcal{G}_{\mathfrak{g}}/J_{\mathfrak{g}}^{\times}$.

A natural continuous mapping $exp_{\mathfrak{g}}: \mathfrak{g} \to exp \mathfrak{g}$ is obtained by factoring the exponential map $exp_{(\mathfrak{g})}: \mathcal{FL}(\mathfrak{g}) \to \mathcal{G}_{\mathfrak{g}}$ through $\widehat{id}_{\mathfrak{g}}$. In view of the universality of the mapping $i_{\mathfrak{g}}$ (Theorem 2), it suffices to show that for an arbitrary $x \in \mathfrak{g} \setminus \{0\}$, the image under the mapping $exp_{\mathfrak{g}}$ of the one-dimensional linear space spanned by x is non-degenerate in $exp \mathfrak{g}$, that is, for an arbitrary $y \in \mathcal{FL}(\mathfrak{g}) \setminus J_{\mathfrak{g}}$, the one-parameter subgroup of $\mathcal{G}_{\mathfrak{g}}$ tangent to y is not entirely contained in the subgroup $J_{\mathfrak{g}}^{\times}$. But this follows from [3, Chapter III, Section 6.2 Corollary 2].

COROLLARY 1. Let g be a separable Banach-Lie algebra such that the subgroup \mathcal{N}_{g} is closed in F(g). Then the intersection of \mathcal{N}_{g} with every one-dimensional local subgroup (one-dimensional linear subspace) of g is discrete.

PROOF: Every proper closed subgroup of \mathbb{R} is discrete; now apply Theorem 5. **COROLLARY 2.** Let \mathfrak{g} be a separable Banach-Lie algebra with finite-dimensional centre. Then g is enlargeable if and only if the subgroup \mathcal{N}_{g} is closed in F(g). In this case the quotient topological group G_{g} carries a natural structure of a Banach-Lie group associated to g.

The separability restriction is removed with the help of the following curious result, which is also new and of interest by itself.

THEOREM 7. A Banach-Lie algebra \mathfrak{g} is enlargeable if and only if every separable Banach-Lie subalgebra of \mathfrak{g} is enlargeable.

PROOF: Denote by \mathfrak{H} the family of all separable Banach-Lie subalgebras of \mathfrak{g} partially ordered by inclusion. Obviously, $\bigcup \mathfrak{H} = \mathfrak{g}$. One can assume that \mathfrak{g} is inseparable and therefore \mathfrak{H} has no upper bound. For every $\mathfrak{h} \in \mathfrak{H}$ denote by $G_{\mathfrak{h}}$ a simply connected Lie group associated to \mathfrak{h} and by $exp_{\mathfrak{h}} : \mathfrak{h} \to G_{\mathfrak{h}}$ the corresponding exponential mapping. Put for each $\mathfrak{h} \in \mathfrak{H}$

 $\varepsilon(\mathfrak{h}) =_{def} \min\{1, \max\{r \in \mathbb{R}_+ : exp_{\mathfrak{h}} | B_r(0) \text{ is one-to-one } \}\}$

where $B_r(0)$ is the open ball of radius r centred at zero. If $\mathfrak{h}_1 \subset \mathfrak{h}_2$ then the inclusion mapping $i_{\mathfrak{h}_1}^{\mathfrak{h}_2} : \mathfrak{h}_1 \to \mathfrak{h}_2$ gives rise to a Lie group morphism $\hat{i}_{\mathfrak{h}_1}^{\mathfrak{h}_2} : G_{\mathfrak{h}_1} \to G_{\mathfrak{h}_2}$ which commutes with the exponential mappings. One concludes that if $\mathfrak{h}_1 \subset \mathfrak{h}_2$ then $\varepsilon(\mathfrak{h}_1) \ge \varepsilon(\mathfrak{h}_2)$, and therefore ε is a non-increasing mapping from the directed partially ordered set \mathfrak{H} to \mathbb{R} . Put $\varepsilon_0 = \inf \{\varepsilon(\mathfrak{h}) : \mathfrak{h} \in \mathfrak{H}\}$. Clearly, $\varepsilon_0 \ge 0$, and the case $\varepsilon_0 = 0$ is impossible because \mathfrak{H} contains unions of countable subfamilies. Therefore, for every $\mathfrak{h} \in \mathfrak{H}$, the restriction of the exponential mapping $exp_{\mathfrak{h}}$ to the open ball of radius $\varepsilon_0 > 0$ about zero is one-to-one. Now we apply the Local Theorem on Enlargeability of Banach-Lie Algebras, [15, 16].

Finally we come to the central

[7]

THEOREM 8. A Banach-Lie algebra \mathfrak{g} with finite-dimensional center is enlargeable if and only if the subgroup $\mathcal{N}_{\mathfrak{g}}$ is closed in $F(\mathfrak{g})$. In this case the quotient topological group $\mathcal{G}_{\mathfrak{g}}$ carries a natural structure of a Banach-Lie group associated to \mathfrak{g} .

PROOF: Necessity was pointed out at just before our Example, and sufficiency follows from Corollary 2 and Theorem 7.

FINAL DISCUSSION

1. All the structures participating in our construct come into being in a functorial

way as the objects of the following commutative diagram

(The arrow $\mathfrak{g} \xrightarrow{-} \mathfrak{g}$ is understood.)

A direct proof of the Lie-Cartan theorem would result from applying corollary 2 to a finite-dimensional Banach-Lie algebra, \mathfrak{g} . The only missing link is the verification of closedness of $\mathcal{N}_{\mathfrak{g}}$ in $F(\mathfrak{g})$ which should rely solely on topological structure of the free topological group $F(\mathfrak{g})$. Since the structure of free topological groups over k_{ω} -spaces, and in particular over \mathbb{R}^n , is deeply understood now ([12]; see also [9] and references therein), then the problem of recovering this link does not seem entirely hopeless. We conjecture that $\mathcal{N}_{\mathfrak{g}}$ is the free topological group over a k_{ω} space, and thence it is complete and closed.

۲

2. The arguments of the kind discussed in this note are no longer solid beyond the setting of Banach-Lie algebras and groups. For example, one cannot in general expect the Hausdorff series to converge in a neighbourhood of zero of a Fréchet-Lie algebra; the exponential mapping may not be even C^{∞} ; moreover, it is not known yet whether every smooth Fréchet-Lie group possesses an exponential mapping, [10, 14]. In general, we anticipate the techniques of universal arrows to forgetful functors to lead to "pathological" examples of Fréchet-Lie groups rather than some positive results. Nevertheless, our construct makes perfect sense for the so-called *Baker-Campbell-Hausdorff* Lie groups modeled over locally convex spaces [14].

3. In connection with a result [26] that the free topological group $F(\mathbb{R}^n)$ is topologically a manifold modeled over the locally convex space $\mathbb{R}^{\omega} \cong \varinjlim \{\mathbb{R}^k : k \in \mathbb{N}\}$, one wonders whether $F(\mathbb{R}^n)$ can be given a structure of an (at least, C^1) Lie group modeled over the same (LB)-space \mathbb{R}^{ω} . What may its Lie algebra look like?

References

 I.D. Ado, 'The representation of Lie algebras by matrices', Amer. Math. Soc. Transl. Ser. 1 9 (1962), 308-327.

- [2] A.V. Arhangel'skiĭ, 'Classes of topological groups', Russian Math. Surveys 36 (1981), 151-174.
- [3] N. Bourbaki, Lie groups and Lie algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1989).
- [4] E. Cartan, La topologie des groupes de Lie (Hermann, Paris, 1936).
- [5] W.W. Comfort, K.H. Hofmann and D. Remus, 'A survey on topological groups and semigroups', in *General Topology — Recent Developments* (North-Holland, Amsterdam, 1992) (to appear).
- [6] J. Eells, jr., 'A setting for global analysis', Bull. Amer. Math. Soc. 72 (1966), 751-807.
- D.B. Fuks, Cohomology of infinite-dimensional Lie algebras, Translated from Russian by A.B. Sosinski (Consultants Bureau, New York, London, 1986).
- [8] E. Katz, 'Free topological groups and principal fiber bundles', Duke Math. J. 42 (1975), 83-90.
- [9] E. Katz and S.A. Morris, 'Free Abelian topological groups on countable CW-complexes', Bull. Austral. Math. Soc. 41 (1990), 451-456.
- [10] O. Kobayashi, A. Yoshioka, Y. Maeda and H. Omori, 'The theory of infinite-dimensional Lie groups and its applications', Acta Appl. Math. 3 (1985), 71-106.
- [11] A.I. Mal'cev, 'Sur les groupes topologiques locaux et complets', C.R. (Doklady) Acad. Sci. URSS (N.S.) 32 (1941), 606-608.
- [12] J. Mack, S.A. Morris and E.T. Ordman, 'Free topological groups and the projective dimension of a locally compact abelian group', Proc. Amer. Math. Soc. 40 (1973), 399-402.
- S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5 (Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [14] J. Milnor, 'Remarks on infinite-dimensional Lie groups', in Relativité, groupes et topologie II. Les Houches, Session XL (Elsevier Sci. Publ., Amsterdam, 1984), pp. 1007-1058.
- [15] V.G. Pestov, 'Fermeture nonstandard des algèbres et groupes de Lie banachiques', C.R. Acad. Sci. Paris Ser. 1 Math. 306 (1988), 643-645.
- [16] V.G. Pestov, 'Nonstandard hulls of Banach-Lie groups and algebras', Nova Journal of Algebras and Geometries (to appear).
- [17] V.G. Pestov, 'Free Banach-Lie algebras, couniversal Banach-Lie groups, and more', Pacific J. Math. 157 (1993), 137-144.
- [18] M.M. Postnikov, Lie groups and Lie algebras, Lectures in geometry. Semester V, Translated from Russian by V. Shokurov (Mir, Moscow, 1986).
- [19] A. Robinson, 'Germs', in Applications of model theory to algebra, analysis and probability (Holt, Rinehart and Winston, New York, 1969).
- [20] S. Świerczkowski, 'Embedding theorems for local analytic groups', Acta Math. 114 (1965), 207–235.
- [21] S. Świerczkowski, 'The path-functor on Banach-Lie algebras', Indag. Math. 33 (1971), 235-239.
- [22] S. Świerczkowski, 'On the cohomology of local groups', J. Austral. Math. Soc. 12 (1971), 249-255.

- [23] S. Świerczkowski, 'Cohomology of group germs and Lie algebras', Pacific J. Math. 39 (1971), 471-482.
- [24] W.T. van Est and T.J. Korthagen, 'Non-enlargible Lie algebras', Nederl. Akad. Wetensch. Proc. A26 (1964), 15-31.
- [25] W.T. van Est and S. Świerczkowski, 'The path functor and faithful representability of Banach Lie algebras', J. Austral. Math. Soc. 16 (1973), 471-482.
- [26] M.M. Zarichnyĭ, 'Free topological groups of absolute neighbourhood retracts and infinite-dimensional manifolds', Soviet Math. Dokl. 26 (1982), 367-371.

Department of Mathematics Victoria University of Wellington Wellington New Zealand E-mail: vova@kauri.vuw.ac.nz