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Abstract. Recent observations have revealed several Jupiter-mass planets with highly eccen-
tric and / or misaligned orbits, which clearly suggests that dynamical processes operated in
these systems. These dynamical processes may result in close encounters between Jupiter-like
planets and their host stars. Using three-dimensional hydrodynamical simulations, we find that
planets with cores are more likely to be retained by their host stars in contrast with previous
studies which suggested that coreless planets are often ejected. We propose that after a long
term evolution some gas giant planets could be transformed into super-Earths or Neptune-like
planets, which is supported by our adiabatic evolution models. Finally, we analyze the orbits
and structure of known planets and Kepler candidates and find that our model is capable of
producing some of the shortest-period objects.
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1. Introduction
A widely adopted scenario of the origin of close-in planets is based on the assumption

that all gas giant planets formed beyond the snow line a few AU from their host star
(Pollack et al. 1996), with the progenitors of hot Jupiters undergoing substantial inward
migration through planet-disk interaction (Lin et al. 1996). This mechanism naturally
leads to the formation of resonant gas giants and coplanarity between the planets’ orbits
and their natal disks. However, measurements of the Rossiter-McLaughlin effect (Ohta
et al. 2005) reveal that the orbits of a sub population of hot Jupiters appear to be
misaligned with the spin of their host stars (Winn et al. 2010), which poses a challenge
to the disk-migration scenario for the origin of hot Jupiters (Triaud et al. 2010).

In order to reconcile the theoretical predictions with the observations, some dynamical
processes have been proposed, such as the Kozai mechanism (Kozai 1996), planet-planet
scattering (Rasio & Ford 1996) or secular chaos (Wu & Lithwick 2011). The observed ec-
centricity distribution of extra-solar planets with periods longer than a week and masses
larger than that of Saturn has a median value noticeably deviated from zero. Presum-
ably they obtained this eccentricity through dynamical instability after the depletion of
their natal disks (Lin & Ida 1997), as the eccentricity damping would suppress such an
instability if they were embedded in a gaseous disk environment.

Some of these processes can produce planets that lie on nearly parabolic orbits. As their
eccentricity approaches unity, planets with a semimajor axis of a few AU undergo close
encounters with their host stars. Hydrodynamical simulations have been carried out by
Faber et al. (2005, hereafter FRW) and Guillochon et al. (2011, hereafter GRL) to study

356

https://doi.org/10.1017/S174392131301315X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131301315X


The tidal disruption of gas giant planets 357

Ρ

Figure 1. One-dimensional profiles of density (left) and enclosed mass (right) of a composite
polytropic model (n1 = 0.5 and n2 = 1) for a Jupiter-mass planet with no core, a 10M⊕ core, a
20M⊕ core, and a 50M⊕ core.

the survivability and orbital evolution of a Jupiter-mass planet disrupted by a Sun-like
star. Our previous simulations of single nearly parabolic (with e � 1) encounters show
that within a sufficiently close range, planets are ejected due to mass and energy loss
near periastron. For more distant periastron encounters, we showed that after successive
encounters within a critical periastron separation no planet can avoid destruction. We
re-examine the disruption and retention of gas giant planets by taking into account the
presence of their dense cores. We show that presence of a core with mass as small as
10 M⊕, the planet has a far greater chance of survival, even with a mass loss comparable
to its total mass. We also consider the possibility that the tidal disruption mechanism
may be an efficient way to transform a Jupiter-mass planet into a close-in super-Earth
or Neptune-like object, which potentially may explain the existence of some of the inner
edge of close-in planets.

2. A Composite Polytrope Model for Gas Giant Planets with Cores
For computational simplicity, we approximate core-envelope structure of gas giant

planets by a composite polytrope model. We adopt the approach used in Rappaport
et al. (1983) with the incorporation of different species to model the transition in the
composition and EOS at the core-envelope interface in giant planets. To model the giant
planets with cores, we choose the polytropic indices to be n1 = 0.5 and n2 = 1. Thus
their continuity equations become
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where μ1 and μ2 are the mean molecular weight in the core and the envelope.
In this work, we generate three composite polytrope models for a Jupiter-like planet

with core masses of 10 M⊕, 20 M⊕ and 50 M⊕. Fig. 1 shows the density and mass
distribution of these models (solid colored lines), where a constant μ1 = 4 μ2 has been
assumed and ξ1i are chosen to be 1.571, 1.799 and 2.064, respectively. The orange dashed
line indicates the single-layered polytrope model, and the black dotted line shows a
three-layer model for Jupiter taken from Nettelmann et al. (2008), which includes a 2.75
M⊕ core. Though the models presented here have more massive cores, our composite
polytrope models generally fit the three-layer model very well, whereas the single-layered
polytrope fails to represent the high density of the core.
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3. Hydrodynamical Simulations of Tidal Disruption
Our simulations are constructed based on the framework of FLASH (Fryxell et al.

2000), an adaptive-mesh, grid-based hydrodynamics code. The total volume of the simu-
lation box is 1013 × 1013 × 1013 cm3. The initial conditions are identical to that of FRW
and GRL to facilitate comparisons. The planet is assumed to have a mass MP = MJ
and a radius RP = RJ , where MJ and RJ are Jovian mass and radius, respectively. The
planets are disrupted by a star with M∗ = 103 MJ � 0.95 M�. In the description of the
relative strength of the tidal field exerted on a planet by the host star, it is useful to
define a characteristic tidal radius as rt ≡ (M∗/MP)1/3

RP. Thus, the tidal radius of the
planet is rt = 10 RJ � 0.995 R� = 0.00463 AU.
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Figure 2. Snapshots from several simulations
of the tidal disruption of a Jupiter mass planet
with a 10 M⊕ core at different periastron dis-
tances.

In total, we simulated 41 models with
the three different core masses and the ini-
tial periastron distance rp ranging from
1.15 to 2.5 rt . A selection of simulations
for Mcore = 10 M⊕ is illustrated in Fig. 2.

In all our simulations, the planet is
placed on a bound orbit with a negative
orbital energy per unit mass Eorb,0 . We
plot in the left panel of Fig. 3 the ratio
of Eorb/Eorb,0 , where Eorb is the energy
per unit mass at the end of the simulation,
approximately 50 dynamical timescales af-
ter pericenter. A planet’s orbit is more
(less) gravitationally bound to its host
star if this ratio attains a positive value
greater (lesser) than unity. A planet be-
comes unbound if this ratio attains a neg-
ative value. For comparison with previous
simulations, we show the results obtained
by FRW with open squares and those
of single-layered polytropes obtained by
GRL with orange dashed lines in Fig. 3. The results of the new simulations with 10M⊕,
20M⊕ and 50M⊕ cores are shown as colored solid lines.
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Figure 3. Final specific orbital energy Eorb scaled to the initial specific orbital energy Eorb ,0
(left panel). Total mass fraction lost from Jupiter-like planets of varying core masses as a function
of rp/rt . (right panel)
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Figure 4. The left panel shows the difference between the two normalized mass loss Δm2 −Δm1
as a function of periastron distance scaled by the tidal radius rp/rt . The correlation between
the mass loss difference Δm2 − Δm1 and changes in orbital energy scaled to the initial specific
orbital energy ΔEorb/Eorb ,0 is shown in the right panel, where the orange triangles, blue points,
purple squares and red diamonds are the simulation data of planets with no core, 10 M⊕, 20 M⊕
and 50 M⊕ cores respectively. The blue thin, purple medium, and red thick lines show the linear
least squares fits to the simulations with cores.

An intriguing aspect of the work presented here is that if a dense core is present, a
giant planet can remain bound to the star within certain limits of periastron separation,
whereas previous simulations (e.g., FRW and GRL) suggested that planets without a
core are always ejected or destroyed if any mass is lost during the initial inspiral. The
presence of the core permits planets to plunge deeply into their parent star’s tidal field
and potentially survive as a close-in planet on a circular orbit.
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Figure 5. Snapshots from disruption simulations of
Jupiter-mass giant planets with different core masses,
modeled as a dual-layered composite polytropes. Four
simulations are shown above (one per column), with the
only difference between the simulations being the mass of
the planet’s core (as labeled). The planet comes within
1.2 rt of its parent star in each of the simulations.

The fraction of mass unbound
from the planet Δm in each run
is plotted in the right panel of
Fig. 3. The results show that for
encounters with rp � 2.0 rt , tides
raised by the star are too weak
to shed any noticeable amount
of mass from the planet. How-
ever, in the mass-shedding regime
(rp < 2.0 rt), the discrepan-
cies between different models are
rather prominent. Planets with
bigger cores lose significantly less
amount of mass at the same pe-
riastron distance. We also calcu-
late the asymmetry of the mass
loss in two tidal streams and con-
firm that the change in specific
orbital energy is linearly corre-
lated with the asymmetric mass
loss as shown in Fig. 4.

Planets with cores not only
lose less mass, but also maintain
their internal structures more effectively than their coreless counterparts after the dis-
ruption has occurred (Fig. 5). This effect is important in determining the fate of tidal
disrupted planets.
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4. Discussion & Summary
We use the adiabatic response model which was outlined by Hjellming & Webbink

(1987) to investigate the long term evolution of mass-losing planets. A stiff EOS (n1 =
0.01) is required in order to capture the core’s incompressible response to pressure defor-
mations. In contrast to the single-layered n = 1 polytrope, which has a constant radius
(RP does not change with decreasing MP), composite polytropes with a small n1 al-
ways contract as they lose mass (RP decreases significantly when MP becomes small) as
illustrated in Fig. 6.

The n = 1 single-layered polytrope, which corresponds to the coreless gas giant planets,
does not change its radius when losing mass adiabatically, resulting in a decrease of the
average density. By contrast, the extremely incompressible cores of composite polytropes
are weakly affected by the perturbation, imposing an almost constant inner boundary
condition for the envelope, and resulting in an increase in density when the core’s gravity
dominates. This phenomenon helps to explain the different amounts of mass lost in the
two cases. Each time the single-layered polytrope loses some mass, the specific gravita-
tional self-binding energy decreases, leading to a more tidally-vulnerable structure. As
a result, GRL found that coreless planets are always destroyed after several passages
even if the initial periastron is fairly distant (the lower limit is 2.7 rt). The composite
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Figure 6. Adiabatic response curves for com-
posite polytropes for varying degrees of mass
loss. M0 and R0 denote the original mass and ra-
dius. A negative value indicates either a decrease
in mass (x-axis) or a shrinkage of the planet’s ra-
dius (y-axis). The top horizontal thick black line
shows the evolution for a single-layered n = 1
polytrope model.

polytropes, on the other hand, maintain
a constant gravitational potential well in
their centers, which continuously resists
the stellar tidal force. Being invulnera-
ble to tidal disruption themselves, the
cores survive, retaining some fraction of
the original envelope. Eventually when the
disrupted remnant becomes dense enough
or far away from the tidal radius to the
parent star, it can reside around its par-
ent star.

In order to search for some clues on the
role of tidal disruption during their orbital
circularization process, we show a sam-
ple of exoplanets with known planetary
radii RP and masses MP and known stel-
lar masses M∗ in the left panel of Fig. 7,
where the distribution of the planet’s mass
as a function of its pericenter distance
scaled by its tidal radius

rp

rt
=

a(1 − e)
(M∗/MP)1/3RP

(4.1)

is plotted. The color-coding of the filled
dots denotes eccentricity e, and the open black circles represent planets with unknown
eccentricity, where we have assumed e = 0 for our subsequent calculations. The size of
the symbols is representative of the planet’s physical size (not drawn to scale). The tracks
illustrate how tidally mass-losing planets with different core masses evolve.

Of the transiting super-Earths with known masses, only a few presently lie within a
few tidal radii of their host stars. This may indicate that the conditions necessary to
generate such planets via tidal disruption are uncommonly realized in nature. However,
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Figure 7. A sample of exoplanets with known masses and radii (left panel). The radius in
Earth radii of Kepler planet candidates versus pericenter distance (right panel).

the sample is highly biased against low-mass planets, simply because we need transit
surveys to determine the planet’s size. In addition, the eccentricities for many low-mass
planets are poorly constrained, and as a result, their periastron separations may have
been overestimated. This highlights the importance of conducting a survey that is capable
of detecting close-in, low-mass planets, such as the Kepler mission.

In the right panel of Fig. 7, we plot the distribution of Kepler candidate radii as
a function of their periastron separations (taken to be equal to the semimajor axes)
divided by their tidal radii. Unfortunately, we have to use the density of planets in our
solar system which have similar sizes to estimate the mass of each candidate. The red bars
show the range of rp/rt values calculated with two limiting densities at each typical size.
The color denotes multiplicity. Intriguingly, the candidates found in multiple systems tend
to lie further from their parent stars, and none of the candidates around 2 rt are observed
to belong to a multiple candidate system (although they might have distant, unobserved
siblings). The paucity of very close-in exoplanet candidates in multiple systems might
suggest that the ordered, gentle migration that typifies most of these systems may not be
universal, and that some systems may evolve via intense periods of dynamical evolution.
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