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1. Introduction

Throughout this paper, we suppose that T and R are continuous linear operators on
the Banach spaces X and Y, respectively. One of the basic problems in the theory of
automatic continuity is the determination of conditions under which a linear transfor-
mation S:X-*Y which satisfies RS = ST is continuous or is discontinuous. Johnson
and Sinclair [4], [6], [11; pp. 24-30] have given a variety of conditions on R and T
which guarantee that all such S are automatically continuous. In this paper we consider
the converse problem and find conditions on the range S(X) which guarantee that S is
automatically discontinuous. The construction of such automatically discontinuous S is
then accomplished by a simple modification of a technique of Sinclair's [10; pp. 260-
261], [11; pp. 21-23].

It is convenient to turn X and Y into modules over the ring of complex polynomials,
C[z], by defining px = p{T)x and py = p(R)y, when p is a polynomial and x and y are
elements of X and Y [11; pp. 20-21] [7; pp. 34-38]. Thus a linear operator S: X ^ Y
satisfies RS = ST precisely when S is a module homomorphism, and a linear subspace
M of Y is R-invariant precisely when M is a submodule. A linear subspace D of Y is
said to be R-divisible if (R-A)D = D for all complex numbers A. Thus D is in-
divisible if and only if it is a divisible C[z]-module [11; p. 20].

Suppose that D is an R-divisible subspace of Y, that RS = ST, and that S(X) is an
infinite-dimensional subspace of D. Our main result, Theorem 2.1, essentially says that
if D is not "too large" then S must be discontinuous. A companion result, Theorem
2.2, says that S is discontinuous if S(X) has countable codimension in D. Both
theorems are proved by showing that the restriction of R to S(X) cannot be the
restriction of R to the range of a bounded operator. The proofs are similar in spirit to
[6; Lemma 2.4, p. 534], [5; Method 2, p. 914], [1; Theorem 2.6, p. 1432]. In Theorem
2.3, we show how Sinclair's technique for constructing discontinuous S [10; pp. 260-
261] can be modified to construct S satisfying the hypothesis of Theorems 2.1 and 2.2.

In Section 3, we prove some related results. In particular, in Theorem 3.1, we give
necessary and sufficient conditions for the existence of finite-rank discontinuous S
satisfying RS = ST.
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2. Subspaces of R -divisible spaces

Every divisible C[z]-module D is isomorphic to a direct sum of indecomposable
divisible submodules. Each summand is either torsion free, and thus C[z]-isomorphic
to the rational functions C(z); or it is (z — A)-primary for some fixed A and is
isomorphic to a fixed module [7; Theorem 4, p. 10]. This (2 —A)-primary module can
be realised as the C[2]-module given by a linear transformation R for which the
null-space N(R-A)n has codimension one in N(R-k)n+1 for each non-negative
integer n [7; p. 37]. While the decomposition of D is not unique, the number of free
summands and the number of (2 - A)-primary summands for each A depends only on D
[7; Remark (b), p. 11]. We will say that D is of countable type if the number of
summands in each isomorphism class is countable.

In proving our major result, Theorem 2.1 below, we show that if R is a bounded
operator on a Banach space, then no R-divisible submodule of countable type can have
an infinite-dimensional submodule which is the range of a bounded operator.

Theorem 2.1. Suppose that T and R are bounded linear operators on the Banach
spaces X and Y, respectively, and that S: X-+Y is a linear transformation of infinite
rank which satisfies RS = ST. If S(X) is a subspace of an R-divisible module, D, of
countable type, then S must be discontinuous.

Proof. We will show that, for all A, (R-\)S(X) has countable codimension in
S(X). This will show that S(X) cannot be the range of a bounded operator. For if S(X)
is the range of a bounded operator, it can be given a norm under which it becomes a
Banach space continuously embedded in Y [1; Formula (3.1), p. 1433]. The restriction,
R', of R to S(X) is then continuous by the closed graph theorem [1; p. 1433]. Since no
operator range can have countably infinite codimension in another operator range [1;
p. 1434], each (R — A)S(X) has finite codimension in S(X). Hence, if A belongs to the
boundary of the spectrum of R', then A must be a pole of finite rank of R' [1; Theorem
(5.2), p. 1438] [8; Theorem (2.9), p. 205]. Since poles are isolated points of the
spectrum, the spectrum of R' must consist entirely of finitely many poles of finite rank;
but this contradicts the infinite-dimensionality of S(X).

To finish the proof, we suppose that M is a submodule of an arbitrary divisible
C[2]-module, D, of countable type, and that A is a complex number. We must show
that (2 —A)M has countable codimension in M when M is considered as a complex
vector space. We break the proof into three cases.

Case 1. D is a torsion module.

Then M is also a torsion module, so by the primary decomposition theorem [7;
Theorem 1, p. 5] we can express M as the direct sum of its (2 - A)-primary component
Mx and a submodule N for which (z — A)N = N. Mx is contained in the (2 - A)-primary
component of D, which, by hypothesis, has countable dimension as a complex vector
space. So (2 — A)MA must have countable codimension in MK, forcing (z - A)M to have
countable codimension in M.

Case 2. D is torsion free.
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To say that D is a torsion-free divisible C[z ]-module is equivalent to saying that D is
a vector space over the field C(z) of rational functions. Let {x;} be a maximal C(z)-
linearly-independent subset of M. Let N be the C[z]-module generated by {xj and let
P be the C(z) vector space generated by {xj. Clearly N^M^P, so that M/N is a
C[z]-submodule of PIN. By hypothesis {x^ is countable, so by [7; Remark (b), p. 6] PIN
is a divisible torsion C[z]-module of countable type. Hence, by Case 1, (z-A)M + N
has countable codimension in M as a complex vector space. Since N has countable
dimension as a complex vector space, (z-A)M has countable codimension in M.

Case 3. D is an arbitrary divisible module.

Let A be the torsion module of D. By Case 1, (z-A)(MnA) has countable
codimension in MC\A. Also M/MDA is isomorphic to the submodule (M + A)/A of
D/A; so, by Case 2, (z-A)M + (M(lA) has countable codimension in M. Hence
(z-A)M = (z —A)M + (z —A)(MnA) has countable codimension in (z-A)M +
(MDA), and therefore in M. This completes the proof of the theorem.

We now prove the analogue of Theorem 2.1 for submodules of small codimension in
D.

Theorem 2.2. Suppose that T and R are bounded operators on X and Y and that
S: X-+Y is an infinite-rank linear transformation which satisfies RS = ST. If S(X) is a
subspace of countable codimension in an R-divisible subspace D, then S must be
discontinuous.

Proof. For each complex number A, (R — A)D = D; so that (R - A)S(X) has counta-
ble codimension in S(X). Hence, just as in the proof of Theorem 2.1, S(X) would have
to be finite-dimensional if it were the range of a bounded operator.

The proofs of the above two theorems essentially show that no "small" or "large"
submodule of an R -divisible subspace can be the range of a bounded operator. On the
other hand if Y does have a non-zero R-divisible subspace then its maximal in-
divisible subspace, D, (which exists by [7; Theorem 3, p. 97]) always contains an
infinite-dimensional submodule which is the range of a bounded operator. For Y
contains a torsion-free R-divisible subspace [11; Theorem 3.3, p. 265]; so that if B is
the algebra of bounded operators which commute with R, then there is a y in D for
which By is an infinite-dimensional subspace of D. Notice that if we let T be the
identity on B and S: B^Y be defined by S(A) = Ax, then S is a bounded operator
satisfying RS = ST. By Theorem 2.1, we know that D cannot be of countable type. In
fact, Thomas [12; Proposition 1.23] has shown that D contains a torsion-free in-
divisible subspace which has uncountable dimension as a vector space over C(z).

It is now easy to modify Sinclair's construction of discontinuous intertwining
operators [10; pp. 260-261] to construct S which are discontinuous by virtue of
Theorems 2.1 and 2.2.

Theorem 2.3. Suppose that T and R are bounded linear operators on the Banach
spaces X and Y and that T is not algebraic. If V is a linear subspace of the R-divisible •
space D and if V has dimension no greater than the power of the continuum, then there is
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a linear transformation S.X-+Y for which RS = ST and V c S(X) s D. If V has infinite
dimension, and either D is of countable type or V has countable codimension in D, then S
must be discontinuous.

Proof. By [12; Corollary 1.22], X has a free submodule M whose rank has the
power of the continuum. Thus we can construct a module homomorphism Sx from M
to D with V^SiiM). Since D is divisible it is injective [3; Theorem 1.7, p. 6] so that
we can extend St to a module homomorphism, S, from X to D [3; p. 5]. Since S is a
module homomorphism, RS = ST; and by construction VgS(X)gD. The last state-
ment in the theorem follows from Theorems 2.1 and 2.2.

3. Finite-rank and multilinear operators

In the previous section we considered conditions under which an infinite rank
intertwining operator whose range was a subspace of an R -divisible space was automat-
ically discontinuous. We did this by showing that certain infinite-dimensional sub-
modules M of R -divisible subspaces could not be given norms under which they are
continuously embedded in Y. In fact, the two problems are equivalent; for if M is a
submodule which is continuously embedded in Y, then the inclusion map intertwines R
with its restriction to M.

In this section we consider three questions suggested by the results in the previous
section. In Theorem 3.1, we give necessary and sufficient conditions for the existence of
discontinuous finite-rank intertwining operators. In Theorem 3.2, we give conditions
under which an R-divisible subspace cannot be the span of the range of a bounded
multilinear operator. And, in Theorem 3.3, we show that no non-zero intertwining
operator can have a subspace of a free module as its range.

In Theorem 3.1, we will need the following definition from [11; Definition 3.1,
p. 19]. The complex number A is a critical eigenvalue of the pair (T, R) of bounded
operators whenever A is an eigenvalue of R, and the range of T—A has infinite
codimension.

Theorem 3.1. Suppose that T and R are bounded linear operators on the Banach
spaces X and Y. Then every finite rank linear transformation S: X—» Y which satisfies
RS = ST is continuous if and only if (T, R) has no critical eigenvalue.

Proof. Johnson [11; Lemma 3.2, p. 19], [4; pp. 88-89] has shown that if (T, R) has
a critical eigenvalue then there is a rank one discontinuous operator intertwining T and
R.

Suppose, conversely, that there is a discontinuous finite rank linear transformation
S: X^> Y for which RS = ST. The null-space N(S) is not closed. Hence, by restricting S
and T if necessary, we can assume that N(S) is a dense subspace of finite codimension
in X. The restriction of R to S(X) and the map induced by T on X/N(S) are similar
linear transformations on finite dimensional space and therefore have a common
eigenvalue A.

Clearly A is an eigenvalue of R. Also (T-A)X + N(S) is a proper subspace of X. If A
were not a critical eigenvalue of (T, R) then (T-A)(X) would be a closed subspace of
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finite codimension in X [11; Lemma 3.3, p. 20]. Hence (T-A)X + JV(S) would be a
proper closed subspace of X, which contradicts the density of N(S). This completes the
proof of the theorem.

We now consider the R -divisibility of the linear span of the range of a multilinear
operator.

Theorem 3.2. Suppose that R is a bounded operator on Y and that M is the span of
the range of a bounded multilinear operator from a product of Banach spaces to Y. If the
spectrum a(R) is totally disconnected and if ( R - A ) M 2 M for all A in the spectrum of R,
then M = 0.

Proof. Fix a point A in cr(R). There is a sequence of open sets Un with intersection
{A} whose boundary does not intersect a(R) [9; Corollary 1, p. 83]. Let Pn be the
spectral projection associated with the characteristic function of Un. Since the spectral
radius of Pn(R - A) approaches 0 and since {R — A)M 2M, there is a Un, which we will
call [/(A), for which Pn(M) = 0 [2; Theorem (2.2)].

Since a(R) is compact, it has a finite subset {A1; A2, . . . , Afc} for which [/(At),
C/(A2),..., U(Kk) covers a{R). If P(Af) is the spectral projection associated with U(A;)
then

( / - P(A,))(J- P(A2)).. . (I-P(K)) = 0.

But if xeM, (7-P(Af))x = x for all i. This completes the proof.

The above proof used the fact that R had totally disconnected spectrum only to
obtain a basis for the topology of cr(R) to which we could associate a sufficiently
well-behaved family of projections. Thus the theorem would hold, with essentially the
same proof, if R were a spectral operator or if R satisfied [6; Condition 4.1,
pp. 537-538].

Our final results considers subspaces of free modules rather than of divisible
modules.

Theorem 3.3. Suppose that T and R are bounded linear operators on X and Y and
that S:X —» Y is a linear transformation for which RS = ST. If S(X) is a subspace of a
free C[z]-module, then S = 0.

Proof. Since every submodule of a free C[z]-module is itself free [3; Theorem 1.4,
p. 4], X/N(S) is free. Every free module is projective [3; Proposition 1.1, p. 3], so X is
the direct sum of N(S) and a free module F. Since F is free, ( T - A ) F ^ F for any A.
Since F is complemented, this implies that T-A is never onto. But this is impossible if
T is a bounded operator.
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