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Abstract. Tidal dissipation in stars is one of the key physical mechanisms that drive the
evolution of binary and multiple stars. As in the Earth oceans, it corresponds to the resonant
excitation of their eigenmodes of oscillation and their damping. Therefore, it strongly depends
on the internal structure, rotation, and dissipative mechanisms in each component. In this
work, we present a local analytical modeling of tidal gravito-inertial waves excited in stellar
convective and radiative regions respectively. This model allows us to understand in details
the properties of the resonant tidal dissipation as a function of the excitation frequencies, the
rotation, the stratification, and the viscous and thermal properties of the studied fluid regions.
Then, the frequencies, height, width at half-height, and number of resonances as well as the
non-resonant equilibrium tide are derived analytically in asymptotic regimes that are relevant
in stellar interiors. Finally, we demonstrate how viscous dissipation of tidal waves leads to a
strongly erratic orbital evolution in the case of a coplanar binary system. We characterize such
a non-regular dynamics as a function of the height and width of resonances, which have been
previously characterized thanks to our local fluid model.
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Many stars of our galaxy are components of close binary or multiple stellar systems. In
such multiple stars, tides play a key role to modify the rotational evolution of the com-
ponents and of their orbit (de Mink et al. 2013, Langer in this volume). The same applies
to the case of star-planet systems (Albrecht et al. 2012). In this framework, Zahn (1977)
and Ogilvie & Lin (2007) demonstrated that the dissipation of the kinetic energy of the
low-frequency eigenmodes of oscillation of the stars excited by tides (i.e. tidal inertial
waves driven by the Coriolis acceleration in convection zones and gravito-inertial waves
driven by the buoyancy restoring force and the Coriolis acceleration in stably stratified
radiation zones) drives tidal migration, the circularization of the orbits, and the synchro-
nization and alignment of the spins (Barker & Ogilvie 2009).
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Figure 1. Left: Example of the frequency-spectra of the viscous dissipation of tidal gravito-in-
ertial waves. Middle: the four asymptotic regimes for tidal waves in stars. Right: Example of
scaling law for the width at mid-height of the resonance {m, n} ≡ {1, 1} as a function of E and
A.

1. Tidal waves in a box: a reduced model to understand tidal
dissipation in stars

In this study, we consider a two-body system. The central body A, which has a mass MA
and a radius RA, rotates with an angular velocity Ω. The punctual-mass tidal perturber
B (MB) has an orbit relative to A with a semi-major axis a and a mean motion ñ. We
compute the viscous dissipation of tidal gravito-inertial waves, which are driven by the
buoyancy and the Coriolis acceleration, using a local Cartesian model that generalizes
the one of Ogilvie & Lin (2004). We thus consider a box of characteristic length L
inclined with a co-latitude θ relatively to the rotation axis. The fluid has a density ρ, a
kinematic viscosity ν, a thermal diffusivity κ, and a Brunt-Väisälä frequency N (with
N ≈ 0 in convective regions). The control parameters of the system are: i) the Froude
number A = [N/ (2Ω)]2 that compares the buoyancy force and the Coriolis acceleration,
ii) the Ekman number E =

(
2π2ν

)
/
(
ΩL2

)
that compares the viscous diffusion time to

tΩ = (2Ω)−1 , and iii) the thermal number K =
(
2π2κ

)
/
(
ΩL2

)
that compare the thermal

diffusion time to tΩ. The viscous dissipation (Fig. 1, left) strongly depends on the tidal
frequency σ = 2 (ñ − Ω) and of the fluid parameters (Ω, A, E, K). This complex behavior
must be taken into account when studying the dynamical evolution of the system (Mathis
& Le Poncin-Lafitte 2009). Four asymptotic regimes (see Fig. 1, middle) are identified.
In convection zones (A � 0), we identify tidal inertial waves dissipated by viscous (in
blue; Pr = ν/κ is the Prandt number) or thermal (in purple) diffusions. Respectively, in
radiation zones (A > 0), we identify tidal gravito-inertial waves dissipated by thermal (in
orange) or viscous (in red) diffusions. In these regimes, we have derived analytic scaling
laws for the eigenfrequencies (ωmn ; m and n correspond to the horizontal and vertical
wave numbers) of resonances, their width at half-height (lmn ) (Fig. 1, right), their height
(hmn ), their number (Nkc), and the amplitude of the non-resonant background (Hbg)
that corresponds to the so-called equilibrium tide (e.g. Remus et al. 2012). Finally, we
demonstrated that in the case of such resonant tidal dissipation spectra, the orbital
evolution becomes erratic (Witte & Savonije 1999; Auclair-Desrotour et al. 2014). This
behavior is observed through jumps in semi-major axis that scale as Δa/a ∝ lH1/4 ,
where the width at mid-height l and height H of resonances are characterized thanks to
obtained scaling laws.
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