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These notes are based on lectures given by one of us (J.B.T.) at the University of
Texas in Austin in 1991. Part I concerns some basic features of plasma confinement
by magnetic fields as an introduction to an account of plasma relaxation in Part II.
Part III discusses confinement by magnetic mirrors, especially minimum-B systems.
It also includes a general discussion of adiabatic invariants and of the principle
of maximal ordering in perturbation theory. Part IV is devoted to the analysis of
perturbations in toroidal plasmas and the stability of ballooning modes.

PREFACE

The theory of plasma confinement is complicated and incomplete. Because current
textbooks do not include material at the frontier of research, it is hard for students
and researchers to become familiar with the state of the art. Bryan Taylor’s notes are
presented here to start filling that gap. Although based on lectures from over twenty
years ago, they provide much needed clarity in selected areas of current plasma
confinement research. Of course much of the original work on which these notes are
based is by Bryan Taylor and collaborators; but here, he and Sarah Newton draw the
many threads together. Indeed, while some may find the results familiar, the insight
is fresh and enlightening. The research frontier is just beyond these notes. Some
of the outstanding questions are posed and some are left to the reader to discern.
For example, we still need to know: how fast plasmas relax; how three-dimensional
reconnection works; how ballooning modes saturate and; how minimum B ideas can
improve toroidal devices. The insights here will help anyone wanting to answer those
and other questions.
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CEO, United Kingdom Atomic Energy Authority
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Foreword
The following notes are based on a course of lectures given by one of us (J.B.T.)

at the University of Texas in Austin in 1991. As was the intention of this ‘Special
Topics’ course, most of the lectures described the author’s own work. Consequently,
these notes are not intended as an introductory course in plasma physics. They assume
some familiarity with the subject and, as lecture notes, they are less formal than a
conventional text. We hope they will be useful as a supplement to a basic course, or
for advanced students, or as a record of research in the pre-computer-simulation era.

Of course, the emphasis in plasma physics has changed dramatically since 1991.
Owing to time constraints, we have not attempted to bring the material up to date,
though some sections, notably those on adiabatic invariants and maximal ordering
theory, have been expanded.

We are grateful to Emilia Solano and Phil Edmonds, who are largely responsible
for preserving the original notes, and to A. Schekochihin for encouraging their
publication.

Part I
1. Introduction

In these lectures we discuss several aspects of plasma confinement in magnetic
fields. Such magnetised plasmas can exhibit complex behaviour. Even if the plasma
is treated as a simple conducting fluid it can exhibit all the phenomena of an
ordinary fluid, including turbulence, as well as electromagnetic phenomena such as
wave propagation, scattering and refraction. More importantly, a magnetised plasma
exhibits many new phenomena, arising from the interaction between the plasma and
the magnetic field, and it is these new phenomena that are our main interest.
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1.1. Long-range effects
In reality a plasma is not a simple fluid. The idea of a simple fluid, with locally
defined properties such as diffusivity, viscosity and thermal conductivity, depends on
the fact that the mean free path of fluid particles is short. But in a high-temperature
plasma the mean free paths of ions and electrons are usually much longer than the
size of the system. Fortunately, in a magnetic field B, the paths of ions and electrons
are curled into tight spirals about the field, with (Larmor) radius msv⊥/esB – which
is generally small. This tends to restore local behaviour transverse to B – but the
long-range effect parallel to B persists. This indirectly influences cross-field transport,
and the plasma may still not have unique local transport coefficients perpendicular
to B. (For example, the cross-field transport in a toroidal plasma depends on the
global rotational transform.) Conversely, local changes in the magnetic field (e.g. field
line reconnection) may lead to substantial changes in the global field structure. In a
magnetised plasma ‘local changes affect global properties and global changes affect
local properties’.

So, in any plasma confinement problem, there are two aspects to be considered.
The first is the introduction of a simplified model for the plasma; the second is the
incorporation of this model into a realistic configuration for the confining field.

1.2. Confinement systems
Plasma confinement systems divide sharply into two classes, according to how one
approaches the problem of loss due to flow of plasma along the magnetic field. In the
first class, one accepts free flow parallel to B, but ensures that the magnetic lines
of force never leave the system. According to an important topological theorem of
Poincaré, such a system can only be toroidal. (For a simple account of this, see
Taylor (1974a).)

Alternatively, one may restrict the flow of plasma parallel to B by the ‘magnetic
mirror’ effect (see § 16). This depends on the adiabatic invariance of the magnetic
moment µ = mv2

⊥/B of a charged particle gyrating rapidly in a magnetic field.
Because of this, a gyrating particle of energy E moving along a field line into an
increasing magnetic field is reflected when B > 2E/µ. Unfortunately, this means
that only particles outside the ‘loss cone’ v⊥/v < (Bmin/Bmax)

1/2 in velocity space
are reflected, and, as particles are continually scattered into this loss cone, there is
always significant loss of plasma through magnetic mirrors.

1.3. Plasma models
1.3.1. Fluid model

The simplest model is the ideal conducting fluid:

ρ
dv

dt
= j×B−∇p, (1.1)

1
p

dp
dt
= γ
ρ

dρ
dt
, (1.2)

∂ρ

∂t
+∇ · (ρv)= 0, (1.3)

∇×B=µ0 j, (1.4)
∇ ·B= 0, (1.5)

∇×E=−∂B
∂t
, (1.6)

E+ v×B= 0. (1.7)
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A

FIGURE 1. Fluid flow in the presence of a density gradient.

The key equation here is Ohm’s law (1.7), which couples the magnetic field to the
plasma motion. It represents the fact that, if plasma resistivity η is neglected, the
electric field must vanish in the plasma rest frame. Specifically it implies E · B = 0
and v⊥ =E×B/B2.

More detailed fluid models include additional effects, such as resistivity, viscosity
and so-called ‘finite Larmor radius (FLR) effects’. (These are additional terms in the
pressure tensor arising because particle orbits between collisions are spirals around the
field lines rather than straight lines.)

Despite its simplicity and apparent deficiencies, this ideal fluid model represents
large-scale plasma behaviour rather well, since the important features of anisotropy
and plasma–field coupling are embodied in Ohm’s law.

1.3.2. Guiding centre model
Another simple model is based on the notion of the ‘guiding centre’. We noted

that particle orbits in a plasma are tight spirals about a magnetic field line. A particle
moves rapidly along this spiral but the spiral itself drifts slowly across the field. Two
important such ‘guiding centre drifts’ are the electric ‘E cross B’ drift,

vE = E×B
B2

, (1.8)

and the magnetic ‘grad B’ drift,

vB =−ms

es

∇B×B
B3

(
v2
‖ +

v2
⊥
2

)
, (1.9)

where subscript s denotes the plasma species. Note that the electric drift is identical
for all particles, whilst the grad B drift is different, and in the opposite direction, for
ions and electrons. Note also that the guiding centre velocity and the fluid velocity
are not necessarily the same. This can be seen from figure 1. If there is a vertical
density gradient, then even if the guiding centres are at rest (E = 0), there is a
non-zero fluid velocity at point A – because more orbits are centred above A than
are centred below it.

1.3.3. Kinetic theory models
The most complete description of a plasma is in terms of a phase space distribution

function fs(x, v, t) for each particle species,

∂fs

∂t
+ v · ∇fs + es

ms

(
E+ 1

c
v×B

)
·
∂fs

∂v
= 0. (1.10)
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The system is closed by coupling the fields to Maxwell equations through the charge
and current source terms,

ρ =
∑

s

es

∫
d3v fs(x, v, t), j=

∑
s

es

∫
d3v v fs(x, v, t). (1.11a,b)

If the distribution function is interpreted as an assembly of discrete particles, f ∼∑
i δ(x− xi(t)) δ(v− vi(t)), then (1.10) is exact (but pathological and not very useful)

and is known as the ‘Klimontovich equation’. Usually, f (x, v, t) is interpreted as an
ensemble average, or as smoothed over a small volume containing many particles.
Then the particles are independent of one another (except for the long-range smoothed
electric and magnetic fields) and (1.10) becomes the celebrated ‘Vlasov equation’.

Mathematically, the smoothing referred to can be achieved by taking a limit in
which the discrete plasma particles are subdivided into increasingly smaller units of
mass and charge (i.e. 1/n→ 0, e→ 0, m→ 0) while maintaining e/m and ne constant,
where n is the species’ density. This limit preserves the Debye length λD=

√
ε0T/ne2

and the plasma frequency ω2
p = ne2/m. In fact, the Vlasov equation can be regarded

as the first approximation in a hierarchy of equations (similar to the Bogoliubov–
Born–Green–Kirkwood (BBGK) hierarchy in classical fluids) ordered in powers of a
‘discreteness’ parameter – essentially the inverse of the number of particles in a Debye
sphere 1/nλ3

D (Davidson 1972; Nishikawa & Wakatani 1993).
Note that, although the Klimontovich and Vlasov interpretations of (1.10) share

the same equation, they are actually completely different. The Klimontovich equation
involves tracking variables (x(t), v(t)) and initial values (x(0), v(0)), whereas the
Vlasov equation involves a function f (x, v, t) and initial condition f (x, v, t0).

Of course, this ‘smoothing’ eliminates the short-range interactions between particles,
but these can be restored by introducing ‘binary collisions’ à la Boltzmann theory of
neutral gases. Then,

∂fs

∂t
+ v · ∇fs + es

ms

(
E+ 1

c
v×B

)
·
∂fs

∂v
=
∑

s′
C( fs, fs′), (1.12)

where C( fs, fs′) is one of several ‘collision operators’.
Actually, collisions in a plasma are different from those in a dilute gas. In a

gas, collisions are infrequent ‘close encounters’ that scatter particles through large
angles. In a plasma, these occasional large-angle scatterings are much less important
than frequent small-angle scatterings due to ‘distant encounters’. In fact, with a 1/r2

Coulomb interaction, the total effect of the long-range encounters is infinite! This
unfortunate feature is overcome by arguing that in a plasma the charge of each
particle is screened by a cloud of oppositely charged particles attracted to it. This
‘Debye’ screening cloud reduces the force between particles to (1/r2) exp(−r/λD),
where λD =

√
ε0T/ne2 is the Debye length.

Although (1.12) is the most detailed description of a plasma, it often contains more
detail than is needed. For example, one may be interested only in processes much
slower than the cyclotron frequencies (ω�Ω), or on a longer scale than the Larmor
radius (ρ � λ), or of small amplitude (δf � f ), and the Vlasov equation can be
simplified accordingly. A very popular example of this is the ‘gyrokinetic’ model in
which ω/Ω ∼ ρ/L ∼ k‖ρ ∼ δf /f , where L is the plasma scale, but k⊥ρ ∼ 1 so that
FLR effects are retained (Catto et al. 1981).
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A

B

FIGURE 2. Particle motion in a toroidal field.

2. Toroidal confinement

It is interesting to show that there can be no containment of a static plasma in a
purely toroidal, axisymmetric field. From the guiding centre viewpoint this is readily
demonstrated. Consider plasma centred in the minor cross-section of a toroidal vacuum
chamber (see figure 2). The grad B drift is opposite for electrons and ions, so that ions
accumulate on the upper surface of the plasma at A and electrons accumulate on the
lower surface at B. These charges create an electric field and the resulting E×B drift,
which is the same for both ions and electrons, then causes the whole plasma to drift
outwards away from the axis of symmetry.

The corresponding proof of this from the fluid model is longer – but more
informative. Starting from the equilibrium force balance

j×B=∇p, (2.1)

we have

j= B×∇p
B2

+ λB, (2.2)

where λ is determined from ∇ · j= 0,

B
dλ
dl
= B · ∇λ=−∇ ·

(
B×∇p

B2

)
,

= 2
B×∇p · ∇B

B3
. (2.3)

Integrating around the torus on a closed field line gives the constraint∮ (
B×∇p · ∇B

B4

)
dl= 0. (2.4)

However, in a purely toroidal, axisymmetric, field, the integrand is independent of l,
so equilibrium requires

B×∇B · ∇p= 0. (2.5)

As illustrated in figure 3, the pressure p would then have to be constant along lines
parallel to the axis of symmetry of the torus and the plasma cannot therefore be
contained!
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R

FIGURE 3. Constant pressure surfaces in a purely toroidal field.

Toroidal vessel

Toroidal
current

(l)
Resultant

field
Toroidal

field

FIGURE 4. Geometry of the toroidal pinch (from Taylor 1986).

2.1. Magnetic surfaces
We can evade the constraint (2.4) if we prevent the lines of force closing after one
circuit of the torus. A simple way to do this – which is the basis for the tokamak
and the toroidal pinch – is to induce a toroidal current (see figure 4). This produces
a poloidal field so that, after one circuit around the torus, a line of force is displaced
poloidally from its starting point. Then (hopefully) if the line of force is followed
indefinitely around the torus it will generate a closed ‘toroidal magnetic surface’
(or ‘flux surface’), as shown in figure 5. The dots indicate successive intersections of
a single field line with a plane at a fixed toroidal position, known as a Poincaré plot.
The average angle, ι, between successive intersections is the ‘rotational transform’
and the inverse of ι is the tokamak ‘safety’ factor, q = 2π/ι. (This is also the ratio
of the number of circuits a field line makes in the toroidal direction to the number
it makes in the poloidal direction.)

Since B · ∇p = 0, we see that p must be constant over a flux surface. Therefore,
what we really require for confinement is a set of nested flux surfaces (see figure 6).
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0

l

1 2
3

FIGURE 5. Poincaré plot generated by following a magnetic field line through many
circuits around the torus.

FIGURE 6. Nested magnetic flux surfaces.

Each magnetic surface is defined by Ψ (x, y, z) = constant, where B · ∇Ψ = 0 and
p = p(Ψ ). (The degenerate surface at the centre, where we want maximum plasma
pressure, is the ‘magnetic axis’.)

At this point we should consider what has become of the constraint (2.4) when we
have flux surfaces rather than closed field lines. There is a very useful trick for dealing
with a switch from closed lines of force to a closed toroidal flux surface. Consider
an integral along a line of force such as∫

X
dl
B
. (2.6)

Now introduce a thin flux tube of cross-section δA, with flux δF = B δA, enclosing
this field line. Then

δF
∫

X
dl
B
⇒
∫

V
X dF

dl
B
⇒
∫

V
X(B dA)

dl
B
⇒
∫

V
X dτ . (2.7)

Here the line integral has been converted to a volume integral. If the field line now
sweeps out a surface, then the thin flux tube enclosing it sweeps out a thin shell
between two adjacent toroidal flux surfaces, as shown in figure 7. So we effectively
replace ∫

X
B

dl ⇒ ∂

∂Ψ

∫
V

X dτ , (2.8)

where V(Ψ ) is now the volume within a toroidal flux surface.
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FIGURE 7. Shell swept out by thin flux tube surrounding flux surface.

Applying this result to the constraint (2.4), it becomes

∂

∂Ψ

∫
∇ ·

(
B×∇p

B2

)
dτ = ∂

∂Ψ

∮ (
B×∇p

B2

)
· dS= 0, (2.9)

which is automatically satisfied since ∇p is normal to the toroidal flux surface
(i.e. parallel to dS).

We should also see what becomes of the constraint (2.4) when the magnetic field
is non-axisymmetric. For this we write the vector potential (as we can any vector) as
A= α ×∇β +∇φ, so B=∇α ×∇β. The functions α(x, y, z) and β(x, y, z), known
as Clebsch variables, are constant along a field line and the pressure is a function
p= p(α, β). Then we have

B · ∇p×∇B=
(
∂p
∂α

∂B
∂β
− ∂p
∂β

∂B
∂α

)
B2 (2.10)

and (2.4) becomes ∮ (
∂p
∂α

∂B
∂β
− ∂p
∂β

∂B
∂α

)
dl
B2
= 0. (2.11)

Remembering that α and β are constant along dl, this implies(
∂p
∂α

∂U
∂β
− ∂p
∂β

∂U
∂α

)
= 0, (2.12)

where

U ≡
∮

dl
B
. (2.13)

Hence, in a toroidal system with closed, but not necessarily purely toroidal, field lines,
equation (2.4) imposes the constraint p≡ p(U).

In conclusion, therefore, the consequences of the equilibrium force balance j×B=
∇p in a torus are:

(i) If field lines generate flux surfaces Ψ , then p= p(Ψ ).
(ii) If field lines close, p is constant along B and p= p(U), where U = ∮ dl/B.
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This means that, in a non-axisymmetric torus, there is a potential conflict between
the constraints p= p(Ψ ) and p= p(U) at the so-called ‘rational surfaces’ where the
rotational transform ι = 2πm/n with m and n integers and the lines of force close
after n circuits. Mathematically, these rational surfaces have zero measure compared
to the irrational surfaces. Obviously, the simple fluid model is inadequate to discuss
such fine details. Nevertheless, low-order rational surfaces (where m and n are small)
play an important role in the stability of toroidal plasmas.

2.2. Magnetic surfaces and the Grad–Shafranov equation
We saw that for good containment we need an equilibrium with closed toroidal
magnetic surfaces. But do solutions of j×B=∇p with closed magnetic surfaces really
exist? In general this is a difficult question, related to the Kolmogorov–Arnold–Moser
(KAM) theorem and mathematical chaos, and further complicated by the conflict
mentioned above. However, solutions do exist in an axisymmetric torus and in other
configurations with an ignorable coordinate (Grad & Rubin 1958).

2.2.1. Cylindrical
The simplest magnetic surfaces are those in a straight cylinder where, in cylindrical

coordinates (r, θ, z), the field is independent of z and we can therefore write it as

B= nz ×∇Ψ (r, θ)+ nz f (r, θ), (2.14)

where nz is a unit vector in the z direction. Then ∇ ·B= 0 and B · ∇Ψ = 0, so if Ψ
exists it is a magnetic surface. To find the surface Ψ , we start from the equilibrium
j × B = ∇p. Then we know that p must be a function of Ψ . Using the expression
(2.14) for the field, the current is

j= nz∇2Ψ − nz ×∇f , (2.15)

so that for equilibrium Ψ must satisfy

(∇2Ψ )∇Ψ + (nz ×∇f · ∇Ψ )nz + f∇f + p′∇Ψ = 0. (2.16)

The component of (2.16) parallel to nz requires

nz ×∇f · ∇Ψ = 0, (2.17)

so that f must also be a function only of Ψ . The component of (2.16) perpendicular
to nz then gives an equation for Ψ ,

1
r
∂

∂r
r
∂Ψ

∂r
+ 1

r2

∂2Ψ

∂θ 2
+ p′(Ψ )+ f f ′(Ψ )= 0. (2.18)

This is known as the Grad–Shafranov equation† for equilibrium in a cylinder – a
two-dimensional partial differential equation. Solutions can be found once reasonable
pressure and flux functions, p(Ψ ) and f (Ψ ), and boundary conditions, are specified.

†This equation was also introduced independently by other authors in the 1950s when there were isolated
national fusion programmes.
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2.2.2. Toroidal
Of course, an infinite cylinder is not very practicable, but it illustrates how to

proceed in more realistic cases. A very important case is the axisymmetric torus –
an idealisation of a tokamak or toroidal pinch. In this case the field is independent
of φ in (r, φ, z) coordinates and we can write it as

B= 1
r
[nφ ×∇ψ(r, z)+ nφF(r, z)] (2.19)

and the current is

j=−1
r
[nφ ×∇(rBφ)×+nφ1∗Ψ ], (2.20)

where 1∗ = r2∇ · (r−2∇Ψ ). As in the cylindrical case, equilibrium then requires
p = p(Ψ ) and F = F(Ψ ) and the equation for equilibrium in an axisymmetric torus
becomes

r
∂

∂r
1
r
∂Ψ

∂r
+ ∂

2Ψ

∂z2
+ r2p′(Ψ )+ FF′(Ψ )= 0. (2.21)

This is again a two-dimensional partial differential equation with solutions specified
by two arbitrary functions p(Ψ ) and F(Ψ ) and appropriate boundary conditions. A
simple example is given below.

2.2.3. An example
A simple example of toroidal equilibrium is given by (2.21), with

p= 8(1+ α2)Ψ, (2.22)
F= constant. (2.23)

The equilibrium equation then becomes

r
∂

∂r

(
1
r
∂Ψ

∂r

)
+ ∂

2Ψ

∂z2
+ 8r2(1+ α2)= 0, (2.24)

with a solution
Ψ = r2(2R2 − r2 − 4α2z2). (2.25)

In this case, the magnetic surfaces are toroids of approximately elliptical cross-section
(see figure 8), surrounding the magnetic axis at r= R and bearing some resemblance
to the shape of modern tokamaks.

2.2.4. Helical
There is a similar equation to (2.21) for an equilibrium with helical symmetry

(Freidberg 2014). This represents a ‘straight’ version of a stellarator (see figure 9),
where the field in (r, θ, z) coordinates depends only on r and u = (lθ + kz). This
helical problem can be treated in a similar way to the cylindrical and toroidal
problems by introducing a vector

h= (lnz − krnθ)
(l2 + k2r2)1/2

. (2.26)
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FIGURE 8. Cross-section of magnetic surfaces defined by (2.25), for R= 1 m and α= 0.5.

HELICAL WINDING

TOROIDAL FIELD COILS

FIGURE 9. Sketch of a stellarator configuration.

(Note that nz, nθ and h are all unit vectors.) Then the field can be written as

B= 1
(l2 + k2r2)1/2

[h×∇Ψ (r, u)+ hF(r, u)] (2.27)

and, after some algebra, F and p are again found to be functions only of Ψ , and the
equation for helical equilibrium is

1
r
∂

∂r
r

(l2 + k2r2)

∂Ψ

∂r
+ 1

r2

∂2Ψ

∂u2
+ p′(Ψ )+ FF′(Ψ )

(l2 + k2r2)
− 2klF(Ψ )
(l2 + k2r2)2

= 0. (2.28)

(It is important in this case not to confuse the fixed pitch k of the helical symmetry,
imposed by boundary conditions, with the pitch of the lines of force – which varies
from flux surface to flux surface; see § 3.)

The three cases described above comprise the only exact magnetohydrodynamic
(MHD) equilibria and only the toroidal case represents a realistic situation (the others
extend to infinity).
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2.3. Rotational transform
An important property of a toroidal magnetic surface is its rotational transform ι(Ψ ),
or safety factor q = 2π/ι. Indeed, a rotational transform is essential for toroidal
confinement (see § 2.1). In general,

ι(Ψ )

2π
≡ lim

(
number of circuits made by line of force in poloidal direction

number of circuits made in toroidal direction

)
,

(2.29)
where the limit is as the number of circuits →∞. The simplest configuration in which
a rotational transform appears is a circular cylinder, with periodicity 2πR, to simulate
a torus. In this case each field line is a uniform spiral about the z axis, r dθ/dz =
Bθ/Bz. The magnetic surfaces are circular cylinders and

ι(Ψ )

2π
= BθR

rBz
= Iz

ψz
, (2.30)

where Iz and ψz are the current and flux within the surface. Note that this does not
depend on the presence of plasma – the current Iz may as well flow in a thin wire
along the z axis.

Of course, this is trivial; everyone knows an axial current generates an encircling
field! What is not trivial is that if we add an externally generated helical field (to
resemble a straight stellarator) then a rotational transform exists without any axial
current!

One can be forgiven if initially this appears to contradict Ampere’s law, for if we
take a circular loop integral around the z axis,

∮
rBθ dθ must vanish when there is

no axial current. This paradox is resolved if we note that the helical field modulates
Bθ , so that a loop round a flux surface has fluctuating r and Bθ . To first order these
fluctuations cancel, but a second-order effect remains.

A detailed calculation (Johnson et al. 1958; Spitzer 1958) shows that a helical field
∼Bhel cos(lθ + kz) generates a rotational transform ι∼ r2l−4(B2

hel/B
2
tor)[2(l− 1)+ k2r2]

near the magnetic axis. The transform therefore differs according to whether l = 1
(when it vanishes on the axis and increases slowly with minor radius r), l= 2 (when
the transform is finite near the axis and increases slowly with r) or l > 3 (when the
transform vanishes on the axis and increases rapidly with r). These differences are
important for plasma stability and l= 3 is usually a preferred value – because shear
in the rotational transform generally enhances stability.

Surprisingly, neither axial current nor helical windings are necessary for a rotational
transform! Indeed, the original suggestion for generating a rotational transform
(Spitzer 1951) was to take a simple toroidal solenoid, with no additional currents or
fields, and to ‘twist’ it into a figure-of-eight (see figure 10). In fact, any solenoidal
field with a twisted magnetic axis generates a rotational transform. This is purely a
geometrical effect and ι is the integral of the torsion around the (closed) magnetic
axis, independent of minor radius.

3. Perturbations of symmetry

We have seen that, at least in principle, flux surfaces exist in systems with an
ignorable coordinate. Now let us look in more detail at the effect of perturbations
of this symmetry. Consider the field in a section of an infinite circular cylinder (of
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FIGURE 10. Sketch of figure-eight stellarator. (Reproduced with permission from Spitzer
(1958). Copyright 1958, AIP Publishing LLC.)

length 2πR to represent toroidal periodicity). In coordinates (r, θ, z) this has symmetry
in both θ and z. The magnetic field has components Br= 0, Bθ =Bθ(r) and Bz=Bz(r),
creating cylindrical flux surfaces Ψ (r) with rotational transform (over the 2πR section)
ι/2π= 1/q(Ψ )= BθR/rBz.

Any perturbation of this cylindrical field can be decomposed into helical components
∼ exp[i(mθ + kz)], where k =−n/2πR. We first examine the effect of a single such
helical component. Then the combined field has helical symmetry. As we mentioned
earlier, the pitch of this helical symmetry is in general different from the pitch of the
unperturbed field lines, but on a ‘resonant surface’, where m− nq(Ψ )= 0, the helical
perturbation and the unperturbed field lines have the same pitch.

As in § 2.2.4, the combined field can be written as

B= 1
(m2 + k2r2)1/2

[h×∇Ψ (r, u)+ hF(r, u)], (3.1)

where u= (mθ + kz) and h is the unit vector

h= (lnz − krnθ)
(l2 + k2r2)1/2

. (3.2)

The flux surfaces Ψ of the combined field will have the form

Ψ =Ψ0(r)+ψ(r) cos(mθ + kz) (3.3)

and we can expect the effect of the helical perturbation to be important near a resonant
surface, when the perturbation is constant along the unperturbed field (otherwise the
effect of the perturbation is largely averaged out). From (3.1) the radius r0 of the
resonant surface is determined by ∂Ψ0/∂r= 0 and near this surface we can write (3.3)
as

Ψ = 1
2Ψ
′′

0 (r− r0)
2 +ψ cos(mθ + kz). (3.4)

The cross-sections of the corresponding surfaces, at fixed z, are shown in figure 11
for perturbations with m= 3 and m= 7 symmetry. As expected, most of the original
surfaces are only slightly deformed by the perturbation, but the resonant surface is
broken up to form a chain of ‘islands’. The width of an island can be estimated
from (3.4) as

∆= 4
[

ψ

Ψ ′′0 (r0)

]1/2

. (3.5)
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FIGURE 11. Magnetic surfaces resulting from a helical perturbation with (a) m= 3 and
(b) m= 7.

A more practical form of this result is obtained using (3.1), which shows δBr ∼
∂Ψ/∂θ ∼mψ/r and Ψ ′0 ∼ rBz/Rq, so

∆∼ 4
(
δBr

Bzq′

)1/2 (q2R
m

)1/2

. (3.6)

Thus the island width is proportional to the square root of the perturbing field, and
inversely proportional to the square root of the shear q′.

3.1. Chaotic regions
We have seen that a single helical perturbation of circular surfaces produces islands
at a resonant surface, but these are still magnetic surfaces, albeit more complex ones.
This is because the perturbed system retains an ignorable coordinate (mθ + kz). Note
that this is true only of the straight helical system; it is not true if we add a helical
field to a torus (as in a toroidal stellarator!).

When we impose two or more perturbations of different helical pitch there is no
longer an ignorable coordinate (Rosenbluth et al. 1966). If the amplitudes of the
two perturbations are small, numerical computations show that each perturbation
produces a separate chain of islands at its own resonant surface – but the interaction
between them produces small chaotic regions near the X-points of each chain. As
the perturbations increase, these chaotic regions expand to fill the space between the
two chains.

This behaviour is illustrated in a plane slab model with two incommensurable
Fourier perturbations (Wesson 2004). The fields in this model are

Bz = B0 = constant, (3.7)
Bx = B′xy, (3.8)

By = δBy[cos(kzz+ kxx)+ cos(kzz− kxx)], (3.9)
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FIGURE 12. Illustration of the break-up of magnetic surfaces in the presence of multiple
perturbations with increasing strength: (a) δBy = 0.1; (b) δBy = 0.2; (c) δBy = 0.3;
(d) δBy = 1.0.

and the field lines are determined by integrating

dx
dz
= Bx

Bz
,

dy
dz
= By

Bz
. (3.10a,b)

The resulting Poincaré plots at fixed z are shown in figure 12. As each chaotic zone
is generated by following a single field line, plasma can readily flow throughout
a chaotic zone. An interesting question is therefore: What is the magnitude of the
perturbations that cause the chaotic zones to first extend from one island chain to the
next? This can be estimated by calculating the width of the islands in each chain,
according to the formula given above, and assuming that the last magnetic surface
between island chains disappears when their individual widths overlap. However, as
we remarked earlier, an accurate calculation is a fundamental problem in mathematical
chaos theory.

3.2. Mappings
One way to study chaotic break-up of surfaces is by numerical calculation of field
lines and construction of the Poincaré plot as in the figures above. However, as field
lines must be followed very accurately for many circuits of the torus, such calculations
are lengthy. Therefore one often uses a simple ‘Iterative Mapping’ to illustrate the
break-up of magnetic surfaces (Lichtenberg & Lieberman 2010).

The mapping
xn+1 = f (xn, yn), (3.11)
yn+1 = g(xn, yn), (3.12)
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simulates successive intersections of a field line with the Poincaré surface of section
without consideration of the path between intersections. Such mappings can easily be
rapidly and accurately iterated many times.

In order to represent ∇ ·B= 0, the mapping must be area-preserving. That is, any
area must map into an equal area. A general area-preserving map can be written
implicitly in the form

xn+1 = xn − ∂G
∂θ
, (3.13)

θn+1 = θn + ∂G
∂xn+1

, (3.14)

where G≡G(xn+1, θn).
The simplest map that simulates the formation of magnetic islands and chaotic

regions is the standard or Chirikov–Taylor map (Lichtenberg & Lieberman 2010),

xn+1 = xn + k sin θn, (3.15)
θn+1 = θn + xn + k sin θn. (3.16)

This corresponds to

G(xn+1, θn)= x2
n+1

2
+ k cos θn. (3.17)

The important features of this mapping are:

(i) it is periodic in θ , representing the poloidal angle;
(ii) when k= 0, xn= constant, representing the behaviour of a line of force lying on

a magnetic surface;
(iii) the difference (θn+1 − θn) represents the rotational transform ι on a flux surface

(note that this varies from one surface to another); and
(iv) the term k sin θ represents a perturbation of the magnetic field.

In a Poincaré plot generated by a continuous field line between intersections of the
Poincaré plane, k sin θ would represent perturbation by a single helical mode. As we
have seen, a single helical perturbation does not create chaotic regions, but because the
mapping is discontinuous, the term k sin θ is equivalent to a discontinuous perturbation
of the field containing many helical modes.

The results of iterating the standard map are shown in figure 13 for several values
of the perturbation amplitude k. As expected, when k is small, islands appear with
small chaotic regions near X-points. These chaotic regions expand, at the expense of
continuous surfaces, as k increases until the last continuous surface between island
chains disappears. By the overlap criterion above, this occurs at kc ∼ π2/4; the true
value is 0.971635. . . (Greene 1968; Lichtenberg & Lieberman 2010).

4. Motion of lines of force

So far we have considered only stationary plasmas and fields. We now turn to some
aspects of the motion of magnetic fields and plasmas. This depends on the time scale
of the motion and the resistivity of the plasma. As expected, the key lies in Ohm’s
law, which connects the magnetic field with the plasma motion and with resistivity.
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FIGURE 13. Result of the standard map (3.15)–(3.16) for varying k: (a) k = 0.5;
(b) k= 1.0; (c) k= 2.5; (d) k= 4.0.

4.1. Fluid model with resistivity
The resistive fluid model is described by

ρ
dv

dt
= j×B−∇p,

1
p

dp
dt
= γ
ρ

dρ
dt
,

∂ρ

∂t
+∇ · (ρv)= 0,

∇×B=µ0 j,
∇ ·B= 0,

∇×E=−∂B
∂t
,

E+ v×B= η j,



(4.1)
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and the evolution of the field is given by

∂B
∂t
=∇× (v×B)+ η

µ0
∇2B. (4.2)

The two important time scales in a plasma can be seen in the behaviour of small-
amplitude waves, transverse to B0 in an incompressible plasma (Alfvén waves). Then
b∼ exp(−iωt+ ik · r) and (4.1) reduce to

−iωb⊥ = ik× (v⊥ ×B0)+ η

µ0
k× (k× b⊥)= i(k ·B0)v⊥ − η

µ0
k2b⊥, (4.3)

−iωρ0v⊥ =µ−1
0 (ik× b⊥)×B0 ≈ iµ−1

0 (k ·B0)b⊥, (4.4)

giving

ω2v⊥ =
[
(k ·B0)

2

µ0ρ0
− iω

η

µ0
k2

]
v⊥. (4.5)

Equation (4.5) defines the characteristic speed v2
A = B2

0/µ0ρ0 of Alfvén waves, the
Alfvén time scale τ 2

A ∼ a2µ0ρ0/B2
0 and the resistive time scale of the wave damping

τR ∼µ0a2/η.
The ratio of the resistive to Alfvén time scales is the Lundquist number, S,

S= τR

τA
∼ a2

η

B
a
√
µ0ρ

. (4.6)

In high-temperature laboratory plasmas S ∼ 106–108 (in astrophysical plasmas it is
∼1014). These large values of S create serious difficulties but can also lead to great
simplification. The difficulties lie in computing over such an enormous range of time
scales. The simplification is that field diffusion can often be ignored and the resistivity
set to zero. This leads to some crucial properties of an ideal plasma, or of a real
plasma on a time scale much less than τR.

(i) Flux conservation. The magnetic flux φ = ∫S B · dA through an area S bounded
by a closed curve C that moves with the fluid is constant.

The rate of change of the flux is

dφ
dt
=
∫
∂B
∂t
· dA+

∮
B · v× dl, (4.7)

where the first term is due to the change in the field B and the second is due to
motion of the boundary moving with the fluid. The total change can be written as∫ [

∂B
∂t
−∇× (v×B)

]
· dA, (4.8)

which, by virtue of the field evolution equation (4.2), is always zero when η= 0.
(ii) Field line preservation. A line moving with the fluid that is initially a line of

force always remains a line of force. (Alternatively, if fluid particles initially lie on a
common line of force then they continue to do so.)

To show this, it is convenient to reintroduce Clebsch variables as in § 2.1. Then

B=∇α×∇β, (4.9)
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FIGURE 14. Magnetic island formation.

where α(x, y, t) and β(x, y, t) are constant along a line of force (crucially they label
each line of force). Therefore

∂B
∂t
=
(
∇
∂α

∂t

)
×∇β −

(
∇
∂β

∂t

)
×∇α. (4.10)

However, we also have

∂B
∂t
= ∇× [v× (∇α×∇β)]
= −∇× [(v · ∇α)∇β − (v · ∇β)∇α]
= −∇(v · ∇α)×∇β +∇(v · ∇β)×∇α, (4.11)

where v is the fluid velocity. Although (4.10) and (4.11) do not completely determine
∂tα and ∂tβ, a consistent solution is

∂α

∂t
+ v · ∇α = 0,

∂β

∂t
+ v · ∇β = 0. (4.12a,b)

That is to say, there is a labelling of the lines of force in a moving ideal plasma such
that each line moves with the fluid velocity vF = E × B/B2. Because the field lines
are locked into the fluid, they cannot break or intersect one another, since this would
require a discontinuous fluid velocity.

Note that the choice of field line labels, and of their velocity, is not unique. In fact,
instead of saying that field lines move with the velocity of the fluid, v, we could
equally say that they move with velocity (v + u), where u× B=∇G, and G is any
function satisfying B · ∇G= 0. Of course, no physical quantity would be affected by
this. It would simply be a different labelling of the imaginary lines of force.

4.2. Effect of field line preservation
The effect of field line preservation in an ideal plasma can be seen if one tries to
calculate the growth of magnetic islands in the so-called ‘sheared slab’ configuration
B0 = (0, sxB, B), shown in figure 14. In this configuration By varies only in the
x direction and changes sign at x = 0. The question is: Can the field lines in this
equilibrium reconnect across the x = 0 plane to form magnetic islands? This would
occur if there were an unstable perturbation with Bx1 6= 0 at x = 0. For example, a
single Fourier mode ∼exp(iky) could create a chain of islands like those in figure 14.
(For such a mode, the ‘resonant surface’ k ·B0 = 0 is located at x= 0.)
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A perturbation (B1, v1) of the sheared slab equilibrium satisfies

∂B1

∂t
= (B0 · ∇)v1 − (v1 · ∇)B0 −B0(∇ · v1) (4.13)

and for the single Fourier mode B1 ∼ B1(x) exp(iky),

∂Bx1

∂t
= (iskxB0)vx1. (4.14)

We see from this that growth of a reconnecting field across the x = 0 plane would
require an infinite fluid velocity at x= 0 if the plasma resistivity were precisely zero!

5. Resistive plasmas
In a resistive plasma, field lines can break and reconnect. At first sight we might

expect this process to be slow, as it is in resistive diffusion. However, reconnection
occurs much more rapidly if it is concentrated in a small region δ� a. Then it occurs
at a rate η/δ2 � 1/τR. An important example of this rapid reconnection occurs in
resistive instabilities.

5.1. Resistive instabilities: the tearing mode
The basic ‘tearing mode’ instability involves the growth of magnetic islands in the
sheared slab that we considered in the previous section (Furth et al. 1963). As we
found, if η= 0 any such growth is prevented by the field line preservation constraint,
but now we wish to calculate the rate of growth when η 6= 0. In particular, we are
interested in instabilities that grow rapidly compared to resistive diffusion, but slowly
compared to MHD Alfvén time scales.

We again start from a sheared slab equilibrium v= 0 and B0= (0,B0y(sx),B0z). We
assume that B0y(sx) is symmetric about x= 0 and that the plasma is incompressible.
Then the growth of a linear perturbation (B1, v) is given by

∂B1

∂t
=B0 · ∇v − v · ∇B0 + η

µ0
∇2B1 (5.1)

and
ρ0
∂v

∂t
=−∇p+ j1 ×B0 + j0 ×B1. (5.2)

It is convenient to write B1 = ẑ×∇A1. Then for a Fourier mode A∼ A1(x) exp(γ t+
iky), Bx1=−ikA1, and we can extract equations for (A1, vx) alone, decoupled from all
other components,

−γA1 − B0y(sx)vxB0 + η

µ0
∇2
⊥A1 = 0 (5.3)

and
γρ0

k2
∇2
⊥vx − B0y(sx)

µ0
∇2
⊥A1 + d j0

dx
A1 = 0. (5.4)

We saw that, when η= 0, island growth requires vx→∞ at x= 0. Hence we expect
the effect of resistivity to be most important near x = 0. We therefore divide the
calculation into a thin inner layer around x = 0, of thickness δ, where resistivity is
important, and two outer regions |x|>δ, where resistivity can be neglected. A solution
is then constructed in each outer region and matched to the solution in the inner layer.
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Because we expect the tearing mode to grow slowly compared to the Alfvén time,
we can neglect inertia in the outer regions. Then in these regions

d2Aext

dx2
− k2Aext − µ0

B0y(sx)
d j0

dx
Aext = 0. (5.5)

Note that this is exactly the equation for ideal plasma equilibrium in the outer regions
– this equilibrium merely adjusts itself to the slowly changing inner solution.

We can integrate (5.5) inwards from ± infinity, or from the plasma boundaries, and
adjust the (linear) amplitude of the left and right solutions to be equal at x= 0. Then
in general we will find that there is a discontinuity in the slope (dA/dx) between the
left and right solutions at x= 0. We define this discontinuity as the ‘stability index’,

∆′ ≡ 1
A(0)

[(
dA
dx

)
+δ
−
(

dA
dx

)
−δ

]
. (5.6)

This ∆′ is all we require from the outer solutions and we will see later that ∆′ > 0
implies instability.

We now need to find a solution in the inner region. In this region x is small but
vx and A1 vary very rapidly with x. We can therefore neglect the last term in (5.4) as
well as derivatives in the y direction. Then, in the thin resistive inner layer, equations
(5.3) and (5.4) reduce to

d2A
dx2
− γµ0

η
A− sB0µ0

η
xvx = 0, (5.7)

γρ0

k2

d2vx

dx2
− s2B2

0

η
x2vx − sB0γ

η
xA= 0. (5.8)

We now ‘stretch’ the thickness of the inner layer by introducing τ = x/δ, and select

δ4 = ηγρ0

s2k2B2
0
, (5.9)

so that the layer has unit width in τ . We also rescale the velocity by introducing
w= (sB0δ/γ )vx. Then the resistive layer equations become

d2w
dτ 2
− τ 2w= τA, (5.10)

d2A
dτ 2
= γµ0δ

2

η
(A+ τw). (5.11)

This essentially completes the solution! The change in dA/dτ across the inner layer
will be of order γµ0δ

2/η. Hence, when we match the change in dA/dx to the
discontinuity ∆′ in the outer solutions, we will have

∆′ = γµ0δ

η
× (number of order unity). (5.12)

Therefore ∆′ = 0 is the stability threshold and, when ∆′ > 0,

γ ∼ η3/5

µ
4/5
0

(
skB0

ρ1/2

)2/5

(∆′)4/5. (5.13)
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In terms of Alfvén and resistive times, τA = a
√
µ0ρ/B0 and τR = a2µ0/η, defined

relative to a characteristic dimension a of the outer plasma, equation (5.13) becomes

γ ∼ (a∆
′)4/5(ka)2/5(sa)2/5

τ
3/5
R τ

2/5
A

. (5.14)

Consequently γ τR ∼ S2/5 � 1 and γ τA ∼ S−3/5 � 1. So our assumptions about the
tearing mode are confirmed: when resistivity is small, the growth rate is indeed rapid
compared to resistive diffusion but slow compared to the Alfvén speed, and the
resistive layer is thin, with the width δ given by (5.9). Note that in the limit η→ 0
we recover an ideal plasma, but with a discontinuity in the form of a current sheet
at the resonant layer k · B0 = 0 – a possibility we did not consider in our discussion
of ideal plasmas.

It is important to recognise the significance of tearing modes. Of course, we
expect that introducing a small resistivity will perturb the motion of a previously
ideal plasma. But this is not what tearing modes do. Tearing modes are new modes
involving critical layers in which resistivity is dominant no matter how small it may
be. Mathematically they arise because the differential equations governing resistive
plasma are of higher order than those governing ideal plasma. This means that there
are solutions for the resistive plasma that do not exist when resistivity is strictly
zero. (This is very similar to the effect of viscosity in fluid dynamics, where it also
introduces additional solutions and is dominant in critical boundary layers.)

In addition to its intrinsic interest, there are several reasons why the calculation
of tearing modes is important: (a) it describes an instability that has been seen
in experiments, (b) it illustrates the importance of small departures from ideal
Ohm’s law, (c) it confirms that reconnection can occur much faster than resistive
diffusion and (d) the matching procedure described in the calculation is used in many
other calculations when there is a small departure from the ideal plasma. In these
calculations more complicated models are used in the resonant layer, but the outer
region calculation is essentially unchanged.

In one respect, however, our calculation of the tearing mode growth rate is atypical.
Recall that in the outer region

d2A
dx2
− k2A= µ0

B0y(sx)
d j0

dx
A. (5.15)

We assumed that j0 was symmetric about x= 0, so the right-hand side of this equation
tends to a constant times A as x→ 0 and the general solution near x= 0 is

A∼ α[1+ · · ·] + β[x+ · · ·]. (5.16)

In this case dA/dx and A are well behaved at x = 0 and there is no difficulty in
calculating ∆′. But if j0 is not symmetric about x = 0, the right-hand side of the
equation ∼ A/x as x→ 0. Then the general solution near x= 0 is

A∼ α[1+ c(x log |x| − x)] + β[x+ · · ·], (5.17)

so that A and dA/dx are divergent at x = 0. In this case, rather than matching the
derivatives of inner and outer solutions, we match the large (α) and small (β) solutions
in the inner and outer regions. (If we had included plasma pressure in our calculation,
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P

0 0

FIGURE 15. Faster reconnection: P represents the forcing perturbation at the wall.

the general solution would have been of the form α|x|q + β|x|1−q near x= 0, but we
again match the large and small solutions.)

One might reasonably question whether at this level of detail the plasma can really
be represented by a fluid model. However, the underlying concept of reconnection
occurring in a thin layer, but dependent on a parameter ∆′ calculated from the
plasma outside this layer, appears to be robust. This view is reinforced by another
interpretation of ∆′. Suppose we remove the resistive layer and replace it by a thin
flexible insulating membrane. The magnetic pressure on this membrane is B2/2µ0, so
if we deform it by a tearing-mode-like displacement ξx, the work done by the plasma
(per unit area) on one side of the membrane is

δW ∼ ξx

(
B2

0

2
+B0 ·B1

)
. (5.18)

As there is no change of plasma volume, the contribution from B2
0 is zero, and from

the earlier calculation of tearing modes, in the ideal plasma

B0 ·B1 = B0y(sx)
∂A
∂x
, (5.19)

ξxB0y(sx)=−A, (5.20)

where γ ξx = vx. Therefore the net change of energy is

δW ∼ A(0)2
[(

1
A

dA
dx

)
−ε
−
(

1
A

dA
dx

)
ε

]
. (5.21)

Hence ∆′ is a measure of the energy available in the ideal plasma if the field line
conservation constraint is relaxed at the resonant surface k ·B0 = 0.

5.2. Forced reconnection
As we saw, tearing mode reconnection is driven by the energy released from an
unstable plasma. However, reconnection may occur even more rapidly when it is
‘forced’, that is, driven by plasma flows or imposed on the reconnecting region.
Conceptually we might view the forcing as being applied externally, as in figure 15,
effectively increasing the value of ∆′. In practice we will be more interested in
reconnection driven by turbulence.

An often quoted idealised form of forced reconnection is the Sweet–Parker model.
This represents plasma flow through an X-point of a two-dimensional magnetic field,
as illustrated in figure 16. The antiparallel reconnecting fields are forced towards
the X-point by flows in the ±x direction, reconnect, and then flow outwards along
the ±y directions. We can readily imagine that the forced inflows cause ‘flattening’
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FIGURE 16. Model of forced reconnection.

of the X-point to eventually form a current sheet of thickness δ and length l, as
indicated in figure 16, across which the field B changes direction. We can then
envisage a steady state, with plasma forced into the current sheet across the field, at
a velocity vx,in controlled by resistivity, and flowing out along the field at a much
higher velocity, vy,out.

From Ohm’s law we have for the inflow, vin ∼ η/δµ0. Pressure balance, ρv2
y/2 =

B2
0/2µ0, gives for the outflow, vout ∼ B/

√
µ0ρ, and mass conservation requires that

voutδ∼ vinl. Consequently, v2
in∼ l2/(τRτA) so that flux is swept in, and reconnects at a

rate ∼(τAτR)
−1/2, where τA and τR are again the Alfvén and resistive diffusion times

relative to the outer dimensions of the reconnecting region (with scale length ∼l).
Of course, both the tearing mode and the Sweet–Parker model are over-idealised

and, except in carefully controlled experiments, can scarcely represent real situations.
In particular, the strictly two-dimensional nature of these models is likely to
be unrepresentative, and the Sweet–Parker outflow is also likely to be unstable.
(Numerical simulations generally show that reconnection is faster than it is in the
idealised models.)

In a turbulent plasma, a more realistic picture is one in which elements of plasma,
carrying differently oriented frozen-in fields, are forced together. In the absence of
reconnection, they could not penetrate each other and a current layer would form
between them. However, resistivity allows some penetration and reconnection. If this
is not fast enough to keep up with the inflow, magnetic field will pile up against the
current sheet, making the Alfvén speed larger and the current sheet thinner, so that
reconnection speeds up. Consequently, in a turbulent resistive plasma, we can expect
reconnection to proceed freely.

6. Conclusion
In Part I we have introduced some important basic features of magnetised plasmas,

including the strong anisotropy (short range of effects in the direction perpendicular
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to B, long range parallel to B) and the consequent importance of magnetic field lines
and surfaces. Their most important properties are:

(i) In an ideal (η = 0) plasma, there are many constraints on their motion arising
from the fact that field lines cannot break or reconnect – even though they are
hypothetical! These constraints dominate the behaviour of ideal plasmas.

(ii) In an even slightly resistive plasma these constraints may be ineffective, leading
to new phenomena (as well as small modifications of the ideal behaviour). In
turbulent resistive plasmas we expect breaking and reconnection of field lines to
be the rule rather than the exception, and, as we will see in Part II, this provides
an explanation and a prediction of the behaviour of turbulent plasmas in a very
wide range of experiments.

Part II
7. Plasma relaxation

Plasma relaxation theory (Taylor 1974b, 1975, 1986, 2000) has its origin in early
experiments on toroidal pinches – notably ZETA (Butt et al. 1966; Gibson et al. 1967).
In these early pinch experiments, a toroidal field B0 is first created by external coils
and a toroidal current I is then induced in the plasma (essentially by a transformer in
which the plasma torus is the secondary). This current rapidly heats and compresses
the plasma. A remarkable feature of these experiments is that, after an initial, violently
turbulent phase, the plasma enters a ‘quiescent’ phase in which the turbulence is much
reduced. Even more remarkable is the fact that in the quiescent phase the plasma
profile is almost independent of any details of the initial state and depends principally
on the ‘pinch ratio’ θ =Bθ/B0, where Bθ is the poloidal field at the plasma boundary.
(Alternatively, θ = 2I/aB0, where a is the torus minor radius.) Furthermore, when θ
exceeds a critical value, which is the same for all quiescent states, the toroidal field
in the outer plasma is spontaneously reversed relative to the initial applied field!

These observations suggest that the plasma has reached some preferred, possibly
stable, state – now known as the ‘relaxed state’. The idea of such a state can be
illustrated by a simple analogy. Suppose we immerse a flexible current-carrying loop
of wire in a viscous insulating medium. What is its equilibrium state? While the wire
is moving, it loses energy to the viscous medium, so its equilibrium must be a state
of minimum energy – but minimum energy subject to certain constraints. (Otherwise
all the energy would be dissipated!) One constraint is that the flux LI linking the loop
(L is the inductance) is constant, and if this were the only constraint the equilibrium
would be the configuration of minimum LI2/2, subject to LI being constant. (This is
the state of maximum inductance.)

A plasma resembles an infinity of linked flexible wires and the first problem is to
identify the appropriate constraints (Taylor 1986).

7.1. Relaxation constraints
We have seen that, for a perfectly conducting plasma, important constraints follow
from

∂B
∂t
=∇× (v×B), (7.1)

which we now write as
∂A
∂t
= v×B+∇χ, (7.2)
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where A is the vector potential and χ is an arbitrary scalar. Consequently, changes in
A must satisfy a similar equation,

δA= ξ ×B+∇χ, (7.3)

where ξ is an arbitrary plasma displacement (and χ follows from χ ). It is clear that
this does not restrict δA⊥, but δA‖ is constrained by∮

dl
B

B · δA= 0, (7.4)

for any closed field line or magnetic surface (see § 2.1).
A more convenient, and more fundamental, form of this constraint is that, for every

infinitesimal flux tube surrounding a closed field line labelled by Clebsch variables α,
β, and for every magnetic flux surface, the volume integral

Kαβ ≡
∫
α,β

A ·B dτ (7.5)

is invariant. This provides an infinity of constraints – which replace the single
constraint of the flexible wire.

We can confirm the invariance of Kαβ directly:

dKαβ

dt
=
∫

V
B ·

∂A
∂t

dτ +
∫

V
A ·

∂B
∂t

dτ +
∮

S
(A ·B)v · dS, (7.6)

where V and S are respectively the volume and surface area of the infinitesimal flux
tube. The last term arises from the motion of the flux tube and the others from the
local change in (A ·B). Then, from (7.2),∫

V
B ·

∂A
∂t

dτ =
∫

V
B · ∇χ dτ =

∮
S
χB · dS= 0, (7.7)

and from (7.1),∫
V

A ·
∂B
∂t

dτ =
∫

V
A · ∇× (v×B) dτ =−

∮
S
(A ·B) v · dS= 0, (7.8)

(recall that v is tangential to the boundary S).
Hence dK/dt= 0, and to find the relaxed state we need to minimise the magnetic

energy
∫

V dτ B2/2µ0 over all variations δA subject to the infinity of constraints Kαβ =
constant. This leads to the variational problem

δ

∫
V

dτ
[

1
2
(∇×A)2 − λα,β A · ∇×A

]
all δA, δλ

= 0. (7.9)

This is very inconvenient because of the restriction (B ·∇λ=0) on λ that is implicit in
the use of Clebsch variables α and β. We can avoid this by introducing the restriction
explicitly through another Lagrange multiplier. Then the variational problem becomes

δ

∫
V

dτ
[

1
2
(∇×A)2 − λ(x,y,z) A · ∇×A+µ(x,y,z)∇×A · ∇λ

]
all δA, δλ, δµ

= 0. (7.10)
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We also need to consider the appropriate boundary condition. When the magnetic
field is entirely contained within a closed conducting shell, the tangential component
of δA on the boundary is zero.

Returning to the variational problem, the minimisation requires

δW = δA · {∇× (∇×A)− 2λ∇×A−∇λ× (A+∇µ)} = 0, (7.11)
− δλ{(∇×A) · (A+∇µ)} = 0, (7.12)

+ δµ{(∇×A) · ∇λ} = 0. (7.13)

From (7.12), we see that
(A+∇µ)= ξ ×B, (7.14)

therefore
∇λ× (A+∇µ)→ (B · ∇λ)ξ − (ξ · ∇λ)B, (7.15)

where the first term is zero. Then (7.11) becomes

∇× (∇×A)− (2λ− ξ · ∇λ)∇×A= 0. (7.16)

Redefining λ, we obtain finally

∇×B− λαβB= 0. (7.17)

Now, note well, this cannot be the correct description of the quiescent state, because
λαβ must be determined from the infinity of Kαβ , which in turn will reflect every detail
of the initial conditions – entirely contrary to the observations.

The resolution of this dilemma is to recognise, as we did earlier, that even small
resistivity leads to field line breaking and reconnection. Then it is impossible to
identify individual field lines and the individual Kαβ are no longer of any significance.
But the sum of all the Kαβ is still invariant. This is just the total magnetic helicity

K0 =
∫

V
A ·B dτ = invariant. (7.18)

(Apart from the fact that they are rendered irrelevant by reconnection, the individual
Kαβ differ from the total helicity K0 in another fundamental way. For the Kαβ to be
relevant, we would need to calculate and identify all the field lines – a knowledge of
the field B itself is not enough – whereas K0 is well defined by the field alone. In
a loose analogy with particle dynamics, we could say that K0 is an isolating integral,
which constrains the available configuration space, whereas the Kαβ are non-isolating
integrals, which do not constrain the evolution of the field.)

We conclude, therefore, that the relaxed state of a slightly resistive turbulent plasma
is obtained by minimising the magnetic energy subject to a single constraint, here
denoted by the Lagrange multiplier µ,

δ

∫ [
1
2
(∇×A)2 dτ −µ

∫
A · ∇×A dτ

]
all δA
= 0. (7.19)

That is
δA · {∇× (∇×A)− 2µ∇×A} = 0, (7.20)

and upon redefining µ, finally

∇×B=µB. (7.21)

This is no longer any force-free state, depending on the initial conditions; it is a
unique state dependent only on a single parameter µ. Thus we have already recovered
the uniqueness of the quiescent phase.
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FIGURE 17. Linked flux tubes.

7.2. Helicity and field line linkage
Before discussing properties of the relaxed states given by (7.21), we should note
some features of the magnetic helicity K0.

The helicity K0=
∫

A ·B dτ is defined only if the volume of integration is bounded
by a closed flux surface. Otherwise it is not gauge-invariant. This reflects the fact
that A ·B is not a local quantity. One cannot specify where the helicity resides, or a
helicity density; only the total helicity within a closed flux surface can be defined.

In fact, helicity is a topological quantity related to the linkage of one flux tube with
another. For example, for two flux tubes as in figure 17, the helicity is K0= 2ψ1ψ2 if
they are linked as in the figure, and zero if they are not linked (Moffat 1978). Where
the helicity is located when they are linked is a meaningless question.

If the volume concerned is multiply connected, as in a torus, then even though the
bounding surface is a flux tube, the simple formula (7.18) for K0 is not fully gauge-
invariant. The full gauge-invariant form should be

K1 =
∫

V
A ·B dτ −

∮
C1

A · dl
∮

C2

A · ds, (7.22)

where C1 and C2 are circuits the long and short way around the torus boundary.
However, in most applications the circuit integrals are themselves constant and the
simpler form can be used.

7.3. Back to reality
If all this sounds too much like exotic mathematics, there is a down-to-earth
engineering interpretation of K0 – as the volt-seconds from the driving transformer.
(Volt-seconds are a standard measure of transformer performance and something you
would certainly know was real if you touched the terminals!)

To see this connection, we introduce a small gap in the toroidal shell, as in
figure 18, in order to apply the loop voltage Vloop. Then, using (7.22)

dK
dt
=
∫

S

(
A× ∂A

∂t

)
· dS−

∮
C1

∂A
∂t
· dl
∮

C2

A · ds. (7.23)
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FIGURE 18. Interpreting magnetic helicity in terms of stored volt-seconds.

But ∂A/∂t 6= 0 only in the gap. There we may write dS= dl× ds and∫
S

(
A× ∂A

∂t

)
· dS→−

∮
(A · ds)

∮ (
∂A
∂t
· dl
)
, (7.24)

where
∮
(A · ds)=Ψtor and

∮
(∂tA · dl)=−Vloop so

dK
dt
→ 2ΨtorVloop. (7.25)

Therefore, if loop volts are applied at a constant toroidal flux,
K

2Ψtor
= volt-seconds stored in plasma. (7.26)

In principle (7.25) and (7.26) describe the start-up of the toroidal plasma, but as this
is ill-controlled and volt-seconds are lost in ionisation and heating, we cannot usefully
apply them to this initial stage. (The start-up loop voltage is much larger than that
required to maintain the relaxed state.)

7.4. Uniqueness of relaxed states
In the next few lectures we will discuss specific solutions of equation (7.21) for
relaxed states. But first we show that each relaxed state is uniquely determined –
with no arbitrary or fitted parameters – by the externally controlled quantities Ψtor
and K. To see this, scale all dimensions in the problem by µ. It is then clear, if it
was not already, that the solution of (7.21) must be of the form B= c B̂(µr;µa, µR),
A = (c/µ)Â(µr; µa, µR), where a and R are minor and major radii and c is the
arbitrary scale factor (Taylor 1974b). Then

K =
∫

c2

µ
B̂(ρ)Â(ρ)

d3ρ

µ3
∼ c2

µ4
F(µa, µR) (7.27)

and

Ψtor =
∫

cB̂(ρ)
d2ρ

µ2
∼ c
µ2

G(µa, µR), (7.28)

giving
K
Ψ 2

tor

= function of (µa, µR), (7.29)

which fixes µ. The scale factor c can then be set from K or Ψtor.
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7.5. Summary
Now let us summarise what we have seen so far. Observations of turbulent plasmas in
a toroidal pinch, with initial toroidal field B0 and current I, have shown that quiescent
states form that depend only on the parameter θ ≡ 2I/aB0, and if θ > θc the toroidal
field spontaneously reverses.

We interpret these as ‘relaxed’ states, that is, states of minimum energy subject to
constraints. In an ideal plasma there would be an infinity of constraints, but this leads
to a state in strong disagreement with observations. In a slightly resistive plasma, the
infinity of individual constraints become irrelevant and the only surviving constraint
is that the total magnetic helicity Kαβ =

∫
αβ

A ·B dτ is invariant. This leads to relaxed
states in agreement with observations, as we shall see in detail in the following
sections.

8. Relaxed states in toroidal pinch
Now, at last, we turn to calculating a relaxed state. We first consider a toroidal pinch

surrounded by a conducting shell, represented by the boundary condition B · n = 0
(see figure 4). As we know, such a system has two invariants, K and ψtor, and these
completely specify the relaxed state.

For simplicity, we first solve ∇ × B = µB for the relaxed state in a cylinder,
which can be considered an approximation for a large-aspect-ratio toroidal pinch. The
magnetic field then depends only on the minor radius, so that Br = 0, Bθ = Bθ(r),
Bz = Bz(r) and

−∂Bz

∂r
=µBθ , (8.1)

1
r
∂

∂r
(rBθ)=µBz, (8.2)

so
1
r
∂

∂r

(
r
∂Bz

∂r

)
+µ2Bz = 0. (8.3)

Therefore
Bz = αJ0(µr), Bθ = αJ1(µr). (8.4a,b)

Unsurprisingly, this is known as the Bessel function profile. Integration of (8.2) shows
that the pinch ratio θ =µa/2. A further calculation relates the parameter µ to K/Ψ 2

tor
as in (7.29),

K
Ψ 2
= l

2πa

{
µa[J2

0(µa)+ J2
1(µa)] − 2J0(µa)J1(µa)

J2
1(µa)

}
, (8.5)

where l is the cylinder length, identified with 2πR in a torus.
The Bessel profile fits the experimental data remarkably well, as can be seen in

figure 19 and in Bodin (1983, 1984, 1987).

8.1. Spontaneous field reversal
Since the ‘toroidal’ field is Bz∼ J0(µr), it is clear that the onset of spontaneous field
reversal in the relaxed state occurs at µa> 2.4. This corresponds to an experimental
pinch parameter θ > 1.2 – which again agrees well with the experimental observations.
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FIGURE 19. Comparison of experimental magnetic field profiles in the quiescent state
of the toroidal pinch HBTX-1A to the theoretical expressions (8.4). (Reproduced with
permission from Bodin (1984).)

The experimental data from reverse field pinches (RFPs) is usually presented in the
form of an F–θ diagram, where

F≡ B(wall)
toroidal

〈Btoroidal〉 , (8.6)

and the angled brackets denote the average over the cross-section. The value of F in
the relaxed state is

F= 2θJ0(2θ)
J1(2θ)

. (8.7)

Note that this is calculated from ‘first principles’, and contains no empirical or fitted
factors.

Equation (8.7) is in good agreement with experiment, as can be seen in figure 20.
Note that the experimental points from several machines lie on a universal curve, close
to the theoretical one but at somewhat higher θ . (This may be due to the lower current
density near the wall, where the plasma is contaminated by impurities.)

Even more striking evidence for relaxation can be seen in the time-dependent
behaviour shown in figure 21. We see that if the operating point (F, θ) is forced
away from the locus of relaxed states (e.g. by a temporary increase in loop voltage),
it very quickly (0.8 µs! – comparable to the Alfvén time ∼1 µs) reverts back to it.
However, as long as the operating point is changed slowly, the plasma stays close to
the theoretical relaxed-state curve (figures 21b and 22).

9. Energetics of toroidal relaxed states
Actually, determination of the relaxed state is more complex than the analysis so far

suggests. This is because there may be more than one solution of (7.21) compatible
with K, Ψ and the boundary conditions. Therefore, in any situation we must consider
all possible solutions of (7.21) and select that which has the lowest energy.
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FIGURE 20. An F–θ diagram showing data from the pinch experiments HBTX1, ALPHA
and ZETA and the theoretical curve. (Reproduced with permission from Bodin & Newton
(1980).)
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FIGURE 21. Time-dependent F–θ curve for HBTX1 in (a) fast mode and (b) slow mode.
Time intervals are given in microseconds. (Reproduced with permission from Bodin &
Newton (1980).)

In a cylinder we can find all the solutions of (7.21) explicitly (Taylor 1968). Any
solution, whether axisymmetric or not, satisfies

1
r
∂

∂θ
Bz − ∂

∂z
Bφ =µBr, (9.1)

∂Br

∂z
− ∂Bz

∂r
=µBθ , (9.2)

1
r
∂

∂r
(rBθ)− 1

r
∂Br

∂θ
=µBz, (9.3)

∇× (∇×B)=µ2B. (9.4)
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FIGURE 22. Time-dependent F–θ curves from pinches operated in slow mode: (a) ZT-
40 experiment (from DiMarco 1983), (b) TPRE experiment (reproduced with permission
from Tamaru et al. 1979) and (c) REPUTE experiment (reproduced with permission from
Toyama et al. 1985).

Therefore, the most convenient starting point is to first find Bz from

∇2Bz +µ2Bz = 0, (9.5)

and then compute the other components of B from (9.4).
The general solution of (9.5) can be expressed as a sum of Fourier modes Bz =

h(r) cos(mθ + kz), where

1
r
∂

∂r

(
r
∂h
∂r

)
−
(

m2

r2
+ k2

)
h+µ2h= 0, (9.6)

so that
h(r)= Jm(y), where y≡ r(µ2 − k2)1/2. (9.7)

The general form of the relaxed state in a cylinder therefore becomes

B=
∑
m,k

amkBmk(r), (9.8)

where

Bmk
r =−

1
(µ2 − k2)1/2

{
kJ′m(y)+

mµ
y

Jm(y)
}

sin(mθ + kz), (9.9)
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Bmk
θ =−

1
(µ2 − k2)1/2

{
µJ′m(y)+

mk
y

Jm(y)
}

cos(mθ + kz), (9.10)

Bmk
z = Jm(y) cos(mθ + kz). (9.11)

Note that this is an exact solution.
In the general solution (9.8), the (m= 0, k= 0) term is of a different character to

all the others. It satisfies the boundary condition Br = 0 for any value of µ and it
carries non-zero toroidal flux. All other terms satisfy the boundary condition only for
discrete values of µ (=µmk) given by

kJ′m[(µ2 − k2)1/2a] + mµ
(µ2 − k2)1/2a

Jm[(µ2 − k2)1/2a] = 0, (9.12)

and they carry no toroidal flux. Consequently, there are two distinct types of relaxed
state in a cylinder.

Type I: the primitive or symmetric state, consisting solely of the (m = 0, k = 0)
term. This is the Bessel state we have already discussed, in which µ is determined
by K/Ψ 2.

Type II: a mixed or helical state made up of an (m = 0, k = 0) term, to provide
the required toroidal flux, plus one term with m and k non-zero, i.e. B = α0B00 +
αmkBmk (no summation over m, k). In this mixed state µ(m, k) is given by (9.12).
Consequently, µ is no longer determined by K/Ψ 2; instead, with µ fixed, K/Ψ 2

determines the mixing ratio αmk/α0.
Both Type I and Type II relaxed states are therefore fully determined by K and Ψ ,

but in quite different ways. We now need to find which relaxed state has the lowest
energy, and, if it is a Type II, what are the specific values of m and k.

9.1. Primitive and mixed states
The task of finding which is the lowest-energy solution is made easier by two
comparison theorems (Taylor 1968):

(i) The first theorem is that if two solutions have the same value of Ψ and K, then
the one with the smaller µ has the lower energy. The proof of this is as follows.

If
∫

A1 ·B1 dτ = ∫ A2 ·B2 dτ with A1=A2 on the boundary, and both ∇×B1=µ1B1

and ∇×B2 =µ2B2, then∫
[∇× (A1 −A2)]2 dτ = (µ2 +µ1)

∫
(A2 −A1) · ∇×A2 dτ (9.13)

and ∫
(∇×A2)

2 dτ −
∫
(∇×A1)

2 dτ = (µ2 −µ1)

∫
(A2 −A1) · ∇×A2 dτ . (9.14)

Therefore, if W1 and W2 are the energies of two relaxed states, then

W2 −W1 = µ2
2 −µ2

1

(µ2 +µ1)2

∫
(B2 − B1)

2

2
dτ . (9.15)

Hence, if µ2
2 >µ

2
1, W2 >W1.

(ii) The second theorem is that the eigenvalues of (9.12) for the same k increase
with increasing m. The proof of this is similar to the argument above and to the
Sturm–Liouville comparison theorems in the theory of differential equations (Ince
1956).

By theorem (i), to find the solution with the lowest energy, we must select that with
the smallest µ. For a Type I solution this means taking the smallest root of (8.5).
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FIGURE 23. Illustration of the energy of the relaxed states in a cylindrical plasma as a
function of K/Ψ 2.

By theorem (ii), for a Type II solution it means taking m = 1 and then searching
through k at m= 1 to find the smallest eigenvalue of (9.12). This occurs at ka≈ 1.25
and has the value µa= 3.11.

This essentially completes the solution of our problem. The primitive solution B=
αB00 is the correct relaxed state so long as µa < 3.11, i.e. θ 6 1.6. Otherwise, the
correct state is a mixed, helical state, B= α0B00 + αmkBmk, with m= 1, k= 1.25 and
µa= 3.11.

Recalling that in the primitive state µa=F(K/Ψ 2), this is equivalent to saying that
the primitive state is the correct lowest-energy state for K/Ψ 2 less than some critical
value, and the mixed state is the correct one for K/Ψ 2 greater than this value. This
situation is illustrated schematically in figure 23. Equally, of course, we could say
that the primitive state occurs when the volt-seconds are below a critical value and
the mixed state occurs when the volt-seconds exceed that value.

9.2. Current saturation and spontaneous symmetry breaking
The Type II helical states with µa = 3.11 (θ ∼ 1.6) have a remarkable property. In
these states, since µ is fixed, an increase in volt-seconds (at fixed Ψ ) produces no
increase in the toroidal current I! In other words, a helical relaxed state acts as a
current-limiting circuit element! When the voltage is increased, instead of producing
an increase in current, the current remains the same but flows in a tighter helix with
higher inductance. (This is reminiscent of the flexible wire with which we began the
discussion of relaxed states!)

Evidence for this second type of relaxed state, and for current saturation, is shown
in figure 24. This shows discharges in which θ is initially driven to a large value.
However, it then falls quickly to ∼1.6 and remains there for the rest of the discharge.
(Some discharges can be prevented from relaxing and held at θ > 1.6, but at the cost
of increased fluctuation levels and power losses; see figure 25.)

The transition from a primitive axisymmetric state to a helical state means that
relaxation theory predicts not one, but two critical values of the pinch parameter θ :

(i) at θ ≈ 1.2 → spontaneous field reversal occurs, but the plasma remains
axisymmetric (see § 8.1);

(ii) at θ ≈ 1.6→ current saturation occurs and a helical deformation sets in (see
§ 9.1).

Note that the second transition, from an axisymmetric state to the helical mixed
state, is a neat example of ‘spontaneous symmetry breaking’.

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


Special topics in plasma confinement 39

20 40

(a)

(b)

4

2

0

4

2

0

m = 1

m = 1

20 40

FIGURE 24. Evidence for second critical θ in HBTX1. (Reproduced with permission from
Bodin & Newton (1980).)
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FIGURE 25. Driving a toroidal pinch current above the critical value. Fluctuation level
versus θ in ZT-40. (Reproduced with permission from Watt & Nebel (1983). Copyright
1983, AIP Publishing LLC.)

9.3. Stability
Like all relaxed states, the relaxed states of the toroidal pinch are ‘minimum energy’
and therefore stable against any perturbations that do not change the helicity. This, of
course, includes all ideal MHD perturbations.

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


40 J. B. Taylor and S. L. Newton

Carbon
toroidal
limiter

Center
machine

Lower
elliptic

axis

Carbon
toroidal
limiter

Toroidal field
coil 1 of  24

Copper
shell

1 of 16
induction
coil

Upper
elliptic
axis

Separatrix
Edge of well
Edge of
plasma

Vacuum
liner

FIGURE 26. Multipinch experiment at General Atomics. (Reproduced with permission
from La Haye et al. (1986).)

The transition from Type I to Type II (helical) relaxed states at µa= 3.11 coincides
with a linear stability boundary for resistive tearing modes. However, the present
analysis is not restricted to the linear regime. The nonlinear amplitude of the helical
deformation is given precisely in terms of K/Ψ 2 as (Martin & Taylor 1974; Taylor
1986) (

α1

α0

)
= 0.47

(
2πa

l
K
Ψ 2
− 8.21

)1/2

. (9.16)

10. The multipinch
The ‘multipinch’, an experiment carried out at General Atomics (La Haye et al.

1986), is important because it shows that relaxation occurs in experiments other than
the RFP, and because its relaxed states show some striking and unexpected features.
The cross-section of the multipinch resembles a figure eight with height (50 cm) and
width (20 cm) chosen to resemble two circular toroidal pinches one above the other,
connected at the ‘waist’ of the figure eight (see figure 26). The major radius of the
torus is ∼52 cm and the start-up operation is similar to that of orthodox RFPs.

It is not difficult to calculate the axisymmetric relaxed states of the multipinch
(La Haye et al. 1986; Taylor 1986). (Note that we are now discussing a finite-aspect-
ratio torus with non-circular cross-section, not an infinite cylinder.) Using cylindrical
coordinates (R, φ, z), the magnetic field can be written as

B= êφ ×∇χ
R

+ êφ
f
R
. (10.1)
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(a) (b)

FIGURE 27. Relaxed profiles in the multipinch: (a) primitive relaxed state, with µa= 1.5
and (b) lowest eigenfunction, with µa= 2.21. (Reproduced with permission from La Haye
et al. (1986).)

Then, in the relaxed state ∇ × B= µB, we have ∇f =−µ∇χ , so that f = C − µχ ,
and

1+χ ≡ ∂
2χ

∂z2
+ R

∂

∂R

(
1
R
∂χ

∂R

)
=µf . (10.2)

The boundary condition is χ = constant, which without loss of generality can be set
to zero. The constant C is fixed by the toroidal flux Ψ ,

C=µ〈χ〉 + 〈R〉Ψ/A, (10.3)

where A is the cross-sectional area and the averages are defined as

〈 f 〉 ≡
(∫

f
R

dR dz
)(∫

1
R

dR dz
)−1

. (10.4)

Then axisymmetric relaxed states are given by

1+χ +µ2(χ − 〈χ〉)=µ〈R〉Ψ/A. (10.5)

After our experience with the RFP we can anticipate that the eigenfunctions
corresponding to (10.5),

1+χ +µ2(χ − 〈χ〉)= 0, (10.6)

will also be needed to interpret the behaviour of the multipinch.
Equations (10.5) and (10.6) are Grad–Shafranov-like equations, albeit unorthodox

in that they are non-local through 〈χ〉. A solution of (10.5) for a relaxed state is
shown in figure 27(a). In addition to being axisymmetric, it is also symmetric about
the equatorial mid-plane, with Bφ the same sign in the upper and lower lobes. The
lowest axisymmetric eigenfunction, calculated from (10.6), has eigenvalue µa= 2.21,
and is shown in figure 27(b). Note that this is antisymmetric about the equatorial
plane, with Bφ having opposite sign in the upper and lower lobes. It therefore carries
no net toroidal flux.
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FIGURE 28. (a) Idealised multipinch and (b) toroidal wavenumber corresponding to the
lowest eigenvalue as a function of ∆. (Reproduced with permission from Gimblett et al.
(1987). Copyright 1987, AIP Publishing LLC.)

The toroidal field f in the relaxed state is given by

1+f +µ2f = 0, (10.7)

with f constant on the boundary. The value of this constant is again fixed by the
toroidal flux

〈 f 〉 = 〈R〉
A
Ψ. (10.8)

The lowest axisymmetric eigenvalue can also be calculated from (10.7) by imposing
the restriction 〈 f 〉 = 0, i.e. zero toroidal flux. But do not confuse this zero-flux
eigenvalue with that defined by the boundary condition f = 0. The latter determines a
field reversal point analogous to θ = 1.2 in RFPs. In the multipinch, the zero-flux and
field reversal eigenvalues are close together, µa = 2.21 and µa = 2.18, respectively
(see discussion below).

10.1. Nature of the eigenfunctions in multipinch
In the same way that we had to determine which of many eigenfunctions in a cylinder
had the lowest energy, we still have to decide whether the lowest eigenvalue in the
multipinch is in fact associated with an axisymmetric eigenfunction. In a cylinder the
lowest eigenfunction was helical, but in a re-entrant cross-section the reverse may be
the case.

To see why, consider the extreme case of a multipinch made up of two circular tori,
one above the other, connected only by a narrow slit where they make contact. In this
case an axisymmetric eigenfunction, carrying no net flux, could be constructed from
a circular cylinder solution in each torus, one carrying positive toroidal flux and the
other carrying equal negative flux. To be continuous, the toroidal field would then have
to vanish at the slit – so the two cylinder solutions must have µa∼ 2.4, much lower
than the helical eigenvalue µa∼ 3.11. This suggests that the lowest eigenfunction in a
multipinch is axisymmetric, at least when the ‘waist’ is narrow. (It also explains why
the field reversal point is so close to the zero-flux eigenvalue.)

Numerical computations (Gimblett et al. 1987) confirm this picture. Figure 28
shows the toroidal wavenumber of the lowest eigenfunction for an idealised linear
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FIGURE 29. (a) Plasma current versus driving voltage and (b) variation of saturation
current with toroidal flux in the multipinch. The value θ = 1.56 corresponds to µa= 2.42
here. (Reproduced with permission from La Haye et al. (1986).)

multipinch, with cross-section made up of circular arcs. When the ‘waist’ ∆ is
comparable with the diameter of the lobes (∆/a ∼ 1 so there is essentially no
indentation at the waist), the helical wavelength 2π/kc is ∼10 times the lobe width.
As the waist is narrowed, the wavelength increases and becomes infinite, that is, the
eigenfunction becomes axisymmetric, when ∆= 0.66. (This is somewhat larger than
the actual experiment, but its cross-section is not made up of circular arcs.)

We can now describe the properties we would expect of relaxed states in the
multipinch.

(i) For small K/Ψ 2 (low volt-seconds), the relaxed state will be axisymmetric and
symmetric about the equator/mid-plane, as in figure 27(a). In this state, plasma
current is the same in both lobes and increases with increasing volt-seconds.

(ii) When K/Ψ 2, or the volt-seconds, reach a critical value, the relaxed state
becomes a superposition of the axisymmetric state and the eigenfunction shown
in figure 27(b). Therefore it continues to be axisymmetric but is no longer
symmetric about the mid-plane. As the volt-seconds (at fixed toroidal flux)
increase further, more current flows in one lobe and less in the other, but the
total current does not change. Also, this saturated total current is proportional to
the toroidal flux Ψ .

10.2. Experimental results
The features described above are clearly demonstrated in the experiment. Figure 29
shows the peak plasma current as a function of the driving transformer voltage VCB,
at fixed Ψ . (Plasma current is a measure of µa and VCB is a rough measure of K/Ψ 2.)
Note the following:

(i) At low VCB, the current is axisymmetric and symmetric about the equatorial mid-
plane, i.e. equal in the upper and lower lobes, and it increases with VCB.
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(ii) Above a critical VCB, the current remains axisymmetric but ceases to be
symmetric about the mid-plane and it no longer increases with VCB. The total
current saturates but more of it flows in one lobe and less in the other, and this
asymmetry increases as VCB increases.

(iii) The saturation current, Isat, is proportional to the toroidal flux – in agreement
with the relaxed-state prediction, Isat/Ψ ∝µa (see figure 29b).

(iv) The observed proportionality between Isat and Ψ corresponds to µa ∼ 2.42, in
reasonable agreement with the theoretical value µa = 2.21 for the zero-flux
eigenvalue.

10.3. Flux generation
In fact, all the features of the experiment agree well with the properties calculated for
the relaxed states – except one! According to theory, the total current should remain at
its saturated value indefinitely as VCB increases beyond the critical value corresponding
to µ= 2.21. But this is not what happens in the experiment: at some point the current
starts to increase again. The reason for this is that, as VCB increases, less and less
current flows in one lobe and more in the other. This imbalance increases until at
some point essentially all the current flows in one lobe and very little in the other.
If current saturation were to continue beyond this point, as in theory it should, the
current would have to reverse in one lobe. Instead, the discharge dies out in that lobe
and becomes confined to the other, where it acts as a simple toroidal pinch whose
current increases with VCB.

This feature of the multipinch brings out an important aspect of relaxation: it is
not a passive decay process. It involves the generation of flux and current by plasma
turbulence – as in a turbulent dynamo. When the multipinch reaches the state in which
essentially all the current is in one lobe, and any further advance would require reverse
current, the ‘dynamo’ is unable to act through the narrow gap from one lobe to the
other – so the current remains confined to one lobe.

Finally we should note that current saturation in the multipinch is another example
of spontaneous symmetry breaking, as it was in the cylinder. However, the symmetry
involved is different in the two systems. In the cylinder it is the axial symmetry that
is broken, whereas in the multipinch it is the symmetry about the equatorial plane.

11. Spherical systems I: spheromak
Relaxation also occurs in spherical systems, that is, systems that are not multiply

connected as is a torus. This topological change has a profound effect on the nature
of the relaxed states (Turner et al. 1983; Taylor 1985, 1986, 1992).

The simplest spherical system is the spheromak, shown in figure 30. This has
nested toroidal flux surfaces that may appear similar to those in a toroidal pinch. The
crucial difference is that in the spheromak there is no central aperture (no hole in
the doughnut) to permit toroidal field coils. This implies the following:

(i) Reconnection can occur across the axis so that toroidal flux need not be
conserved.

(ii) The toroidal field Bφ vanishes everywhere on the boundary. But this does not
imply q = 0, as it would in a toroidal system. In fact, in a spheromak q is
remarkably uniform in the relaxed state, with q = 0.825 on the magnetic axis
and q= 0.72 at the wall. The finite value of q at the wall arises because q(ψ) is
an average over a flux surface and near the wall this involves taking a limit in
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FIGURE 30. Schematic of a spheromak configuration (from Taylor 1986).

which both Btoroidal and Bpoloidal tend to zero at the poles, with the ratio leading
to a finite q(Ψ ).

As there can be no transformer core through a spheromak, we cannot use this to
create a plasma. Instead, there are three main techniques for creating a spheromak:

(i) coaxial gun injection,
(ii) combined θ–z discharges and

(iii) an inductive flux core.

These are illustrated in figure 31, and the details of their operation can be found in
Taylor (1986) and references therein.

11.1. Relaxed states of a spheromak

The helicity K = ∫ A ·B dτ is conserved in a spheromak during relaxation (see § 7.1),
and the relaxed state satisfies

∇× (∇×A)=µ∇×A. (11.1)

Now, we recall that in a torus there were two invariants, K and Ψ , which were just
sufficient to determine the relaxed state. However, in a spheromak, we have only one
invariant, the helicity K. The toroidal flux is no longer invariant because annihilation
of flux can occur across the axis of symmetry. How, then, can the relaxed state be
unique in a spheromak?

The key to this question is that in a torus there were two independent loop integrals
on the surface of the torus:

∮
A · dl, the flux through the ‘hole’ in the torus; and∮

A · ds = Ψ , the toroidal flux inside the torus. But in a spheromak, being simply
connected, all loop integrals on the surface are identical. In fact, since there is no flux
through the boundary, they are all zero. Apart from an irrelevant gauge transformation
this is equivalent to A ≡ 0 on the boundary of a spheromak. But this is just the
spheromak eigenvalue condition!

Hence for a spheromak, the only relaxed state is the lowest eigenfunction: the
eigenvalue determines µ and the field amplitude is determined by the sole invariant
K. This means that, apart from a scale factor, the relaxed state in a spheromak is
unique and entirely determined by the shape of the container.
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FIGURE 31. Methods to create a spheromak discharge: (a) by plasma gun (reproduced
with permission from Turner et al. 1983, copyright 1983, AIP Publishing LLC), (b) by
combined θ–z discharge (reprinted with permission from Goldenbaum et al. 1980,
copyright 1980 by the American Physical Society) and (c) by inductive flux core in S-1
(reprinted with permission from Yamada et al. 1981, copyright 1981 by the American
Physical Society).

11.2. Spheromak eigenfunctions
Axisymmetric eigenfunctions in a spheromak are easily found. The field is again
written as (10.1) and the eigenvalue problem reduces to

1+χ +µ2χ = 0, (11.2)

with χ = 0 on the boundary, as in (10.6).
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In a sphere of radius a, the eigenfunction, in spherical coordinates (ρ, θ, φ), is

Bρ = 2B0

[
j1(µρ)

µρ

]
cos θ, (11.3)

Bθ = B0[ j1(µρ)] sin θ, (11.4)

Bφ =−B0
d

dρ
(ρj1(µρ)) sin θ, (11.5)

where j1(x)≡ J3/2(x)/x1/2, and the eigenvalue is µa= 4.49.
In a cylindrical container of height h and radius a (which, of course, is topologically

spherical), the eigenfunction, in cylindrical coordinates (r, θ, z), is

Br =−B0kJ1(lr) cos kz, (11.6)
Bφ = B0µJ1(lr) sin kz, (11.7)
Bz = B0kJ0(lr) sin kz, (11.8)

where kh=π, la= 3.83 and the eigenvalue is µ2 = (3.83/a)2 + (π/h)2.

11.3. Experimental data
In figure 32 the poloidal and toroidal field profiles given by (11.8) are compared with
those measured in the BETA II experiment (Turner et al. 1983). This has a cylindrical
flux conserver with h/a∼ 1 and a plasma created by a coaxial gun (see figure 31a).
The agreement is reasonable, particularly in view of the complex way the plasma is
created, and it is particularly significant that the measured profiles remain essentially
unchanged as the magnetic energy decays to ∼1/8 of its initial value. (Recall that the
relaxed state of a spheromak is determined solely by the shape of the container.)

The near-uniformity of µ in a relaxed state is supported by the measurements shown
in figure 33, taken on the S-1 spheromak, which has an ellipsoidal flux conserver and
a plasma produced by an inductive flux core (Hart et al. 1986). Figure 33(a) shows
the ratio of poloidal current to poloidal flux across the mid-plane. The observations
lie on a straight line whose slope agrees remarkably well with the computed value of
µ∼ 5.5. Figure 33(b) shows how the ratio J/B=µ on the mid-plane changes from an
initial highly non-uniform profile (dashed line) to a much more uniform profile (solid
line) after relaxation.

Finally, figure 34 provides the most striking evidence for relaxation. This shows the
evolution of the poloidal and toroidal fluxes, and of q on the magnetic axis, during
a plasma discharge in the S-1 spheromak (Janos et al. 1985a,b). Figure 34(c) shows
that q rises rapidly from a small initial value and becomes close to that predicted for
the relaxed state. It is then essentially constant for the remainder of the experiment.
This rapid rise in q is accompanied by an increase in toroidal flux (see figure 34b)
and a decrease in poloidal flux (see figure 34a), during a period when there is strong
plasma activity. This again shows that relaxation is not simply a passive decay but
involves the creation and destruction of magnetic flux by plasma turbulence – or in
this case the conversion of poloidal flux into toroidal flux.

12. Spherical systems II: flux core spheromak
An interesting development of the spheromak is a configuration obtained from it by

introducing a central core of externally produced magnetic flux along the axis, which
enters through one polar cap and leaves through the other (see figure 35). This ‘flux
core spheromak’ again has nested toroidal magnetic surfaces that resemble those in a
toroidal pinch, but there is only plasma in the central core and reconnection can occur
across the axis. Consequently the toroidal flux is again not conserved in this system.
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FIGURE 32. Magnetic field profiles in the BETA II spheromak. (a) Poloidal field and
(b) toroidal field. Experimental measurements are shown as squares; the solid line is the
theoretical prediction. (Reproduced with permission from Turner et al. (1983). Copyright
1983, AIP Publishing LLC.)
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FIGURE 33. (a) Poloidal current versus poloidal flux and (b) measured profile of µ(r)
in S-1 spheromak. (Reproduced with permission from Hart et al. (1986). Copyright 1986,
AIP Publishing LLC.)

12.1. Relative helicity
In the flux core spheromak, the plasma boundary is not a completely closed flux
surface, and we noted earlier that in this case our definition of helicity is not gauge-
invariant. This is more of a conceptual problem than a practical one, and can be
overcome by introducing a modified definition of helicity.
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FIGURE 34. Time dependence of magnetic fields in S-1 spheromak – see text for details.
(Reproduced with permission from Janos et al. (1985a).)

The most intuitive modification is to imagine that the flux leaving or entering the
boundary is extended outside as a vacuum field, where ∇×B= 0. Then the integral∫

A · B dτ , inside plus outside the sphere, is gauge-invariant. If the boundary of the
sphere is a perfect conductor, the normal component of B is ‘frozen in’ and changes
inside the sphere do not affect the hypothetical field outside. Therefore, the difference
in
∫

A · B dτ for two configurations that differ inside the sphere but have the same
n ·B on the surface (and therefore the same hypothetical extension field) is also well-
defined and gauge-invariant. This is sometimes called the relative helicity, KR.
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FIGURE 35. Schematic of a flux core spheromak (from Taylor 1986).

Note that KR must include the integral both inside and outside the sphere in
order to be gauge-invariant, even though physically the latter does not change. This
requirement reflects the fact that helicity is not a local quantity: it can be transferred
from inside to outside by a gauge transformation!

The relative helicity satisfies

dKR

dt
=−2

∫
interior

E ·B dτ − 2
∫

exterior
E ·B dτ . (12.1)

The exterior field does not change, therefore Eexterior =−∇φ and

dKR

dt
=−2

∫
interior

E ·B dτ + 2
∮

S
φ B · dS. (12.2)

In the interior E + v × B = 0 and the first integral vanishes. If the potential φ is
constant over the surface, the last integral is also zero.

The purpose of introducing the flux core spheromak here is that it demonstrates
another method of injecting helicity, in this case by a static voltage. If, instead of a
uniform potential on the surface, one polar cap is held at a different potential from
the other, helicity will be injected at a rate

dKR

dt
= 2VpΨp, (12.3)

where Vp is the voltage between the polar caps and Ψp is the flux through them
(Taylor 1986).
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FIGURE 37. Set-up to control relaxed state of flux core spheromak externally.

12.2. Relaxed states of flux core spheromak
The relaxed state of the flux core spheromak satisfies the usual equation (11.1) and the
relative helicity KR is invariant, but the appropriate solution is selected in a different
way. In fact, a flux core spheromak can be operated in several ways. If the plasma
relaxes from an initial state with given helicity KR, and with fixed flux Ψp through
the polar caps, then µ is specified by KR/Ψ

2
p somewhat in the same way as in a

toroidal pinch (see figure 36 and § 9). However, this is only correct if the polar caps
can provide whatever current is required by the resulting relaxed state. If this is not
so, a voltage sheath would appear at the polar caps and the resulting voltage drop
would reduce the helicity according to (12.3). This leads to another way of operating
a flux core spheromak. If one polar cap is insulated from the other and connected to
an external circuit that maintains a fixed current Ip, then in the relaxed state µ= Ip/Ψp.
This provides a method for external control of a flux core spheromak (see figure 37).

The relaxed states of a flux core spheromak are calculated in a similar way to
those in a simple spheromak. Only the boundary conditions are different. Instead of
B · n = 0 on the boundary, it now has a fixed value on the polar caps and is zero
elsewhere. A typical computed field profile is shown in figure 38. Analytic solutions
for an idealised flux core system in which the polar caps are shrunk to a point while
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FIGURE 38. Calculated field in a flux core spheromak, µa= 4.09 (from Taylor 1986).

retaining finite flux through them are shown in figure 39. These show the changes
that occur as the current through the polar caps, and therefore µ, is increased. When
µ is much less than the lowest spheromak eigenvalue (µa = 4.49), the externally
linked flux and current form a large part of the total flux and current. But as µ
approaches the eigenvalue, the ratio of self-generated flux to externally linked flux
increases indefinitely, and the externally linked flux becomes confined to a slim pencil
along the axis of symmetry. This situation would constitute an extreme example of the
generation of fields by the relaxation process. At the critical point all the fields would,
in theory, be generated by the plasma itself.

12.3. Experimental control of relaxed states
In a simple spheromak the field in the relaxed state will normally decay at the resistive
diffusion rate (while retaining its profile). However, as we noted above, if the polar
flux Ψp and the polar current Ip in a flux core spheromak are maintained, it should
be possible to maintain its relaxed state at any amplitude and any µ=KR/Ψ

2
p below

the lowest eigenvalue. This idea is the basis for the experiments described below.
A somewhat distorted form of flux core spheromak, as shown in figure 40, has been

extensively investigated at Los Alamos (CTX) (Jarboe et al. 1985; Barnes et al. 1986)
and at UMIST (SPHEX) (Kitson & Browning 1990). The plasma in CTX is created
by a plasma gun (on the left of the diagram). This injects plasma into a container,
or ‘flux conserver’, at the right of the figure. If we concentrate attention on the flux
conserver, we can see that there is a core of flux (shaded), which passes from the
inner electrode of the gun, along the axis of the plasma in the flux conserver and
then round the outside of the plasma back to the outer electrode of the gun. From
the plasma viewpoint, the gun voltage appears across the flux core and acts as if it
were between polar caps. This voltage can sustain the configuration against resistive
decay for many times the usual resistive diffusion time.
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FIGURE 39. Evolution of analytic field profiles in an idealised flux core spheromak at
various values of µa: (a) µa=0.001, (b) µa=2.25, (c) µa=2.70, (d) µa=3.00, (e) µa=
4.00, ( f ) µa= 4.14 and (g) µa= 5.00. (Reproduced with permission from Turner (1984).
Copyright 1984, AIP Publishing LLC.)
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FIGURE 40. Sustained configuration in CTX experiment (from Jarboe et al. 1985).

At this point we should note the time scales involved in this discussion:

(i) Relaxation time. This is much faster than the resistive diffusion time a2/η, and
often close to the Alfvén time. This leads to the relaxed state. The helicity KR

is invariant on this time scale.
(ii) The resistive diffusion time ∼a2/η. This is the time scale on which KR and the

relaxed state itself decays, if it is not maintained by some external means.
(iii) The sustainment time. This is the time, longer than a2/η, on which the discharge

can be maintained in its relaxed state by an external voltage.

12.4. The kinked Z-pinch
Once it was realised that a flux core spheromak could be maintained in the ways
described above, it was found that they could also be created and maintained in more
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FIGURE 41. Illustration of kinked Z-pinch source.

exotic configurations. One of these was the ‘kinked Z-pinch’ helicity source (Jarboe
et al. 1985; Fernández et al. 1989), shown in figure 41. In a highly idealised way, we
can regard this device as creating a sequence of relaxed states in each of the three
regions marked 1, 2 and 3. In region 1, we have a simple linear pinch maintained
by the electrodes. Insofar as it is relaxed, µ would be set by the ratio of the current
Is and flux Ψs at the electrodes, µ1 = Is/Ψs. In region 2, we have a helical relaxed
state of a circular cylinder, with no net current or flux. If the cylinder were long, this
would be the m= 1, ka= 1.23 eigenfunction, which we discussed in connection with
the cylindrical pinch. This would have µ2a2 ∼ 3.11 as calculated in § 9.1. Finally, in
region 3, we would have a spheromak with µ3a3, defined solely by the size and shape
of the flux conserver (see § 11.2).

Now, recall from § 9.1 that the energy for a given helicity in a relaxed state
increases with µ. Consequently, it will be energetically favourable for the discharge
to pass from region 1 to 2 and then into 3 if, and only if,

µ1 >µ2 >µ3. (12.4)

In fact, µ2 >µ3 is set by the dimensions of the apparatus, but µ1 can be controlled
externally and we can expect there to be a threshold for the successful injection of
the spheromak into the flux conserver, set by

Is

Ψs
=µ1 >µ2. (12.5)

Such a threshold does seem to occur, as can be seen in figure 42, which shows
a ‘figure of merit’ for the spheromak created in the flux conserver. This is roughly
proportional to its total helicity. Figure 42(a) is for a 20 cm radius entrance cylinder,
whilst figure 42(b) is for a 17 cm radius entrance cylinder. It is clear from these
figures that there is no significant helicity input into the flux conserver unless µ1 >
13 m−1 in (a), and µ1 > 14 m−1 in (b). The theoretical threshold for a long cylinder
would be ∼15.6 m−1 for a 20 cm entrance radius.

13. Helicity injection
As we have seen in several situations, because a relaxed state is completely

determined by the helicity K and flux Ψ , it can be maintained for longer than the
resistive decay time if K and Ψ can be controlled externally.

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


Special topics in plasma confinement 55

(a) (b)
(+ orientation) (+ orientation)

(– orientation)(– orientation)
10

5

0
0 10 20 30 40 50 0 10 20 30 40 50

1.0

0.5

0

FIGURE 42. Spheromak figure of merit κ versus λe ≡ µ. (Reproduced with permission
from Fernández et al. (1989). Copyright 1989, AIP Publishing LLC.)

In a toroidal system there is no difficulty in principle maintaining Ψtor by the usual
toroidal field coils, and in (7.25) we observed that

dK
dt
= 2VloopΨtor, (13.1)

apparently giving control over K. But unfortunately Vloop itself can be maintained only
for a short time – limited by the volt-seconds available from the driving transformer.
However, an oscillating Vloop could be maintained, and if Ψtor is simultaneously
modulated in the appropriate phase, there is an average input of helicity〈

dK
dt

〉
∼ V̂loopΨ̂tor cos θ, (13.2)

where V̂loop and Ψ̂tor are the oscillation and modulation amplitudes, and θ is the phase
difference between them.

If this method is to have any chance of success, the plasma relaxation time must be
less than the period of oscillation (so that the plasma stays close to its relaxed state)
and the period of oscillation must be much less than the resistive decay time, so that
there is negligible decay between each cycle.

This method of helicity injection, which is also known as ‘oscillating field current
drive’ (OFCD), was attempted on the ZT-40M experiment (Schoenberg et al. 1988)
with limited success. In part this was due to the small amplitudes of Vloop and Ψtor
that were available, but a more fundamental obstacle is that the process disturbs the
plasma equilibrium and creates serious losses by ‘modulation-enhanced plasma–wall
interaction’.

In a flux core spheromak we saw that a voltage Vp applied to the polar caps injects
helicity at a rate

dK
dt
= 2VpΨp, (13.3)

where Ψp is the flux linking the polar caps. This method of injection was successfully
used in the CTX and other experiments, described in § 12.3.

13.1. Spheromak injection into tokamak
A remarkable application of helicity injection is the attempt (Brown & Bellan 1990)
to influence the current in a tokamak byinjecting helicity in the form of small
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FIGURE 43. Schematic of spheromak injection into ENCORE tokamak at Caltech.
(Reproduced with permission from Brown & Bellan (1990). Copyright 1990, AIP
Publishing LLC.)

spheromaks from a coaxial gun in a side arm into the main torus! This is illustrated
in figure 43. As in the previous discussions, a small spheromak is created in the
mouth of the gun and moves into the main tokamak chamber. To understand the
observations, one must recall that helicity is a pseudo-scalar and therefore can be
right-handed or left-handed. The handedness is related to the sign of µ, that is, to
the relative directions of J and B.

One can set up the main tokamak discharge with either right- or left-handed
helicity by reversing the direction of the toroidal magnetic field, and one can create
spheromaks with either right- or left-handed helicity by reversing the polarity of the
gun voltage. Therefore, there are four permutations of the experiment:

(a) L-hand spheromak injected into L-hand tokamak,
(b) L-hand spheromak injected into R-hand tokamak,
(c) R-hand spheromak injected into R-hand tokamak,
(d) R-hand spheromak injected into L-hand tokamak.

The effect on the tokamak current of injecting the spheromak for the four cases
is shown in figure 44. The dotted line in (a) shows the behaviour when there is no
spheromak injection. It can be seen that when the injected spheromak and the tokamak
have the same chirality (cases (a) and (c)), there is a small spike in the tokamak
current. Conversely, when the spheromak and tokamak have opposite helicity (cases
(b) and (d)), there is a small drop in the tokamak current. In all four cases the initial
rise or drop in current is followed by a rapid decay. This is thought to be due to the
cooling of the main plasma by the large amount of cold gas that accompanies the
spheromak from the coaxial gun.

13.2. Wave injection
Another, untried, method of helicity injection is by plasma waves (Mett & Tataronis
1989; Taylor 1989; Mett & Taylor 1992). One might envisage doing this by means of
an antenna similar to those used for plasma heating.

Helicity injection by waves is hard to visualise (but see Chan et al. 1990). We have
previously emphasised that helicity is a non-local quantity – the linking of lines of
force – and it is difficult to relate this to wave motion. In fact, this process is more
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FIGURE 44. Effect on tokamak current of spheromak injection – see text for details.
(Reproduced with permission from Brown & Bellan (1990). Copyright 1990, AIP
Publishing LLC.)

usually described as ‘current drive’, but it is interesting to see the connection with
helicity. There are, of course, many types of plasma wave, but we will consider only
the simplest – waves in a uniform plasma immersed in a uniform magnetic field B=
(0, 0,B0). However, this already illustrates some of the conceptual problems.

We start from what looks like a continuity equation for A ·B,

∂

∂t
(A ·B)+∇ ·Q+ 2(E ·B)= 0, (13.4)

where Q= φB+E×A. For a plasma with an Ohm’s law E+ v×B= η j,

∂

∂t
(A ·B)+∇ ·Q+ 2η( j ·B)= 0. (13.5)

Neither A ·B nor Q is gauge-invariant, but it is clear that Q must represent a flux of
helicity. If we consider a small-amplitude wave so that B=B0 + beiωt, Q becomes

q= 1
2 [φb∗ + (e× a∗)+ c.c.], (13.6)

and we can therefore introduce a flux

q′ = i
ω
(e× e∗), (13.7)

which has the same divergence as q but is manifestly gauge-invariant. This form also
brings out the connection between helicity and polarisation: a plane-polarised wave
carries no helicity. (Actually this is obvious, as a plane-polarised wave has complete
mirror symmetry whereas helicity is antisymmetric under reflection.)

However, a circularly polarised wave, propagating parallel to B0, with a vector
potential given by the real part of

A= (A, iA, 0) exp[i(kz−ωt)], (13.8)
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does carry helicity in the form (13.7). (Here ω is real and k complex, k = k0(ω) +
ik1(ω), as for waves generated by an antenna at z= 0.)

From (13.8)
e= (iωA,−ωA, 0) exp[i(kz−ωt)], (13.9)

therefore
q′ = qz =ω|A|2e−2k1z. (13.10)

Define |A|2e−2k1z = A2(z), the square of the local wave amplitude, then

qz =ωA2(z)= v(k0A2), (13.11)

where v = ω/k0 is the wave velocity. This can be interpreted as the wave carrying
helicity density k0A2. Finally, then,

∇ · q=−2ωk1A2(z). (13.12)

Now consider a specific plasma wave, an Alfvén wave in a resistive plasma, with
viscosity ν. The linearised wave equations are

−ωb= (k ·B)v + i
η

µ0
k2b, (13.13)

−ωρv = 1
µ0
(k ·B)b+ iρνk2v. (13.14)

This has the dispersion relation(
ω+ i

η

µ0
k2

)
(ω+ iνk2)= k2v2

A, (13.15)

where vA is the Alfvén speed (see (4.5)). When η and ν are small, k0≈ω/vA and the
wave damping is k1 ≈ (ηµ−1

0 + ν)k2
0/2vA. Therefore

∇ · q=−
(
η

µ0
+ ν
)

k3
0A2(z). (13.16)

Thus it appears that we can indeed inject helicity from polarised waves, and that the
input is proportional to the total wave damping, (ηµ−1

0 + ν).
As mentioned above, this form of helicity injection is conventionally interpreted as

current drive. The mean current induced by the wave fluctuations can be calculated
directly from Ohm’s law η〈 jz〉 = 〈v × b〉. If the wave equation (13.14) is used to
express v in terms of b, then

η〈 jz〉 = A2(z)
B0

(
ωk1 − η

µ0
k2k0

)
(13.17)

and using k1 as given above, the wave-driven current is

η〈 jz〉 = k3
0A2(z)
2B0

(
ν − η

µ0

)
. (13.18)

This is in agreement with the net helicity injection given by (13.4) in steady state,

−∇ · q− 2η〈 jω · bω〉 = [(ηµ−1
0 + ν)− 2ηµ−1

0 ]k3
0A2(z)= (ν − ηµ−1

0 )k
3
0A2(z), (13.19)

where 2η〈 jω · bω〉 is the decay of helicity associated with the wave fluctuations (13.8)
themselves. Note the remarkable fact that, if resistivity were the only damping, the
loss of helicity through the wave fluctuations would be exactly twice the input from
the wave.
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14. General theory of relaxed toroidal states
It is interesting to cast the theory of relaxed states in a general form that illustrates

the connection between different types of relaxed state (Jensen & Chu 1984; Taylor
1986). (Even though it is not a convenient way to study specific examples.)

In a general toroidal system, the relaxed state is the lowest-energy, that is, smallest-
µ, solution of

∇× (∇×A)=µ∇×A, (14.1)

with n · ∇ × A = 0 on the boundary and
∮

A · dl,
∮

A · ds ≡ Ψ and
∫

A · B dτ ≡ K
specified. (The use of A instead of B allows all constraints to be set as boundary
conditions.)

To describe the possible relaxed states, we must also introduce the eigenfunctions
defined by

∇× (∇× ai)= λi∇× ai, (14.2)

with boundary condition ai = 0. Note that the eigenfunctions carry no toroidal flux.
As we found explicitly in the case of the circular cylinder, the relaxed state is one

of two possibilities:

(i) a primitive solution of (14.1) in which µ is determined by K/Ψ 2;
(ii) a mixed solution, that is, a superposition of a primitive solution and an

eigenfunction, in which case µ is determined as the smallest eigenvalue and
K/Ψ 2 determines the relative amplitudes of the eigenfunction and primitive
components.

To see what differences, if any, might arise in a general toroidal system, we assume
that the ai are a sufficiently complete set and write the solution as

A=A0 +
∑

αi ai, (14.3)

where A0 is the vector potential for a vacuum field that satisfies the same boundary
conditions as the actual problem. The eigenfunctions are orthogonal, where the
following integrals are taken over the system volume:

(λi − λj)

∫
ai · ∇× aj dτ = 0 (14.4)

and
λi

∫
ai · ∇× ai dτ =

∫
(∇× ai)

2 dτ > 0, (14.5)

so they can be normalised such that∫
ai · ∇× aj dτ =

∫
aj · ∇× ai dτ = λi

|λi|δij. (14.6)

Substituting (14.3) into the relaxed-state equation (14.1), and using the orthogonality
of the eigenfunctions, we can find the αi – provided µ is not an eigenvalue. Then

A=A0 +
∑

i

µ

(λi −µ)Ti ai, (14.7)

Ti ≡
∫

ai · ∇×A0 dτ (14.8)
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FIGURE 45. Current saturation in general relaxed states: soft (dashed) and hard (solid).
Lowest eigenvalue is µ0.

and

K
Ψ 2
= 1
Ψ 2

{∫
(A0 · ∇×A0) dτ +

∑
i

T2
i
λi

|λi|
(

λ2
i

(λi −µ)2 − 1
)}

. (14.9)

This defines µ as µ= f (K/Ψ 2). We are interested only in the smallest µ, which must
lie below λ0 because K/Ψ 2→∞ as µ→ λ0.

However, many eigenfunctions may be decoupled from the vacuum field, that is

Ti =
∫

ai · ∇×A0 dτ = 0. (14.10)

For example, in an axisymmetric (but not necessarily circular cross-section) system, all
the non-axisymmetric eigenfunctions ∼exp(inφ) are decoupled from the axisymmetric
vacuum field. Some axisymmetric eigenfunctions may also be decoupled, e.g. by the
(anti)symmetry about the equatorial plane, as in the multipinch. To remind us of this
we write

A=A0 +
′∑
i

µ

(λi −µ)
λi

|λi|Ti ai, (14.11)

where
∑′

i denotes the sum only over coupled eigenfunctions.
If the lowest eigenfunction (that with the smallest λ0) is not decoupled (T0 6= 0), the

relaxed state (14.7) exhibits a ‘soft’ form of current saturation in which the toroidal
current I→ Isat as K/Ψ 2→∞ (see (14.9) and the dashed line in figure 45).

If the lowest eigenfunction a0 is decoupled, then when µ= λ0 we can add a term
βa0 to the sum (14.11) (which otherwise does not contain a0) to create a state in
which β is determined by K/Ψ 2. This state exhibits a ‘hard’ saturation in which the
toroidal current abruptly stops increasing when K/Ψ 2 reaches a finite critical value
(solid line in figure 45).

At this point one should ask the following questions. What if, as is always the case
in the real world, there are small field errors in a supposedly axisymmetric system,
which couple the supposedly decoupled a0 to the vacuum field? Does one then get a
primitive state with soft saturation or a mixed state with hard saturation?
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In fact, there is no anomaly. If small field errors are incorporated, we have

A=A0 +
′∑
i

µ

(λi −µ)
λi

|λi|Ti ai + µ

(λ0 −µ)
λ0

|λ0| T̃0 a0, (14.12)

where T̃0 is the coupling to the error field, and if the error field is ignored we have

A=A0 +
′∑
i

µ

(λi −µ)
λi

|λi|Ti ai + βa0. (14.13)

Taking the view that we should include error fields, if we let these decrease so that
T̃0→ 0, then we find that (for fixed K/Ψ 2) µ→ λ0 and the limit T̃0λ0µ/|λ0|(µ0−µ)
→ β, so we have the same result as when field errors are ignored. Consequently, the
soft saturation with field errors simply goes over to the hard saturation as field errors
diminish (see figure 45).

15. Conclusion
The theory of relaxation has been remarkably successful in accounting for, and

predicting, the behaviour of turbulent plasmas in many different circumstances. Even
more remarkable is that it does this from ‘first principles’ – there are no fitted or
arbitrary parameters in the calculation of relaxed states.

It is therefore important to be clear about the scope and limits of the theory. Some
significant points are:

(i) Relaxation is a theory of turbulent plasma. It is turbulence, allied to a small
resistivity, that enables the plasma to reach the relaxed state. A plasma, or a
simulation, that is at all times stable or quiescent will not relax.

(ii) Because relaxation depends on turbulence, there is always some uncertainty
whether relaxation will be complete. This is particularly relevant in tokamak
experiments where there is a strong stabilising vacuum magnetic field, unlike the
experiments we have discussed in which the magnetic field is largely generated
by currents in the plasma. (Currents in the plasma are free to move; those in
massive external metal coils are not supposed to!) Also, tokamaks are carefully
designed and operated to maintain stability as far as possible. Consequently it
appears that relaxation in tokamaks is only partial and limited, as in sawteeth
and disruptions – and even these are avoided as much as possible.

(iii) Relaxation theory is concerned with actual plasma motions. Despite its
mathematical similarity, it should not be confused with purely mathematical
minimisation principles involving virtual displacements, such as Hamilton’s
principle. Nor should one arbitrarily add extra conserved mathematical quantities
unless there is a physical reason to do so. The cornerstone of the theory is that
turbulence plus resistivity introduces localised reconnection that scarcely changes
total helicity, but has a global effect on plasma behaviour.

(iv) Relaxation theory says nothing about exactly how the plasma gets to the
relaxed state. (This is both its great strength and its weakness.) It describes
only the state the plasma eventually (though very rapidly compared to resistive
processes) reaches. In this regard it is similar to a statistical derivation of
thermal distributions, which also does not describe in detail how this distribution
is reached.
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(v) You will have noticed that we have said nothing about plasma pressure and that
all relaxed states are force-free, stable, equilibria. This is because, if lines of force
are free to break and reconnect, we must expect that pressure will be equalised
by flow along the field during this reconnection. One might suggest that this
equalisation would be slower than reconnection, but to describe it would need
a full theory of plasma turbulence capable of calculating the development from
initial to final state. Not only do we lack such a theory, but it would not be in
any way universal – which was the original requirement of a theory to explain
the quiescent states.

(vi) In the historical development of confinement systems a distinction was initially
drawn between (1) those like mirrors and stellarators, in which one could
envisage setting up an unquestionably stable vacuum field and adding plasma as
a perturbation, and (2) those like toroidal pinches, in which the plasma itself
produced much of the confining field and which therefore lacked the obvious
stability of a vacuum field. One might claim that the discovery of relaxed states
somewhat reduced this distinction, with the relaxed state playing the role of the
vacuum field.

Part III
16. Adiabatic traps and mirror machines

So far, we have concentrated on toroidal confinement systems and the fluid model.
Now we turn to a different confinement system – the adiabatic trap – and the guiding
centre model.

In an adiabatic trap, the magnetic field lines are not confined to the system.
(Recall that this is only possible in a torus.) Instead, plasma loss along the field lines
is inhibited by the ‘magnetic mirror’ effect. This depends on the existence of an
‘adiabatic invariant’ for each particle – its magnetic moment µ=mv2

⊥/2B.
The invariance of µ, together with the fact that the total energy, E, of a particle is

constant in a static field, means that

1
2 mv2

‖ = E−µB, (16.1)

so that µB acts as a potential for the parallel motion. Particles in a field B0 are
therefore ‘reflected’ by a stronger field Bm if their velocity lies outside the ‘loss cone’(v⊥

v

)
<

(
B0

Bm

)1/2

. (16.2)

A typical mirror machine based on this effect is shown in figure 46.
Note that the existence of a loss cone in velocity space means that the plasma

pressure in an adiabatic trap is always anisotropic. This is an important distinction
between adiabatic traps and toroidal systems – which usually have near-isotropic
pressure. It also means that scattering into the loss cone inevitably leads to loss of
plasma in mirror machines.

16.1. Digression on adiabatic invariants
Adiabatic invariants are an interesting feature of classical mechanics and were
important in the ‘old’ quantum theory – where they were the classical variables
that became ‘quantised’, i.e. restricted to discrete values.
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FIGURE 46. Mirror machine (from Taylor 1968).

An adiabatic invariant arises when the motion of a classical particle, with
Hamiltonian H(p, q, ai), is periodic – as it must be in one dimension if it is bounded
(Goldstein 1957). Then if the parameters ai are changed slowly compared to the
period of oscillation, the resulting quasi-periodic motion possesses an invariant

I =
∮

p dq, (16.3)

which acts as a ‘constant of motion’ in a sense that will be explained shortly.
The classic example of such an invariant is associated with the motion of a

pendulum whose length is changed slowly. In this case the invariant is the energy
E(t) divided by the frequency ω(t) of the pendulum,

I ≡ E
ω
, (16.4)

i.e. as the length of the pendulum is altered, the change in its energy is proportional
to the change in its frequency. (This is a hint that there might be a connection with
quantum states, {E= Iω}classical→{E= (n+ 1/2)h̄ω}quantum.)

It is important to note that the distinguishing feature of an invariant is not, as is
sometimes stated, that it varies slowly – it is that changes in the invariant remain
small for an indefinite time.

Now let us look at what we mean when we say that the invariant acts as a constant
of motion.

The Hamiltonian for a harmonic oscillator with unit mass is

H = p2

2
+ω2(t)

q2

2
≡ E (16.5)

and, when ω is constant,

p= a cos(ωt+ λ), q= aω sin(ωt+ λ). (16.6a,b)

To find the invariant when ω(t) varies slowly, we first transform to new variables P
and Q, such that

p→ (2ωP)1/2 cos Q, (16.7)

q→
(

2P
ω

)1/2

sin Q. (16.8)

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


64 J. B. Taylor and S. L. Newton

(The generating function for this transformation is F(q, Q) = (ω/2)q2 cot Q; see
Goldstein (1957).) Then the new Hamiltonian is

H =ω(t)P+ ω̇

2ω
P sin 2Q, (16.9)

and the equations of motion become

Ṗ=− ω̇
ω

P cos 2Q, (16.10)

Q̇=ω+ ω̇

2ω
sin 2Q. (16.11)

We now introduce a slow time dependence of the oscillation frequency, via the
small parameter ε, by writing ω=ω(εt), and look for an invariant as a power series
in ε:

constant= J(P,Q, εt)= J0(P,Q)+ εJ1(P,Q, εt)+ ε2J2(P,Q, εt)+ · · · . (16.12)

Then requiring
dJ
dt
= ε ∂J

∂t
+ ∂J
∂P

Ṗ+ ∂J
∂Q

Q̇= 0, (16.13)

and using (16.11), we obtain, order by order, the recurrence relation

ω
∂Jn

∂Q
=−∂Jn−1

∂t
− ω̇
ω

[
1
2

sin 2Q
∂Jn−1

∂Q
− P cos 2Q

∂Jn−1

∂P

]
. (16.14)

This allows us to generate the invariant term by term. The first term J0 must be a
function of P only, and if we choose J0 ≡ P then, using (16.8), we can confirm that
this is indeed the integral I introduced earlier (equation (16.3)),

I =
∮

p dq=
∮ √

2ωP cos Q

√
2P
ω

cos Q dQ≡ P. (16.15)

The next few terms in the series are

J1 = 1
2

(
ω̇

ω2

)
P sin 2Q, (16.16)

J2 = 1
8

(
ω̇

ω2

)2

P+ 1
4ω

∂

∂t

(
ω̇

ω2

)
P cos 2Q, (16.17)

J3 =
[

1
16

(
ω̇

ω2

)3

− 1
8

(
1
ω

∂

∂t

)2 (
ω̇

ω2

)]
P sin 2Q, (16.18)

and this pattern is followed by subsequent terms: odd-numbered terms ∼ sin 2Q and
even-numbered terms ∼ cos 2Q plus a quantity independent of Q.

So, now we see that I=P= ∮ p dq is actually only the first term of an expansion of
the invariant J in powers of ε. However, the important point is that all the higher-order
terms in this series are small and vanish when ω(t) is constant. So if ω(t) starts from
a steady value at t→−∞, then changes slowly before eventually returning to a steady
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value at t→+∞, the initial and final values of I= ∮ p dq should be the same. Hence,
in this sense the series (16.12) is an exact constant of motion.

Perhaps surprisingly, this is not what actually happens. In fact, the initial and final
values of I differ by a small quantity that does not appear in the power series –
because it cannot be expanded in ε. This difference, often called the ‘non-adiabatic
change’, is of the form (Hastie et al. 1969)

1Ina

I
∼ A e−α/ε cos φ, (16.19)

where A and α are constants as ε→ 0 and φ is the phase of the oscillation at some
reference point (usually the point at which the phase is changing most slowly). This
situation leads to the statement that an adiabatic invariant is ‘constant to all orders –
but not a constant’.

(A hint that there must be a non-adiabatic contribution comes from the correspon-
dence between a classical invariant and quantum states mentioned earlier. If the
frequency of a quantum oscillator is altered slowly and then returned to its original
value, the oscillator would not return to its original state. Instead, it would have an
exponentially small probability of being in ‘excited’ states. The classical limit of this
is the non-adiabatic change.)

A rigorous calculation of the non-adiabatic change (which, of course, cannot be
obtained from an expansion or iteration in ε) is very lengthy, but a strong indication
of its exponential form can be given rather easily. If we return to (16.11),

Ṗ=− ω̇
ω

P cos 2Q, (16.20)

Q̇=ω+ ω̇

2ω
sin 2Q, (16.21)

and in the equation for Ṗ simply replace Q by its first approximation,

Q∼
∫ t

ω(εt′) dt′, (16.22)

we have
1P
P
∼
∫ ∞
−∞

ω̇(τ )

ω(τ)
exp

[
− i
ε

∫ τ

ω(τ ′) dτ ′
]

dτ . (16.23)

If ω(τ) is analytic, this can be evaluated by contour integration, with the result

|1P|
P
= A exp

(
−α
ε

)
, (16.24)

where A and α are related to the order and position of the (complex) zero of ω(τ)
closest to the real axis.

16.2. Invariants and particle orbits
The motion of a charged particle in a time-dependent uniform field B(t) is exactly
equivalent to a harmonic oscillator. To see this, it is convenient to take the vector
potential

A(t)= (−yB(t), xB(t), 0). (16.25)
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Then the Hamiltonian is

H = 1
2(px + yB(t))2 + 1

2(py − xB(t))2, (16.26)

from which we get the equations of motion in the form

z̈+ iBż+ i
Ḃ
2

z= 0, (16.27)

where z= x+ iy. (The term in ż is the Lorentz, v × B, term and that in Ḃ is due to
the induced electric field.) Writing

z= q exp
(
−i
∫ t B(τ )

2
dτ
)

(16.28)

reduces (16.27) to the oscillator equation

q̈+ 1
4 B2(t)q= 0. (16.29)

So we can carry over the results we obtained for the oscillator to the charged particle
in a uniform field: then the lowest-order invariant is the magnetic moment mv2

⊥/B as
we anticipated.

Unfortunately, we are interested in the motion of a particle in a static, non-uniform
field, rather than in a time-dependent, uniform one. This is a far more complex
problem that cannot be reduced to harmonic motion. Nevertheless, the qualitative
features of the adiabatic invariant are similar to those for the harmonic oscillator.
Thus there is a power-series expansion for the invariant, now in powers of the
ratio of Larmor radius to the scale of the variation in magnetic field. Since this
is proportional to m/e, we can formally use λ ≡ m/e as an expansion parameter;
then the first term is mv2

⊥/2B and there is a non-adiabatic contribution of the form
A exp(−α/ε) cos φ.

A convenient starting point for calculating the power series is the Vlasov equation
for a distribution of particles (see § 1.3). (Its connection with the invariants is, of
course, that if Ij are invariants, then f (Ij) is a stationary distribution.)

Introducing the gyro-phase angle φ about the magnetic field, the energy ε and the
magnetic moment µ as velocity coordinates, and (α,β, s) as spatial coordinates (α and
β label a field line as in § 2.1 and s is the distance along it), the Vlasov equation

∂f
∂t
+ v · ∇f + es

ms
(v×B) ·

∂f
∂v
= 0 (16.30)

can be written as
∂f
∂φ
= λ

(
Df + 1

B
∂f
∂t

)
. (16.31)

Here D is a partial differential operator in (φ, µ, α, β, s), with coefficients depending
on the gradients, curvature and torsion of the field lines.

We now seek a solution of (16.31),

f = f0 + λ f1 + λ2f2 + · · · , (16.32)

that is stationary on ever increasing time scales, t, t/λ, t/λ2, . . . . It turns out (as
detailed in Hastie et al. 1967) that a distribution is stationary on all scales if it
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depends only on three variables – the energy ε, the magnetic moment µ0 =mv2
⊥/2B,

and a longitudinal invariant

J0 =
∮
v‖ ds=

∮
(ε −µ0B)1/2 ds. (16.33)

The latter is associated with periodic motion along the field (between magnetic mirrors
for trapped particles or around closed field lines for passing particles in a torus).

If we now write the true invariants µ̂ and Ĵ as

µ̂=µ0 + λµ1 + λ2µ2 + · · · , (16.34)
Ĵ = J0 + λJ1 + λ2J2 + · · · , (16.35)

and identify the terms in the series calculated for a stationary distribution with the
corresponding terms of the expansion

f (µ0, J0, ε)+ λ
(
µ1

∂f
∂µ0
+ J1

∂f
∂J0

)
+ λ2 + · · · , (16.36)

we obtain a recursion equation for the higher-order terms in the invariants µ̂ and Ĵ:{
Jn+1
µn+1

}
=
∫

D
{

Jn
µn

}
− σ

∫ s

s0

B ds
q

L
{

Jn
µn

}
+
∫

dα
∂J/∂α

H
{

Jn
µn

}
. (16.37)

Here D is the Vlasov operator (16.31), L and H are iterates of it, and σ = ±1
distinguishes the two possible directions of v‖. The first few terms, µ1, µ2 and J1,
of the invariants are given in Hastie et al. (1967). An unexpected feature is that they
depend on the direction σ of the particle motion along the magnetic field.

It is not clear that a rigorous calculation of the non-adiabatic contribution to µ exists
for particles in a spatially varying field. Some calculations of it essentially replace the
motion in a spatially varying field B(r) by motion in a fictitious time-dependent field
B∗(t) – taken to be the field at the guiding centre of the particle, i.e. dB∗/dt=v‖ ∂B/∂s.
This, of course, leads to the exponential form (16.24) dependent on a complex zero
of B∗(t). (The uncertainty about such a calculation lies in the fact that we are trying
to calculate an exponentially small quantity when the guiding centre orbit is only
accurate to order ε, a larger quantity. Moreover, whereas a particle in a slowly time-
varying field experiences only the slow variation in B(t), a particle in a spatially
varying field also experiences a ‘fast’ variation around the Larmor orbit.)

16.3. Orbit calculations
The magnetic moment is clearly the most important invariant for plasma confinement
in mirrors, and it is interesting therefore to see its behaviour in particle orbits
computed in a non-uniform field. This is illustrated in figure 48(a–c), reproduced
from Hastie et al. (1969). (Actually, these are for orbits in a quadrupole field, as
shown in figure 47, whose strength is given by

B= 2I
aq
(1+ 2q cosΦ + q2)1/4, (16.38)

so that Φ =π is the weak-field plane of symmetry, 2a is the separation between the
current filaments and q labels field lines. In such a field there are both trapped orbits,
near the weak-field plane, and untrapped circulating orbits.)
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FIGURE 47. Quadrupole field configuration (from Hastie 1993).

Figure 48(a) shows the change in the magnetic moment invariant, calculated from
the approximations µ0, (µ0 + λµ1) and (µ0 + λµ1 + λ2µ2) to the infinite power
series (16.34). This orbit starts at the weak-field plane and makes two reflections and
two transits of the weak-field plane. The lowest approximation µ0 = mv2

⊥/2B shows
significant oscillations between transits and larger ‘jumps’ as it crosses the weak-field
plane. As higher-order terms are added to the power series, the oscillations disappear,
but the ‘jumps’ remain.

The exponential form of these non-adiabatic jumps is confirmed by figure 48(b).
(More extensive calculations of these jumps can be found in Howard (1971).)

Figure 48(c) shows the non-adiabatic changes over many transits of the weak-field
plane. Owing to the large number of Larmor cycles that occur between successive
transits, the phase at each transit is effectively random. After several transits, the
particle is scattered from a trapped orbit to a passing one and back again (the
boundary between trapped and passing orbits is shown by the dashed line).

It should be clearly understood that the parameters for these calculations were
chosen to illustrate the points of interest and are not representative of typical mirror
machines.

Finally, we should note that there is actually another invariant, in addition to µ̂

and Ĵ, for a particle in a mirror machine, associated with the periodic orbit of the
guiding centre as it drifts around the axis of symmetry. The invariant in this case is
the magnetic flux enclosed by the drift orbit. However, it is seldom invoked, as the
drift motion can be studied directly (see § 20).

16.4. Summary
Adiabatic invariants are subtle quantities, and in the case of charged particles in a non-
uniform magnetic field they are complicated functions of the field gradient, curvature
and torsion. However, in practice, provided the Larmor radius is everywhere much
smaller than the local field gradient R= (∇B/B)−1, the magnetic moment is effectively
constant – apart from the effect of collisions.

17. Simple mirror machines
On the basis of the guiding centre drifts (see § 1.3) and the invariance of the

magnetic moment, an axisymmetric mirror machine, such as that shown in figure 46,
should confine a low-β plasma (β = plasma pressure/magnetic pressure). The drifts
are azimuthal and cause no direct loss, the mirrors confine particles (except for those
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FIGURE 48. (a) Evolution of successive approximations to the particle magnetic moment
as it moves in a mirror field. (b) Exponential form of the non-adiabatic jump at each
transit as a function of a/rL ∝ 1/v. (c) Long-time behaviour of a non-adiabatic particle.
Here q= 1.19, Φ = π and r/a= 0.075. (Reproduced with permission from Hastie et al.
(1969).)

within the loss cone) and the magnetic field is created solely by external coils and is
therefore unconditionally stable!

Unfortunately, there are two serious problems with this simple picture. The first
is that collisions cause particles to be scattered into the loss cone. This is a more
complex problem than it may appear at first sight (Post 1983, 1987). Electrons
are scattered much faster than ions; therefore an electrostatic potential builds up,
which narrows the loss cone for electrons (in fact they are essentially confined
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FIGURE 49. Development of the flute instability in a mirror machine (from Taylor 1968);
see text for details.

electrostatically) and widens it for ions. Also, the loss cone varies with the local field
strength and therefore with the shape of the field – so the loss does not depend solely
on the mirror ratio, R=Bmax/Bmin. Nevertheless, as the result of several computations,
it appears that the confinement time set by scattering is a few ion–ion collision times
τii, and varies very slowly with the mirror ratio. A popular fit to the computations is

τc ∼ τii log10 R. (17.1)

In contrast, the confinement in toroidal systems can be many collision times, τc ∼
τii(a2/ρ2

i ).
The second serious problem for mirror machines is that the system is unstable even

at low plasma pressure. This instability arises in the following way (see figure 49). At
low β the plasma does not have enough energy to distort the near-vacuum magnetic
field. Consequently, any perturbation must take the form of a flute-like ridge, aligned
with the magnetic field (as shown in cross-section in figure 49a). Then the azimuthal
grad B drifts of ions and electrons, in opposite directions, produce a space charge
along the sides of the ridge. This in turn produces an electric field, such that the
ensuing E× B drift increases the amplitude of the deformation. The direction of the
drifts is set by the fact that the magnetic field in a simple mirror, since it is essentially
a vacuum field, always decreases with distance from the axis, at least in the centre
of the machine.

This simple picture already suggests a cure for the instability. If the radial field
gradient were reversed, the grad B drift, and therefore the E× B drift, would reverse,
and the growth of any ridge-like deformation would be suppressed rather than
amplified.

The recipe for stability in a mirror machine is therefore that the magnetic field
should increase in the radial as well as in the axial direction. In fact, we shall
investigate fields that increase in all directions from a non-zero minimum. Such fields
are now known as minimum-B fields or magnetic wells. (Note that, although the
field in an axisymmetric ‘spindle’ cusp increases in all directions from its centre
(see figure 50), it is not classed as a ‘minimum-B’ field, as its minimum is zero.
Consequently, the criterion for adiabatic invariance of the magnetic moment cannot
be satisfied there.)

The problem with this prescription for stability is that one cannot create an
axisymmetric vacuum field with the minimum-B property. Axisymmetry is desirable
because the grad B drifts then obviously close and do not lead to particle loss.
However, this simplification must be abandoned.
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FIGURE 50. Sketch of spindle cusp configuration.

The simplest, non-axisymmetric minimum-B field is created by adding ‘Ioffe bars’
to the simple mirrors (Gott et al. 1962), as shown in figure 51.

Near the axis the field due to the bars is

Br =−4I
R

( r
R

)
cos 2θ, (17.2)

Bθ = 4I
R

( r
R

)
sin 2θ, (17.3)

where R is the distance of the rods from the axis and I is the current in each rod. If
the original axisymmetric mirror field is represented by

Bz = B0

[
1− α I0

(
2πr

L

)
cos
(

2πz
L

)]
, (17.4)

Bθ =−αB0 I1

(
2πr

L

)
sin
(

2πz
L

)
, (17.5)

where I0 and I1 are modified Bessel functions, the mirrors are at z=±L/2, the mirror
ratio R= (1+ α)/(1− α), and the field strength near the axis is

B2 = B2
0(1− α)2 + 4π2B2

0

{
α(1− α) z2

L2
+ r2

L2

[
4I2L2

π2B2
0R4
− α(1− α)

2

]}
. (17.6)

As the current in the bars is increased, when

I2 >
π2R4

8L2
α(1− α)B2

0, (17.7)

the ‘magnetic isobars’, on which |B| = constant, change from open hyperboloids to
closed ellipsoids – the classic minimum-B configuration. This change in the isobars
is shown in figure 52.

A similar minimum-B configuration can be formed from a single coil – the ‘tennis
ball seam’ (see figure 53). (This was invented at Culham and independently at
Livermore – where of course it was dubbed the ‘baseball seam’!)
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(a) (b)

FIGURE 51. (a) Mirror machine stabilisation by Ioffe bars and (b) the resulting magnetic
field (from Taylor 1968).

(a) (b)

FIGURE 52. Magnetic isobars in a stabilised minimum-B mirror device for (a) small
current in the stabilising rods and (b) large current in the rods (from Taylor 1968).

A fundamental problem with the field created by the Ioffe bars or the tennis ball
coil is the complicated particle drift orbits – it is far from clear that the orbits are
closed or that confinement and charge neutrality are maintained.

An important step therefore is the realisation (Taylor 1963, 1965) that containment
and stability in magnetic wells can be described solely in terms of their basic property:
that the magnetic isobars form a set of closed, nested surfaces surrounding a non-zero
minimum of |B|. (Note that the magnetic isobars are not flux surfaces. In general, a
line of force will cut a magnetic isobar twice, or not at all.)

18. Equilibria in magnetic wells
18.1. Fluid picture

For equilibrium in minimum-B systems, the pressure tensor,

P = p⊥I + (p‖ − p⊥)nn, (18.1)
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Field lines

Minimum-B mirror

Plasma

Coil current

FIGURE 53. Schematic of the tennis ball coil and field lines. (Reproduced with permission
from Post (1987).)

which is diagonal but not isotropic, must satisfy (see § 1.3)

j×B=∇ · P, (18.2)

where n is a unit vector in the direction of B and I is the unit tensor. From the parallel
component of this, we find a condition on the pressure,

∂p‖
∂s
+ (p⊥ − p‖)

B
∂B
∂s
= 0, (18.3)

where s is distance along the field.
If (18.3) is satisfied, we can solve (18.2) for j⊥,

j⊥ =−
∇p⊥ ×B

B2
+ B×∇ · [(p‖ − p⊥)nn]

B2
. (18.4)

Charge neutrality then imposes a restriction on j‖ = λB, as in § 2,

∇ · j‖ =B · ∇λ=−∇ · j⊥, (18.5)

which after some manipulation leads to

B · ∇λ=−∇(p⊥ + p‖) ·
B×∇B

B3
. (18.6)

Integrating this from the point at which a line of force enters the plasma to the point
at which it leaves thus gives the constraint∫

∇(p⊥ + p‖) ·
B×∇B

B4
ds= 0. (18.7)

If this were not satisfied, there would be currents in the plasma-free region or
accumulations of charge in the plasma region.

The constraint (18.7) is automatically satisfied in an axisymmetric system, but in
non-axisymmetric systems it is a powerful restriction.
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18.2. Particle picture
If f (µ, ε, α, β) is the distribution of guiding centres on a field line α, β, then the
local density along that line is∫

f (µ, ε, α, β)
B

(ε −µB)1/2
dµ dε, (18.8)

and the pressure tensor is therefore

p⊥ =
∫

dµ dε f (µ, ε, α, β)
µB2

2(ε −µB)1/2
, (18.9)

p‖ =
∫

dµ dε f (µ, ε, α, β)B(ε −µB)1/2. (18.10)

These expressions automatically satisfy the parallel equilibrium constraint (18.3).
The second constraint (18.7), which restricts the function f (µ, ε, α, β), can be

reinterpreted in terms of particle drifts as∫
(∇ · jD)

dl
B
= 0, (18.11)

where the diamagnetic current jD is given by the sum over species of the grad B drift
velocities,

vB =−ms

es

∇B×B
B3

(2ε −µB). (18.12)

This current due to guiding centre drifts is not the total current – there is also
a current due to the gradient in density of guiding centres. However, this can
be expressed as the curl of the magnetisation per unit volume and is therefore
divergence-free.

18.3. Special minimum-B equilibria
A class of equilibria that satisfy (18.7) are those for which (p⊥ + p‖) is a function
of the field strength B only. Then the parallel constraint (18.3) makes p⊥ and p‖
separately functions of B only. Thus p⊥ = p⊥(B), p‖ = p‖(B) and Bp′‖ = p‖ − p⊥.
Either of the two functions, p⊥(B) or p‖(B), can be chosen arbitrarily, but the other
is then fixed by the parallel equilibrium constraint. In terms of a particle description
of the plasma, these special equilibria are those in which the distribution function
f (µ, ε, α, β) is independent of α, β, that is, f ≡ f (µ, ε).

The significance of magnetic fields that possess closed magnetic isobars is now
apparent. Equilibria in which p⊥ and p‖ are functions of B may exist in many field
configurations, but only in those which possess closed magnetic isobars can these
equilibria represent confined plasmas. (We will examine their stability in the next
section.)

A simple example of this class of equilibria is

p‖ = cB(B0 − B)n

p⊥ = ncB2(B0 − B)n−1

}
for B< B0, (18.13)

p⊥ = p‖ = 0 for B> B0. (18.14)
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These represent plasma confined within the contour B= B0, which by construction is
closed. The particle distribution corresponding to this example is

f (µ, ε) = g(µ)(µB0 − ε)n−3/2 for ε < µB0, (18.15)
f (µ, ε) = 0 for ε > µB0 (the loss cone), (18.16)

where g(µ) is an arbitrary function and n> 3/2.

19. Energy principles and stability
One of the most useful ways of investigating plasma stability is by means of ‘energy

principles’. From the mathematical point of view, these principles have some subtle
and questionable features, but the underlying concept is straightforward.

Consider first the case of a scalar pressure plasma, with an adiabatic equation
of state (see § 1.3, now setting the free-space permeability µ0 ≡ 1 for clarity). The
equations governing linear perturbations of a static equilibrium are then

ρ
∂v1

∂t
= j1 ×B+ j×B1 −∇p1, (19.1)

∂p1

∂t
=−v1 · ∇p− γ p∇ · v1, (19.2)

∂B1

∂t
=∇× (v1 ×B). (19.3)

Combining these, we can form an equation of motion, with Q̃=∇× (v1 ×B),

ρ
∂2v1

∂t2
= (∇× Q̃)×B+ j× Q̃+∇(v1 · ∇p+ γ p∇ · v1). (19.4)

If the perturbation takes the form of a normal mode, v1= iωξ(x) exp(−iωt), where
ξ is the plasma displacement, the equation of motion becomes

−ω2ρξ =F(ξ). (19.5)

It can be shown that F(ξ) is self-adjoint (see Bernstein et al. 1958; Freidberg, 1987),
and therefore

ω2
∫

V
ρ|ξ |2 dτ =−

∫
V

ξ ∗ ·F(ξ) dτ = δW1(ξ
∗, ξ), (19.6)

where

δW1(ξ
∗, ξ)=

∫
V

dτ {|Q|2 − ξ ∗⊥ · j×Q+ γ p|∇ · ξ |2 + (ξ⊥ · ∇p)∇ · ξ ∗⊥} (19.7)

and
Q=∇× (ξ ×B). (19.8)

The functional δW1(ξ
∗, ξ) is clearly the change in potential energy due to the

perturbation ξ . If it is positive for all ξ , then ω is real and the plasma is stable
against all displacements ξ .
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This form of energy principle is the classic one introduced by Bernstein et al.
(1958). It will later form the starting point for the extensive analysis of ballooning
modes (see § 24). But, of course, it is not applicable to mirror machines – since these
always involve anisotropic pressure.

An energy principle for plasmas with anisotropic pressure was also given by
Bernstein et al. (1958), namely

δW2 =
∫

V
dτ
{
|Q|2 − j ·Q× ξ + 5

3
p⊥(∇ · ξ)2 + (∇ · ξ)(ξ · ∇p⊥)

+ 1
3

p⊥(∇ · ξ − 3q)2 + q∇ · [ξ(p‖ − p⊥)]

− (p‖ − p⊥)[n · (a · ∇)ξ + a · (n · ∇)ξ − 4q2]
}
, (19.9)

where

q= n · (n · ∇)ξ , (19.10)
a= (n · ∇)ξ − (ξ · ∇)n. (19.11)

You might notice that (19.9) does not reduce to the scalar pressure form (19.7)
when one sets p⊥ = p‖. This is because in δW1 the pressure is isotropic in both
the equilibrium and the perturbation, whereas when p⊥ = p‖ in δW2 the pressure is
isotropic in the equilibrium but need not be in the perturbation.

Unfortunately, even δW2 is not appropriate for plasmas confined by mirrors, as it
assumes there is no heat flow along the field. An energy principle that overcomes
this limitation was given by Kruskal & Oberman (1958). This is derived somewhat
differently from the principles discussed above. It starts from the plasma energy in
the small-Larmor-radius limit,

E =
∫

V

1
2
(|B|2 + |E|2) dτ +

∑
s

∫
V

∫∫ [(
ε + 1

2
v2

E

)
ms f (ε, µ, x)

]
B
v‖

dµ dε dτ ,

(19.12)
(here µ = v2

⊥/2B and v‖ =
√

2(ε −µB) ). Any perturbation of this energy will
contain a part dependent on the perturbed magnetic field and a part dependent on
the perturbed particle distribution. However, because the guiding centre drift vE is
the E × B velocity, we can introduce a displacement ξ that links particle motion to
changes in the magnetic field (the frozen-in field condition, see § 4.1). Then, holding
ξ fixed and minimising over the particle distribution gives a form δW3 that depends
(after some algebra; see Kruskal & Oberman 1958; Taylor & Hastie 1965) only on
the displacement ξ and equilibrium quantities

δW3 =
∫

V
dτ

{
|Q|2 − j ·Q× ξ + (2p⊥ +C)(∇ · ξ − q)2

+ ξ · ∇p⊥(∇ · ξ − q)+ (ξ · ∇p‖)q

− (p‖ − p⊥) [ n · (a · ∇)ξ + a · (n · ∇)ξ − q2 − q∇ · ξ ]

−
∑

s

ms

∫∫
B
v‖

∂f
∂ε
〈v2
‖q+µB(∇ · ξ − q)〉2 dµ dε

}
, (19.13)
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where the average in the last term is defined as

〈g〉 =
(∫

g
dl
v‖

)(∫
dl
v‖

)−1

(19.14)

and

C=
∑

s

ms

∫∫
B
v‖

∂f
∂ε
(µB)2 dµ dε. (19.15)

19.1. Application to special minimum-B equilibria
For the special equilibria introduced in § 18.3, p‖ = p‖(B), p⊥ = p⊥(B) and

Bp′‖ = p‖ − p⊥, Bp′⊥ = 2p⊥ +C, j‖ = 0, (19.16a−c)

where the vanishing of j‖ follows from (18.7). A more convenient form of δW3 is then
(Taylor & Hastie 1965)

δW3 =
∫

V
dτ

{
|Q⊥|2

(
1+ p⊥ − p‖

B2

)
+Q2

‖

(
1+ 2p⊥ +C

B2

)
− j‖(n ·Q× ξ⊥)

(
1+ p⊥ − p‖

B2

)
+ q[ξ · ∇p‖ + (p⊥ − p‖)s]

−
(

2
Q‖
B
+ s
)
[ξ · ∇p⊥ − (2p⊥ +C)s]

−
∑

s

ms

∫∫
B
v‖

∂f
∂ε

〈
v2
‖q−µB

(
Q‖
B
+ s
)〉2

dµ dε

}
, (19.17)

where s= ξ · ∇B/B. Using (19.16) this reduces to

δW3 =
∫

V
dτ

{
|Q⊥|2

(
1+ p⊥ − p‖

B2

)
+Q2

‖

(
1+ 2p⊥ +C

B2

)

−
∑

s

ms

∫∫
B
v‖

∂f
∂ε

〈
v2
‖q−µB

(
Q‖
B
+ s
)〉2

dµ dε

}
. (19.18)

Therefore, sufficient conditions for stability of the special equilibria are

B2 − p‖ + p⊥ > 0, B2 + 2p⊥ +C> 0, (19.19a,b)

which, using (19.16), can be expressed in terms of the pressure gradients as

B− dp‖
dB

> 0, B+ dp⊥
dB

> 0. (19.20a,b)

The first of these is usually satisfied for plasma contained in a magnetic well as the
pressure falls and B increases towards the boundary, i.e. dp‖/dB < 0. By integrating
the second inequality from the ‘bottom’ of the well to the plasma boundary, which is
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a contour of constant |B|, we find that the maximum stable pressure is equal to the
‘depth’ of the well,

p⊥,max = (B2
b − B2

c)/2, (19.21)

where Bb is the field on the plasma boundary, and Bc is the field at the ‘bottom’ of
the well.

We see therefore that the special equilibria in magnetic wells are not only
remarkable, in that they can be described without knowledge of the field geometry,
but they also have remarkably simple and robust stability properties.

Before we discuss the stability of general equilibria in magnetic wells, which
we hope will inherit some of the desirable features of the special equilibria, it is
interesting to note a proof of stability that does not require the elaborate structure of
the energy principles – although it is applicable only at low β.

19.2. Direct proof of stability for special equilibria at low β

As long as the motion is conservative, we know from Liouville’s theorem that the
density of particles in phase space remains constant as one moves with the particles.
If the particles also carry with them a constant quantity µ (the magnetic moment),
then we can construct a constant of motion G( f , µ) such that (Taylor 1963)

S =
∫

G( f , µ) d3v d3x= constant (19.22)

or ∫
B

(ε −µB)1/2
G( f , µ) dε dµ d3x= constant. (19.23)

Now consider a perturbation of f around its initial value f0. Then

δS = 0=
∫ [

G′( f0, µ) δf +G′′( f0, µ)
(δf )2

2
+ · · ·

]
d3v d3x, (19.24)

where the prime denotes the derivative with respect to f .
The special equilibria have the property that f0 is a function only of µ and ε, so if

f0(µ, ε) is monotonic in ε, we can choose the function G such that,

G′( f0, µ)= ε, G′′( f0, µ)=
(
∂f0

∂ε

)−1

, (19.25a,b)

for all µ. Then when f is small,∫
εδf d3v d3x∼−

∫
(δf )2

2∂f0/∂ε

B
(ε −µB)1/2

dµ dε d3x. (19.26)

The left-hand side of this equation is the change in energy of the particles, and
the right-hand side is positive definite. Hence any perturbation increases the kinetic
energy of the particles. Also, at low β any change in magnetic field increases its
energy. Consequently, the system is stable. In fact, this suggests that at low β the
special minimum-B equilibria, irrespective of their geometrical shape, are stable to
any perturbation that does not affect the magnetic moment!
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20. Canonical description of guiding centre motion

In practice, it would be extremely difficult to produce the special equilibria, so we
must now turn to more general equilibria in magnetic wells. For this, it is convenient
to introduce a description in terms of the average guiding centre drifts (Taylor 1965,
1968).

We know that the instantaneous guiding centre drift of a particle with charge q
(see § 1.3) is

vB = 1
q

B×∇B
B3

(2ε −µB), (20.1)

but in view of the rapid motion along lines of force, the instantaneous drift is less
significant than the average drift over a ‘bounce’ period between mirrors. This average
drift can be described in a particularly elegant way.

We first take the field lines themselves as our coordinate system, setting (see § 2.1)

B=∇α×∇β, χ =
∫

B · dl, (20.2a,b)

where dl follows a field line. Then (α, β, χ) locate any point in space, and in these
coordinates the instantaneous drift in (say) the α direction is

dα
dt
= vB · ∇α =− 1

qB
(2ε −µB)

(
∂B
∂β

)
α

. (20.3)

If we now introduce the energy K(α, β, µ, J) defined by

J =
∮
αβ

(K −µB)1/2
dχ
B
, (20.4)

then by direct differentiation(
∂K
∂β

)
α,J,µ

=
[∮

(2K −µB)
B(K −µB)1/2

dχ
B

] [∮
1

(K −µB)1/2
dχ
B

]−1 (
∂B
∂β

)
α,J,µ

. (20.5)

The right-hand side of (20.5) is just the average guiding centre drift in the α direction,
so the equation of motion for this average drift is

q
〈

dα
dt

〉
=−

(
∂K
∂β

)
α,J,µ

, (20.6)

and in a similar way

q
〈

dβ
dt

〉
=
(
∂K
∂α

)
β,J,µ

. (20.7)

These are just the Hamiltonian equations of motion for the average drift, with α, β

as conjugate coordinates and K(α, β, µ, J) as the Hamiltonian.
This result is no coincidence! A guiding centre moves as if it were a ‘particle’ that

has a charge q and magnetic moment µ. The Lagrangian for such a particle is

L= 1
2 mv2 + q(v ·A)− qφ(α, β, χ)−µB(α, β, χ). (20.8)
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If we take the vector potential as A= (α∇β − β∇α)/2, so that v ·A= (αβ̇ − βα̇)/2,
then the guiding centre Lagrangian becomes

L= 1
2

mv2
d +

mχ̇ 2

2B2
+ q

2
(αβ̇ − βα̇)− qφ(α, β, χ)−µB(α, β, χ), (20.9)

where mv2
d is the energy associated with the slow transverse drift and is negligible

compared to the energy of the parallel motion. Neglecting this drift energy,

L= mχ̇ 2

2B2
+ q

2
(αβ̇ − βα̇)− qφ(α, β, χ)−µB(α, β, χ), (20.10)

and we see immediately that α and β are indeed conjugate Hamiltonian coordinates,

pβ = ∂L
∂β̇
= qα

2
, pα = ∂L

∂α̇
=−qβ

2
. (20.11a,b)

21. General equilibria in mirror machines
Now that we have the simple forms (20.6) and (20.7) for the average drift motion,

we can immediately describe equilibria in a mirror machine (Taylor 1964). If the
number of particles with invariants (µ, J) in a flux tube of cross-section dα dβ is
F(α, β, µ, J, t) then

∂F
∂t
+
〈

dα
dt

〉
∂F
∂α
+
〈

dβ
dt

〉
∂F
∂β
= 0, (21.1)

or, using (20.6) and (20.7),

∂F
∂t
− ∂K
∂β

∂F
∂α
+ ∂K
∂α

∂F
∂β
= 0. (21.2)

In equilibrium, ∂F/∂t= 0, so F must depend on α and β only through K(α, β, µ, J),
i.e.

Feq(α, β, µ, J)= F{µ, J,K(α, β, µ, J)}. (21.3)

Of course, this just says that F is a function of the constants of motion. More usefully,
it means that in the (α,β) coordinate plane, F is constant on the surfaces K= constant.

21.1. Stability of general equilibria in mirror machines at low β

At low β, the most dangerous form of instability is the interchange of flux tubes,
because, if the tubes contain equal flux, there is no increase in magnetic energy –
as there would be for any other perturbation. (In an interchange all the particles in
one flux tube are exchanged with those on a neighbouring flux tube as the result of
E×B motion, e.g. as if a circular cross-section tube rotated so that each semicircular
half is replaced by the other.)

Consider the interchange of a flux tube (1) with a neighbouring tube (2) (Taylor
1964). Before interchange, the total energy of the particles is

Winit =
∫
(F(1)K(1)+ F(2)K(2)) dµ dJ, (21.4)

where K(1)=K(µ, J, α1, β1) and F(1)= F(µ, J,K(µ, J, α1, β1)) etc.

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


Special topics in plasma confinement 81

0

1

2

3
4

5
6

7
8

9
10

11
12

13
14

x

FIGURE 54. Numerical calculation of the constant K/µ contours in a minimum-B system,
for J/µ1/2 = 0.305 (from Taylor 1964).

After interchange, the particles F(1) occupy flux tube (2) and vice versa, so the
total energy is then

Wfinal =
∫
(F(1)K(2)+ F(2)K(1)) dµ dJ. (21.5)

The change in total energy is therefore

1W =−
∫

dµ dJ (F(2)− F(1))(K(2)−K(1)), (21.6)

and, if the displacements are small,

δW =−
∫

dµ dJ
(
∂F
∂α
δα + ∂F

∂β
δβ

)(
∂K
∂α
δα + ∂K

∂β
δβ

)
. (21.7)

As F depends on α and β only through K,

δW =−
∫

dµ dJ
(
∂F
∂K

)
µ,J

(
∂K
∂α
δα + ∂K

∂β
δβ

)2

. (21.8)

This is clearly positive if (
∂F
∂K

)
µ,J

< 0, (21.9)

for all µ, J – and this is a sufficient condition for stability. The necessary and
sufficient conditions are: λαα < 0, λββ < 0 and [λαβ]2 > λααλββ , where

λαα =
∫

dµ dJ
(
∂K
∂α

)2 (
∂F
∂K

)
, (21.10)
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λββ =
∫

dµ dJ
(
∂K
∂β

)2 (
∂F
∂K

)
, (21.11)

λαβ =
∫

dµ dJ
(
∂K
∂α

)(
∂K
∂β

)(
∂F
∂K

)
. (21.12)

If we want ∂F/∂K < 0 and the plasma to be contained (i.e. F decreasing outwards),
then the contours of constant K(α, β, µ, J) must form a closed nested set surrounding
a minimum, in much the same way that the constant B contours are required to do
for the special minimum-B equilibria (see § 18.3).

An example of the constant K contours, calculated for an Ioffe-bar-stabilised
mirror (see figure 51), is shown in figure 54. The figure shows one quadrant of the
cross-section, and the useful confinement region is that inside the last closed contour
enclosing the origin. Note that this calculation exploits the fact that K is actually a
function of only three variables, since

J
µ1/2
=
∮ [

K
µ
− B(α, β, χ)

]1/2 dχ
B
, (21.13)

so that K =µK̂(α, β, J/µ1/2).
The constant K contours are analogous to atmospheric isobars. Particles drift along

contours of constant K just as the wind flows along isobars, and the drift speed
increases as the K contours get closer – just as the wind increases as the isobars get
closer.

22. Maximal ordering and stability
The discussion of general equilibria above is elegant and, within its limits, complete,

but it is unnecessarily detailed for many purposes. Furthermore, as it is restricted to
low β, it cannot determine the all-important maximum stable β.

To find the maximum β for a general equilibrium, we must fall back on an
approximate method. This is sometimes called ‘maximal ordering’ and is a very
important technique – not so much for its immediate application but because it is
used in many plasma problems, in both mirror and toroidal systems.

To illustrate the method, suppose we start from an energy principle and simply
expand δW in powers of β,

δW = δW0 + βδW1 + β2δW2 + · · · . (22.1)

If we minimised δW, we might find δWmin
0 = 0 and δWmin

1 > 0. Then we would say
that at sufficiently small β the plasma is stable, and instability arises only when
β2δWmin

2 becomes comparable to βδWmin
1 . If so, we could calculate the critical β by

evaluating δWmin
2 and setting βδWmin

1 =−β2δWmin
2 . However, this would be unjustified,

because the validity of the expansion in β is based on the assumption that successive
terms get rapidly smaller! (Strictly we should speak about an asymptotic limit as
β→ 0, and β2δW2 can then never balance βδW1!)

To overcome this difficulty, we expand δW not just in β, but in several small
quantities, which are then grouped together so that they can balance each other.
Usually this is done by allocating to each small quantity a relative order of magnitude
in a single small parameter λ. Then one expands in powers of λ and stability
is determined by the first non-zero term. Mathematically, this is (hopefully) an
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asymptotic expansion in λ. Physically, it is based on the fact that, while β may not
be small, some combination of β and other quantities is small.

Of course, the key steps are to select the appropriate group of small quantities and
to allocate the appropriate order of magnitude to them. This is something of an art,
and it would be difficult to specify an algorithm. However, the next section shows how
these key steps are dealt with in order to find the maximum stable β in minimum-B
mirror machines (Taylor 1965; Taylor & Hastie 1965).

22.1. Stability of general equilibria in mirror machines at finite β
In order to apply maximal ordering to minimum-B confined plasmas, we regard the
zero-order (vacuum) magnetic field as made up of: (i) a uniform field B0 in the
z direction, (ii) a mirror component Bm approximately parallel to B0, and (iii) a
stabilising component Bs approximately perpendicular to B0 (as e.g. from Ioffe bars).
We also have to include: (iv) the field Bβ produced by the plasma currents and
(v) the pressure tensor, with 2p⊥/B2

0 ≡ β⊥ and 2p‖/B2
0 ≡ β‖. Therefore, for a shallow

magnetic well, we already have five small quantities:

Bm

B0
=µ, Bs

B0
= σ , Bβ

B0
= β, 2p⊥

B2
0
= β⊥, 2p‖

B2
0
= β‖. (22.2a−e)

We want Bm, Bs and Bβ all to contribute to |B|2. However, Bs is perpendicular to
B0, so it contributes only quadratically, as B2

s , and must therefore be of lower order
than Bm or Bβ , which contribute linearly as B0 · Bm and B0 · Bβ . Hence the relative
orders must be

Bs

B0
∼ λ, Bm

B0
∼ λ2,

Bβ
B0
∼ λ2. (22.3a−c)

The relative order of other quantities can be determined from the equilibrium
conditions. From the lowest-order equilibrium (see (18.4)),

jβ⊥ =∇×Bβ = B0 ×∇p⊥
B2

0
, j‖ = 0, (22.4a,b)

we deduce that, since Bβ/B0 ∼ λ2, we must take jβ⊥ ∼ λ2, p⊥ ∼ λ2. The order of p‖
can similarly be deduced from the parallel equilibrium as p‖∼ λ4. So now we have a
‘maximal ordering’,

Bs

B0
∼ λ, Bm

B0
∼ λ2,

Bβ
B0
∼ λ2, (22.5a−c)

j⊥ ∼ λ2, j‖ ∼ λ4, p⊥ ∼ λ2, p‖ ∼ λ4. (22.6a−d)

However, there are two more steps before the algebra can begin! The displacement,
ξ , that minimises δW(ξ , ξ) will itself depend on λ, so it too must be expanded,

ξ = ξ0 + λξ1 + λ2ξ2 + · · · , (22.7)

and, before we can expand the Kruskal–Oberman energy functional (19.17), we must
extend the ordering to include terms depending on the distribution function, rather than
the displacement ξ . From (18.9), the derivative of p⊥ along the field gives

∂p⊥
∂s
= (C+ 2p⊥)

1
B
∂B
∂s
, (22.8)
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where C was given in (19.15). As we have already found both ∂p⊥/∂s and ∂B/∂s to
be of order λ2, we must treat C as a zero-order quantity.

So now, at last, we can expand δW(ξ , ξ) in powers of λ. It will be necessary to
go to fourth order, λ4, and this involves a lot of algebra.

In zeroth order, we find

δW0 =
∫

V
dτ

{
[Q⊥0]2 +

(
1+ C

B2
0

)
[Q‖0]2 −

∑
s

ms

∫∫
B0

v‖

∂f
∂ε
µ2〈Q‖0〉2 dµ dε

}
.

(22.9)

We will assume that ∂f /∂ε < 0 throughout, so δW0 is certainly positive when

(1+C/B2
0) > 0. (22.10)

However, the minimum δW0 is zero when Q0 =∇× (ξ0 ×B0)= 0, so (22.10) is only
a necessary condition for stability, not a sufficient one, and to determine sufficient
conditions we must proceed to higher order.

It turns out that δW1 ≡ 0 and

δW2 =
∫

V
dτ

{
[Q⊥1]2 +

(
1+ C

B2
0

)
[Q‖1]2 −

∑
s

ms

∫∫
B0

v‖

∂f
∂ε
µ2〈Q‖1〉2 dµ dε

}
.

(22.11)
This is again non-negative, but is zero when

Q1 =∇× (ξ1 ×B0)+∇× (ξ0 ×Bs)= 0. (22.12)

So continuing further, δW3 ≡ 0, and finally

δW4 =
∫

V
dτ

{
[Q⊥2]2 +

(
1+ C

B2
0

) [
Q‖2 + Cs2 − ξ0 · ∇p⊥

B0(1+C/B2
0)

]2

+ (Cs2 − ξ0∇p⊥)[ξ0 · ∇(p⊥ + B2/2)]
B2 +C

−
∑

s

ms

∫∫
B0

v‖

∂f
∂ε
(µB0)

2

〈
Q‖2
B
+ s2

〉2

dµ dε

}
. (22.13)

Several sufficient criteria for stability can be obtained from this last result (Taylor
& Hastie 1965). The most useful and revealing are: δW > 0 if

(∇‖B) · ∇‖(p⊥ + B2/2) > 0 (22.14)

and
(∇⊥B) · ∇⊥(p⊥ + B2/2) > 0. (22.15)

From (22.15), the maximum plasma pressure p⊥,max cannot exceed (B2
b−B2

c)/2, where
B2

c/2 is again the magnetic pressure at the minimum of the well but B2
b/2 is now the

lowest magnetic pressure on the plasma boundary. (In the general equilibria, unlike
the special ones, B is not constant along the plasma boundary.)

Note that ∇⊥(p⊥ + B2/2) is related to the curvature of lines of force and the
condition (22.15) is violated when the diamagnetic plasma currents have so modified
the vacuum field that the field curvature is reversed relative to the zero-β situation.
When β is small, the lines of force are convex to the plasma (stable curvature), but,
because the plasma is diamagnetic, as the plasma pressure increases, it causes the
lines to ‘bulge out’ and eventually creates unstable curvature.
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23. Conclusion
One of the attractions of mirror machines is that one can set up a vacuum mirror

field, which is certainly stable, and then introduce plasma gradually. At least at
low pressure the plasma should then be well confined – except for the mirror loss
cone. (This possibility is not available in toroidal systems such as tokamaks or RFPs,
where the plasma itself creates much of the confining field, though it is possible in
stellarators.)

Unfortunately, it turns out that plasma in a simple axisymmetric mirror machine
is unstable, even at the lowest pressures. This low-β instability can be overcome by
modifying the field so that there is a non-zero minimum in B2 – the ‘minimum-B’
fields or magnetic wells. However, to do this one must destroy the symmetry of the
field to the extent that it is no longer clear whether the plasma is even confined!

It is important, therefore, that there is a class of equilibria in magnetic wells that
can be analysed in considerable detail, using both fluid and particle models, without
requiring any knowledge of the actual structure of the magnetic field! This is possible
because in minimum-B fields the magnetic isobars (surfaces of constant B2) form
closed nested surfaces that confine plasmas with p⊥ = p⊥(B) and p‖ = p‖(B).

These special equilibria are unconditionally stable at low β in both fluid and particle
plasma models. In fact, it appears that the only requirement for low-β stability is that
the magnetic moment µ= v2

⊥/2B of all particles should be invariant. The maximum
stable pressure p⊥ for the special equilibria is equal to the ‘depth’ of the magnetic
well – the difference in B2 between its minimum and its value on the last closed
magnetic isobar.

To analyse general equilibria in mirrors, we introduced a Hamiltonian description
of the average (over the bounce motion between mirrors) guiding centre drift. This
showed, as one would expect, that an equilibrium distribution must be a function
of the constants of motion on each field line f = f (µ, ε, α, β). It also allowed us
to calculate the necessary and sufficient conditions for stability of general low-β
equilibria in mirror machines.

We also introduced an important approximate method for calculating the maximum
stable β for general equilibria. This so-called ‘maximal ordering’ is important in many
areas of plasma confinement, in both mirror and toroidal systems. When applied to
mirrors, it showed that for general equilibria the maximum stable β is again related
to the ‘depth’ of the magnetic well – in this case the difference in B2 between its
minimum and its lowest value on the plasma boundary (which in general is not a
magnetic isobar).

However, despite their attraction in terms of control, stability and susceptibility to
theoretical analysis, mirror machines suffer from an inevitable loss of plasma due to
collisional scattering into the mirror loss cones. Despite heroic attempts to plug these
losses by complex multiple mirrors, electrostatic barriers, thermal barriers, radiation
barriers, etc., it seems that the loss cannot be reduced to a level acceptable for fusion
reactors – the original motivation for studying mirror machines. However, they remain
a valuable research tool and are used (in an independent development) as ‘magnetic
traps’ for studies of single atoms and Bose–Einstein condensates, etc.

Part IV
24. Ballooning modes

The theory of ballooning modes is one of the most intriguing topics in plasma
stability theory. It represents a significant step forwards from the study of idealised
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configurations such as the plane slab and infinite circular cylinder – in which
ballooning modes do not exist – to more realistic toroidal systems with arbitrary
cross-section and arbitrary aspect ratio – in which ballooning modes are important.
They set a maximum β for plasma stability in a tokamak and fill a gap that previously
existed in the theory of toroidal plasmas.

But before we embark on the investigation of ballooning modes, we should look at
the theory of instabilities in an infinite circular cylinder, even though that investigation
cannot be extended to toroidal systems.

24.1. Stability of plasma in circular cylinders
A full linear stability analysis can be carried out for plasma in an infinite circular
cylinder. This is possible because any linear perturbation can be reduced to a sum
over independent one-dimensional Fourier modes ξ(r) exp[i(mθ + kz)], as in the classic
analysis of Newcomb (1960).

If, following Newcomb, we consider a single Fourier mode (m, k) and drop the
exponential factor, the displacement can be expressed in terms of the real variables

ξ = ξr, (24.1)

η=∇ · ξ − 1
r

d
dr
(rξr)= im

r
ξθ + ikξz, (24.2)

ζ = i(ξ ×B)r = iξθBz − iξzBθ . (24.3)

The usual cylindrical components ξθ and ξz are then given by

ξθ =−i
krζ + rBθη
krBz +mBθ

, ξz = i
mζ − rBzη

krBz +mBθ
. (24.4a,b)

After some algebra, the energy functional for isotropic pressure δW1 (see (19.7)),

δW1(ξ
∗, ξ)= 1

2

∫
V

dτ {|Q|2 − j · ξ ∗ ×Q+ (∇ · ξ ∗)ξ · ∇p+ γ p(∇ · ξ)2}, (24.5)

can be reduced to a form that can easily be minimised over η and ζ . After this, δW1
depends only on the radial displacement ξ and reduces to

δW1(ξ)= π

2

∫ b

a
dr

[
f
(

dξ
dr

)2

+ gξ 2

]
, (24.6)

where

f = r(krBz +mBθ)2

k2r2 +m2
, (24.7)

g= 1
r
(krBz −mBθ)2

k2r2 +m2
+ 1

r
(krBz +mBθ)2 − 2Bθ

r
d
dr
(rBθ)− d

dr

(
k2r2B2

z −m2B2
θ

k2r2 +m2

)
.

(24.8)

As explained in Newcomb (1960), examination of (24.6)–(24.8) for different (m, k)
shows that a cylindrical plasma will be stable for all (m, k) if it is stable for m= 1,
−∞< k<∞ and for m= 0, k→ 0.
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r A B

FIGURE 55. Projected displacement. A is the actual wall position and B is the
hypothetical position needed for marginal stability.

Equation (24.6) is a standard form, and minimisation over ξ leads to the Euler–
Lagrange equation

d
dr

(
f

dξ
dr

)
− gξ = 0. (24.9)

An important feature of (24.9) is that there is a singular point at the ‘resonant surface’
where krBz +mBθ = 0 and f vanishes.

Suppose, first, that there is no resonant surface within the boundary at r= b (which
we take to be perfectly conducting), and that we integrate (i.e. ‘project’) a solution of
(24.9) from r= 0, ξ = 0 towards the boundary at r= b. (Of course, equation (24.9) has
two independent solutions, but only one vanishes at the origin.) Now, if this projected
solution does not vanish anywhere before reaching the boundary (see figure 55), then
the plasma is stable for that m and k. Newcomb proves this mathematically, but we
can see that it must be true by the following simple argument.

The Euler–Lagrange equation (24.9) is also the equation for marginal stability
(ω2= 0) and it is clear that, if our projected solution does not vanish before reaching
the wall, then for the plasma to be marginally stable we would have to move the
wall (which has a stabilising effect) to a larger radius. Hence, with the wall at its
actual radius, the plasma must be stable.

If there is a single resonant surface in the plasma, the argument is only a little
more complicated. In this case we ‘project’ two solutions of the marginal equation,
one outwards from r= 0, ξ = 0 as before and the other inwards from the wall r= b,
ξ =0. Then if neither of them vanishes before they reach the singular surface, we have
exactly the situation (see figure 15) that we discussed in § 5.1. From that analysis we
know that an ideal plasma is stable. Furthermore, we now know that a resistive plasma
is also stable if ∆′< 0, where ∆′ is the change in logarithmic derivative of ξ , or the
change in the small solution of (24.9) across the resonant surface (see (5.6)).

Before we turn to toroidal plasmas, note that the analysis of circular plasmas
requires only the solution of the single differential equation (24.9).

25. Modes in toroidal systems
In a toroidal plasma, perturbations cannot be broken down into independent one-

dimensional Fourier modes, though in an axisymmetric torus they can be reduced to a
sum over independent two-dimensional modes ξ(r, θ) exp(inζ ), where ζ is the toroidal
angle and θ is the poloidal angle. But, in fact, ballooning modes have a completely
different structure from the modes in a cylinder. They involve many, strongly coupled,
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FIGURE 56. Twisted slicing mode (from Roberts & Taylor 1965).

Fourier modes and therefore cannot be dealt with by retaining a limited number of
such modes.

The principal characteristic of ballooning modes is that they have short wavelength
perpendicular to the magnetic field but long wavelength parallel to it. Specifically,
k⊥a� 1 and k‖R∼ 1, where a and R are the minor and major radii of the torus. (Note
that, although k‖ is small, it is not zero, as in a flute mode; see § 17.) Because of the
long wavelength parallel to B, the stabilising effect of the magnetic field on ballooning
modes is weak and they are therefore among the most pervasive instabilities in a
toroidal plasma. Also, because of the short transverse wavelength, they are difficult
to compute directly.

Ballooning modes occur in most plasma models – ideal MHD, resistive MHD,
gyrofluid, gyrokinetic, etc. However, the theory is most easily explained in MHD,
and we shall concentrate on this application.

In a torus, as we move along a field line, it passes through regions of stable
curvature (κ · ∇p < 0, on the inner equator) and regions of unstable curvature
(κ · ∇p > 0, on the outer equator). A perturbation aligned with the field therefore
tends to be largest on the outer equator, where it bulges out (as does a weak spot
in a balloon!). However, this ballooning is opposed by the field line bending that
accompanies it, and the mode is a balance between these two effects. The amount
of field line bending associated with a given perturbation depends on the magnetic
shear – which therefore plays an important role in ballooning modes.

Historically, the significance of the ballooning effect was first noted in connection
with drift waves by Taylor (1977), though in a form that bears little resemblance to
the later theory. The material in the following sections is based upon various original
sources. The idea that the coupling of almost degenerate Fourier modes on adjacent
surfaces could produce a radially extended mode was introduced by Roberts & Taylor
(1965), who referred to the extended modes as ‘twisted slices’ (see figure 56), but
they envisaged a nonlinear coupling rather than toroidal coupling. (This oversight
probably delayed the theory of ballooning modes by 20 years!) The full theory for
high-n ballooning modes was given by Connor et al. (1978, 1979a,b). Independent
approaches were developed by Glasser (1979) and Lee & Dam (1979).

26. High mode number perturbations in an axisymmetric torus
As we mentioned above, in an axisymmetric torus perturbations can be reduced to

independent modes ∼ξ(r, θ)exp(inζ ) with toroidal mode number n. We will consider
first the limit of large toroidal mode number n and show that in this limit the
oscillations on each magnetic surface are decoupled and independent.
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The lowest order in an expansion in 1/
√

n of the scalar pressure energy functional
δW then defines a local frequency ω2(Ψ ) on each surface, and determines the structure
of the mode along the magnetic field B. Higher orders in the expansion determine the
cross-field structure and relate the local frequency ω2(Ψ ) to the global frequency Ω2

– which finally determines stability of the system.
The important discovery is that the local frequency ω2(Ψ ), which requires only

the solution of a one-dimensional ordinary differential equation, nevertheless contains
all the information necessary for the complete solution of the global problem. The
difficulty is that, before we can calculate anything, we must find a representation for
the perturbation that reconciles the short perpendicular and long parallel wavelength
with toroidal periodicity in a sheared magnetic field.

To represent short-wavelength disturbances, φ, in a medium that changes on a much
longer scale, one normally uses an ‘eikonal’ or Wentzel–Kramers–Brillouin–Jeffreys
(WKBJ) form,

φ ∼ F exp(inS), (26.1)
where F and S vary slowly, but the exponential varies rapidly when n is large. In the
present case, the requirement for long parallel wavelength means that we must have

B · ∇S= 0, (26.2)
but this is incompatible with periodicity around the torus in a sheared field. For, if
S is constant along a line of force, then, following a line once around the torus, one
must have

S(Ψ, θ)− S
(
Ψ, θ + 2π

q(Ψ )

)
= integer× 2π

n
. (26.3)

Owing to the shear, q(Ψ ) varies from one magnetic surface to another, so this
condition cannot be satisfied everywhere without S being discontinuous.

In the next section we show that a new representation allows us to combine the
advantages of the eikonal with long parallel wavelength and toroidal periodicity.

26.1. Ballooning representation
After we have selected a single toroidal mode ∝ exp(inζ ), the calculation of linear
perturbations in an axisymmetric plasma reduces to an eigenvalue equation of the form

L(θ, x) φ(θ, x)= λφ(θ, x), (26.4)
where x is a radial flux coordinate. The operator L and the function φ are both
periodic in poloidal angle θ .

Now write

φ(θ, x)=
∑

m

e−imθ
∫ ∞
−∞

eimηφ̂(η, x) dη. (26.5)

This ensures that φ is periodic in θ : φ̂ does not need to be periodic. This ‘ballooning
transform’ really combines three steps:

(i) φ→ a Fourier sum
∑

m am(x) exp(−imθ);
(ii) am(x) is extended to a function a(s, x) that coincides with am(x) when s=m;

(iii) a(s, x) is represented by a Fourier integral in the coordinate η.

By direct substitution, it can be shown that φ̂ satisfies the same equation as φ,

L(η, x) φ̂(η, x)= λ φ̂(η, x), (26.6)

and has the same eigenvalues.
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We have effectively taken a Fourier transform in step (i) and then reversed it in
step (ii). This is precisely why (26.6) is formally identified with (26.4). However the
first transform was a Fourier sum and the second was a Fourier integral; consequently
φ̂ does not have to be periodic.

The extent to which (26.5) is mathematically a true reversible transform, in the
spirit of Fourier, Abel, etc., is discussed at length in Connor et al. (1979b), Hazeltine
et al. (1981), Dewar & Glasser (1983) and Hazeltine & Newcomb (1990). This highly
mathematical discussion is not appropriate here; it is sufficient to note that, as we
will see below, when we introduce a WKBJ eikonal approximation for φ̂ in (26.5),
we obtain a stability criterion, and an estimate of the growth rates and the profiles of
unstable modes.

Another interpretation of (26.6) is that we have replaced the original stability
problem, with its incompatible periodicity and wavelength requirements, by a fictitious
problem in an infinite domain with no periodicity requirements, but which has the
same eigenvalues. The operator is unchanged, so the short perpendicular and long
parallel wavelength properties of the solution are unchanged.

The point of all of this is that, unlike φ, φ̂(η, x) can be represented in eikonal form,

φ̂(η, x)= F(η, x) exp(inS), (26.7)

with B · ∇S= 0 and both F and S slowly varying.
This perturbation has essentially the same form as the Roberts & Taylor (1965)

‘twisted slice’ quasi-mode, but this is no longer the actual perturbation. We will see
later that the actual perturbation is a superposition of such ‘slices’.

Of course, as we no longer have the periodic boundary condition, we need a
replacement boundary condition for φ̂(η, x). This follows from the requirement that
the transformation back to φ(η, x) must lead to a physically acceptable function.
Consequently, φ must tend to zero sufficiently fast as |η| → 0 for the integrals in
(26.5) to converge.

27. Magnetohydrodynamic stability in a torus
In an axisymmetric torus the equilibrium field can be written as

B=∇Ψ ×∇ζ + I(Ψ )∇ζ , (27.1)

where Ψ defines the magnetic surface and ζ is the toroidal angle around the torus.
The first term gives the poloidal field and the second the toroidal component (compare
with the Grad–Shafranov equilibrium in (2.19)).

In this section we denote the poloidal angle by χ to conform with Connor et al.
(1979b). Then, in the coordinates (Ψ, χ, ζ ), we have the line element

ds2 = 1
(RBχ)2

(dΨ )2 + (JBχ)2(dχ)2 + R2(dζ )2, (27.2)

and the volume element dτ = J dΨ dχ dζ , with the Jacobian J = |∇Ψ · ∇χ ×∇ζ |−1.
A field line is defined by Ψ = constant, χ = χ(ζ ), where

dζ
dχ
= IJ

R2
≡ ν(Ψ ), (27.3)
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and the safety factor is

q(Ψ )= 1
2π

∮
ν dχ. (27.4)

Turning now to the question of stability, we again take the scalar pressure energy
principle,

δW1 = 1
2

∫
Q2 − j ·Q× ξ + (ξ · ∇p)(∇ · ξ)+ γ p(∇ · ξ)2 dτ , (27.5)

and describe a perturbation ξ by the three components:

X = RBχξΨ , (27.6)

U =
(
ξζ

R
− I

R2Bχ
ξχ

)
, (27.7)

Z = ξχ

Bχ
. (27.8)

Here X is the displacement normal to flux surfaces, U is the displacement tangential to
a surface and normal to the field, and Z is the displacement in the poloidal direction.

In terms of these components, the perturbed energy becomes

δW = 1
2

∫
J dΨ dζ dχ

{
B2

R2B2
χ

|k‖X|2 + R2

J2

∣∣∣∣∂U
∂χ
− I

∂

∂Ψ

(
JX
R2

)∣∣∣∣2
+B2

χ

∣∣∣∣inU + ∂X
∂Ψ
+ jζ

RB2
χ

X
∣∣∣∣2 − 2K|X|2

+ γ p
∣∣∣∣1J ∂

∂Ψ
(JX)+ inU + iBk‖Z

∣∣∣∣2}, (27.9)

where

ik‖ = 1
JB

(
∂

∂χ
+ inν

)
, K = II′

R2

∂

∂Ψ
ln R− jζ

R
∂

∂Ψ
ln(JBχ), (27.10a,b)

and a prime denotes the derivative with respect to Ψ . Minimisation of δW over Z
makes the last term of (27.9) zero, corresponding to ∇ · ξ = 0. Then minimisation
over U can be carried out as an expansion in 1/n. Correct to order 1/n this requires

inU + ∂X
∂Ψ
+ X

(
p′

B2
+ ν

′

ν

I2

R2B2

)
+ I2

νR2B2
JBk‖

(
1
n
∂X
∂Ψ

)
= 0, (27.11)

which reduces δW to a form involving only the displacement X,

δW = π

∫
dΨ dχ

{
JB2

R2B2
χ

|k‖X|2 +
R2B2

χ

JB2

∣∣∣∣1n ∂

∂Ψ
(JBk‖X)2

∣∣∣∣2
− 2J

B2
p′
[
|X|2 ∂

∂Ψ

(
p+ B2

2

)
− iI

JB2

∂

∂χ

(
B2

2

)
X∗

n
∂X
∂Ψ

]
+ X∗

n
JBk‖(Xσ ′)− 1

n
[P∗JBk‖Q+ PJBk∗‖Q

∗]
}
, (27.12)
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where

P= Xσ − B2
χ

νB2

I
n
∂

∂Ψ
(JBk‖X), (27.13)

Q= Xp′

B2
+ I2

νR2B2

1
n
∂

∂Ψ
(JBk‖X), (27.14)

σ = Ip′

B2
+ I′. (27.15)

To test for stability, we should now minimise (27.12) with respect to all functions
X(Ψ, χ) periodic in χ . However, in order to also derive a measure of the growth rate,
or frequency, of the ballooning modes, we need to introduce a suitable normalisation
for X. We take

π

∫
J dΨ dχ

{
|X|2
R2B2

χ

+
(

RBχ
B

)2 ∣∣∣∣1n ∂X
∂Ψ

∣∣∣∣2
}
= 1, (27.16)

which is the kinetic energy in the motion transverse to B. (This is more convenient
than the total kinetic energy because it does not involve U or Z.)

Then, minimising (27.12) subject to (27.16) gives the Euler–Lagrange equation

JBk‖

 1
JR2B2

χ

1−
(

R2B2
χ

B

)2
1
n2

∂2

∂Ψ 2

 JBk‖X

− 2J
B2

Xp′
∂

∂Ψ

(
p+ B2

2

)

+ i
n
∂X
∂Ψ

p′I
B4

∂B2

∂χ
− 1

n
JBk‖

[
∂

∂Ψ

(
R2B2

χ

JB2

)
1
n
∂

∂Ψ
(JBk‖X)

]

+ 1
n

JBk‖(σ ′X)− σn JBk‖Q− p′

nB2
JBk‖P

− 1
n

JBk‖

{
1
n
∂

∂Ψ

[
IB2

χ

νB2
JBk‖Q

]}
+ 1

n
JBk‖

{
1
n
∂

∂Ψ

[
I2

νR2B2
JBk‖P

]}

=Ω2

[
J

R2B2
χ

X − JR2B2
χ

B2

1
n2

∂2X
∂Ψ 2
− 1

n
∂

∂Ψ

(
JR2B2

χ

B2

)
1
n
∂X
∂Ψ

]
. (27.17)

Recalling that

ik‖ = 1
JB

(
∂

∂χ
+ inν

)
, (27.18)

we see that (27.17) is a second-order partial differential equation in ∂/∂Ψ and ∂/∂χ
for the periodic function X(Ψ, χ), where X(Ψ, χ + χ0)= X(Ψ, χ) and χ0 =

∮
dχ .

We now introduce the ballooning transformation,

X(Ψ, χ)=
∑

m

exp
(
−2πimχ

χ0

) ∫ ∞
−∞

dy exp
(

2πimy
χ0

)
X̂(Ψ, y). (27.19)

This converts (27.17) into an identical equation for X̂, with χ → y, but now in the
infinite domain −∞< y<∞ and free of periodicity constraints. So we can write X̂
in eikonal form,

X̂(Ψ, y)= F(Ψ, y) exp
(
−in

∫ y

y0

ν dy
)
. (27.20)

Note the appearance here of the arbitrary phase y0, which will be discussed below.
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If we restore the toroidal mode number exp(inζ ), equation (27.20) is equivalent to
the eikonal (26.1), FeinS, with S = ζ − ∫ ν dχ and B · ∇S = 0. We have therefore
reached the point where X̂ is in eikonal form, with F and S varying slowly compared
to the rapid variation across the field of the phase exp(inS).

Now we invoke large n, and introduce two length scales transverse to the magnetic
surfaces: (i) the equilibrium scale, which we continue to denote by Ψ , and (ii) a more
rapid scale x=√n(Ψ −Ψ0), where Ψ0 is to be identified later. This scale is related to
the distance between rational surfaces on which q(Ψ )=m/n. The separation between
these surfaces tends to zero as n→∞.

Then, writing the transformed equation (27.17) as

(L+Ω2M)F= 0, (27.21)

we expand in powers of 1/
√

n,

L = L0 + 1√
n

L1 + 1
n

L2 + · · · , (27.22)

M = M0 + 1√
n

M1 + 1
n

M2 + · · · . (27.23)

The lowest order approximation is

[L0 +ω2(Ψ, y0)M0]F0 = 0, (27.24)

where

L0F = ∂

∂y

 1
JR2B2

χ

1+
(

R2B2
χ

B

∫ y

y0

ν ′ dy

)2
 ∂F
∂y


+F

{
2Jp′

B2

∂

∂Ψ

(
p+ B2

2

)
− Ip′

B4

(∫ y

y0

ν ′ dy
)
∂B2

∂y

}
, (27.25)

M0F = J
R2B2

χ

1+
(

R2B2
χ

B

∫ y

y0

ν ′ dy

)2
 F. (27.26)

(Higher-order operators L1, M1, L2 and M2 will be introduced later.) Note that L0 is
a one-dimensional differential operator in the extended coordinate y – it depends only
parametrically on Ψ and y0.

The zeroth order equation (27.24) has the structure

d
dy

(
a+ b

∫ y

y0

ν ′ dy′
)2 dF0

dy
+ p′

(
c+ d

∫ y

y0

ν ′ dy′
)

F0 = eω2

[
a+ b

(∫ y

y0

ν ′ dy′
)2
]

F0,

(27.27)

on each magnetic surface Ψ . The coefficients a, b, c, d and e are periodic in y and
defined on each surface by the equilibrium. The terms

∫
ν ′ dy increase indefinitely

with y and show the strong effect of magnetic shear. The term c represents the
destabilising normal curvature, and d is related to the geodesic curvature.
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Equation (27.27) is a second-order differential equation for ω2(Ψ, y0) and can be
readily solved numerically. To lowest order, therefore, the oscillations on each surface
are decoupled and each has a frequency ω(Ψ, y0) that depends on the properties
(curvature, shear, etc.) of that surface and the, as yet unknown, y0.

To calculate ω2(Ψ, y0), we need to apply the boundary conditions F0 → 0 as
|y| →∞. Equation (27.24) has two independent solutions at large |y|, but if ω2 < 0
one is exponentially growing and can be rejected. In this case, one finds a discrete
unstable eigenvalue spectrum. If ω2 > 0 both solutions behave like (1/y) exp(iωy)
at large |y| and both must be retained. Consequently, any positive ω2 is acceptable
and in this case there is a continuous spectrum of stable modes – as there is in a
cylindrical plasma (Grad 1973).

As (27.24) is a differential equation in y alone, any solution can be multiplied by
an arbitrary function of x, so the full solution in lowest order should be

F0 = A(x)F0(y;Ψ, y0). (27.28)

It must be emphasised that, at this point, although the ‘local’ eigenvalue ω2(Ψ, y0)

and the eigenfunction F(y; Ψ, y0) (which gives the perturbation along the field) can
readily be computed, we so far have no information on the profile A(x) (perpendicular
to the magnetic surfaces) or on the correct value for y0, or on the relation of ω2(Ψ, y0)

to the global eigenvalue Ω2 – which ultimately determines global stability. We will
show later that, when the theory is developed to higher order in 1/

√
n, these unknown

factors are determined uniquely, and that all of the information necessary to do so is
already implicit in ω2(Ψ, y0).

27.1. Higher-order theory
As emphasised at the end of the previous section, to complete the theory of MHD
stability in a torus, we still have to

(i) find the ‘envelope’ A(x), which defines the structure of a ballooning mode across
the magnetic surfaces,

(ii) find Ψ0, which locates the surface on which the perturbation is maximum,
(iii) find y0, which locates the poloidal angle at which the perturbation is maximum,
(iv) relate the local ω2(Ψ, y0) to the global eigenvalue Ω2, which determines overall

stability.

To find these quantities, we must proceed to higher order in the 1/
√

n expansion
of (27.21). This involves the operators L1, L2, M1 and M2. The operators L1 and M1

are

L1 =−i
1

ν ′(y0)

∂L0

∂y0

∂

∂x
, M1 =−i

1
ν ′(y0)

∂M0

∂y0

∂

∂x
, (27.29a,b)

and the next order equation is

(L0 +ω2M0)F1 + (L1 +ω2M1)F0 = 0. (27.30)

This can be solved for F1 only if the integrability condition∫ ∞
−∞

F0(L1 +ω2M1)F0 dy= 0 (27.31)
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is satisfied. From the form of L1 and M1, it can be shown that this is equivalent to
the constraint

∂

∂y0
ω2(Ψ, y0)= 0. (27.32)

This fixes the undetermined parameter y0: on each magnetic surface it is at a minimum
of ω2(Ψ, y0). Usually this is on the outer equator of the torus (Cooper 1988; Taylor
2012).

Proceeding further in the 1/
√

n expansion, in second order an integrability condition
is obtained involving the operators M2 and L2:∫

[F0(L1 +ω2M1)F1 + F0(L2 +ω2M2)F0 + n(Ω2 −ω2)F0M0F0] dy= 0. (27.33)

If we choose Ψ0 to be at a minimum, with respect to Ψ , of ω2(Ψ, y0) (with y0 fixed
as above), then expanding ω2(Ψ ) about this minimum, and using the properties of
the operators L1, M1, L2 and M2, one eventually obtains from (27.33) an equation for
A(x):

∂2ω2
0

∂y2
0

d2A
dx2
+ (ν ′(y0))

2

[
2n(Ω2 −ω2

0)−
∂2ω2

∂Ψ 2
x2

]
A(x)= 0. (27.34)

Therefore

A(x)= exp

[
−1

2
|ν ′(y0)|

(
∂2ω2/∂Ψ 2

∂2ω2/∂y2
0

)1/2

x2

]
(27.35)

and

Ω2 =ω2
0 +

1
2n|ν ′(y0)|

(
∂2ω2

∂Ψ 2

∂2ω2

∂y2
0

)1/2

. (27.36)

This completes the theory, and shows that all the information needed to do so
was already contained in the lowest-order quantity ω2(Ψ, y0). In practice, therefore,
we have only to compute solutions of the differential equation (27.24). Note also
from (27.36) that ballooning modes become more unstable as n→∞. This is precisely
the region that is most difficult to calculate by direct simulation and explains why
ballooning theory filled an important gap in the MHD theory of toroidal plasmas. (Of
course, in reality MHD theory breaks down at very high n due to Larmor radius and
other non-ideal effects.)

28. Applications
The first application of the theory was to a large-aspect-ratio torus, by Connor et al.

(1978). In this so-called ‘s–α’ model, the coefficients of (27.27) can be expressed
analytically and it becomes

d
dy
[1+ (s(y− y0)− α sin y)2]dF

dy
+ α[cos y+ sin y (s(y− y0)− α sin y)]F= 0. (28.1)

Here y0 is the parameter that locates the poloidal angle at which the mode amplitude
is maximum. It must be chosen to give the largest region of instability. The parameter
s is a measure of the mean shear,

s= d(log q)
d(log r)

, (28.2)
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FIGURE 57. Marginally stable eigenfunctions for (A) low shear, s = 0.1, and (B) high
shear, s= 0.7 (from Connor et al. 1978).

and α is a measure of the pressure gradient,

α =−2Rq2

B2

dp
dr
. (28.3)

Note that ω2 has been set to zero and (28.1) is therefore the marginal stability
equation. It is then clear from (28.3) that the ballooning threshold, or maximum stable
β, will be of the form βmax ∼ (a/Rq2)α(s). We will see later (figure 58) that over a
range of s, α(s)∼ 1/3.

Numerical solutions of (28.1) for a low-shear and a high-shear equilibrium are
shown in figure 57. In the low-shear case F shows strong remnants of the periodic
behaviour, but, as expected, these are suppressed in the high-shear case.

The stability boundary computed for the s–α model is shown in figure 58. In
addition to the expected stability boundary ‘(a)’, there is a second boundary ‘(b)’.
Along the first boundary, y0 = 0, corresponding to the usual mode ‘ballooning’ on
the outer equator. However, along the second boundary, y0 is not zero, nor is it the
symmetric value y0 = π. In fact it is approximately y0 = 0.6π, corresponding to a
mode ‘ballooning’ at an intermediate angle between the inner and outer equators.
This is the result of the combined effect of normal and geodesic curvature. (The line
‘(c)’ indicates where this boundary would be for y0 =π.)

Calculations for more realistic configurations include those for the JET experiment
(Sykes et al. 1979). The result for an unstable JET plasma is shown in figure 59.
Here the calculations are for the true, low-aspect-ratio, toroidal configuration, with
the true D-shaped cross-section and realistic pressure profile. The figure includes
the growth rates computed from the ballooning equation for the n → ∞ limit,
and the 1/n corrections for large but finite n (the spread in the 1/n contribution
reflects the limitations of numerical representation, and subsequent differentiations,

https://doi.org/10.1017/S0022377815000707 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000707


Special topics in plasma confinement 97

1.0

0.8

0.6

0.4

0.2

0.0
1 2

(a)
(c)

(b)

3 4 5

Stable

Stable

Unstable

S

FIGURE 58. Stability boundaries for the s–α model obtained by taking (a) y0 = 0 (solid
line), (b) y0 = 0.6π (dot-dashed line) and (c) y0 =π (dashed line).
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FIGURE 59. Variation of growth rate with toroidal mode number from direct MHD
simulation for an unstable JET configuration, with central safety factor q0 = 0.75, edge
safety factor qa = 6.4 and average β = 0.045. (Reproduced with permission from Sykes
et al. (1979).)
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FIGURE 60. Geometry used to study ballooning stability. (Reproduced with permission
from Todd et al. (1979).)

of the equilibrium profiles). The figure also shows the growth rate for low-n modes
(n= 1, 2, 3, 4) computed using two-dimensional MHD codes. (These low-n modes can
be computed directly, as they do not require high resolution.) An important feature
of figure 59 is that the growth rates γ 2(n) calculated from the high-n ballooning
theory join smoothly to the low-n computations, with the cross-over occurring at
approximately n= 4 or 5. Thus we can be confident that our overall picture of ideal
MHD toroidal modes is complete.

The effect of changing cross-section on ballooning modes was investigated by Todd
et al. (1979) for plasma in a torus with the idealised D-shaped cross-section shown in
figure 60. The parameters δ and κ , respectively, define the triangularity and ellipticity
of the boundary, X=X0+ a cos(θ + δ sin θ), Z= κa sin θ , and α describes the peaking
of the pressure profile, p(Ψ ) ∝ (Ψb − Ψ )α. Figure 61 shows two examples of the
maximum β for modes of different n, both for plasma in a perfectly conducting shell,
as in the previous examples, and for a ‘free-boundary’ plasma with the wall effectively
at infinity. Here again the high-n calculations link smoothly to the low-n computations.
Note that, in the free-boundary example in figure 61(b), the n = 1 mode imposes a
more stringent limit on β than does the n→∞. But n→∞ is still the most stringent
of the higher-n modes as the theory requires.

29. Validity of ballooning theory
Now that we have seen the power and usefulness of the ballooning theory, it is

appropriate to ask the following: When should perturbations in a torus be interpreted
as ballooning modes and when should they be described by conventional Fourier
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FIGURE 61. Critical β as a function of 1/n for a configuration with (a) R/a= 3.5, κ =
1.65, δ = 0.25, α = 1.4 and 1.0 < q < 3.0 and (b) R/a = 4.6, κ = 1.0, δ = 0, α = 2 and
1.04< q< 1.58. (Reproduced with permission from Todd et al. (1979).)

modes – as in a straight cylinder (Connor & Taylor 1987)? The parameter that
determines this, which in the mathematical analysis we took to be ‘1/n’, is physically

g=
(

coupling between Fourier modes resonant on adjacent surfaces
difference in frequency between Fourier modes resonant on adjacent surfaces

)
,

(29.1)
and ballooning theory is valid when g is large.

The difference in frequency between Fourier modes is actually ∝ 1/ns, so that the
theory is always valid as n→∞ unless the shear s is small or vanishes (as it does
in so-called ‘reverse-shear’ equilibria). A discussion of the ‘small-shear’ situation is
given in Hastie & Taylor (1981) and Connor & Hastie (2004).

30. Mode structure
If we want to see the true structure of a ballooning mode, we must construct the

physical perturbation φ from the ‘fictitious’ perturbation φ̂. That is, we must reverse
the ballooning transformation (27.19) and (27.20) by evaluating the right-hand side of

φ(Ψ, θ)=
∑

m

e−imθ
∫ ∞
−∞

eimye−inq(Ψ )yF(Ψ, y) dy. (30.1)

Several interesting consequences follow from (30.1). If we carry out the integration
over y, the result is clearly a function of (m− nq) and

φ(Ψ, θ)=
∑

m

U(m− nq)e−imθ . (30.2)
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FIGURE 62. Constructing the ballooning perturbation from an infinite set of displaced
functions.

This is a sum of similar contributions, each centred on a different rational surface,
precisely as we would expect since neighbouring rational surfaces are almost
degenerate after an appropriate realignment on each surface to compensate for the
change in direction of B; see § 25. This degeneracy becomes exact as n→∞.

Equation (30.1) also provides another way of looking at the ballooning transform.
If we write (30.1) as

φ(Ψ, θ)=
∫ ∞
−∞

∑
m

e−im(θ−y)einq(Ψ )yF(Ψ, y) dy, (30.3)

and assume convergence, we can take the sum
∑

m e−im(θ−y) to be the Fourier series
for the periodic function

∑
N δ(θ − y− 2πN). Then

φ(Ψ, θ)=
∑

N

e−inq(θ−2πN)F(Ψ, θ − 2πN), (30.4)

in which the periodic perturbation is constructed from the non-periodic function F by
adding an infinite number of repetitions of it spaced at multiples of 2π (see figure 62).

Yet another view is obtained by restoring the toroidal mode number exp(inζ ), in
each term of the sum (30.4). Each term then has the form

F(Ψ, θ)e−in(q(Ψ )θ−ζ ), (30.5)

which is essentially the ‘twisted slice’ mentioned at the start of this study (see § 25).

31. Conclusion
Before ballooning theory, only low-n modes could be studied theoretically in

a toroidal plasma, whereas in a cylindrical plasma all modes could be analysed
from a single second-order ordinary differential equation. Ballooning theory makes
it possible to study high-n modes in a torus – again from a single second-order
ordinary differential equation. In this sense the realistic toroidal problem has become
as amenable to theoretical analysis as the idealised cylindrical one!
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