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A complete three-dimensional long-wave polar–Cartesian equation is developed in the
frequency domain. This development employs an auxiliary axis system oriented locally
in the bottom gradient direction. The long-wave limit of the two-dimensional polar–
Cartesian steep-slope equation is also derived. An approximate explicit expression of the
coefficients is developed without restrictions on bed steepness. This is achieved by utilising
a rational function approximation of the arctan function, which arises from the formulation
of the vertical profile of the flow parameters. Additionally, long-wave equations in both
two and three dimensions are developed in the time domain. Simulations of the long-
wave equations are compared with those of the extended shallow-water equation for
two-dimensional test cases, as well as for the quasi-three-dimensional scenario of oblique
incidence. Our equations exhibit better agreement with the exact solutions in the majority
of the test cases.

Key words: surface gravity waves

1. Introduction
Mild-slope equations (MSEs) are approximated models developed for free-surface wave
propagation over mild slopes of the sea floor. Commonly, the vertical profile of the velocity
field is approximated as the solution of time-harmonic, linear propagating waves over a
horizontal bottom. Berkhoff (1972) introduced the MSE that accounts for the leading-
order term in the bottom slope. Smith & Sprinks (1975) were the first to introduce the
second-order terms, followed by several others (e.g. Kirby 1986; Chamberlain & Porter
1995). Miles & Chamberlain (1998) introduced the fourth-order terms.

Kim & Bai (2004) shifted the formulation from the potential to the stream function,
providing a more accurate representation of the bottom boundary by defining it as a
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streamline. The superior performance of this model is somewhat overshadowed by the
vector equation which is derived for the three-dimensional (3-D) case. The drawback of
dealing with a vector equation was overcome by Toledo & Agnon (2010) who formulated
an equivalent scalar equation by introducing a pseudo-potential formulation.

In all of these equations, the flow problem was defined using the Cartesian coordinate
system, where the most simplistic boundary shape is a rectangle. This incorporates a
boundary on the linear free surface and on a horizontal bed, in addition to lateral boundary
conditions. The vertical profiles are subsequently calculated as the solution of waves
propagating over a horizontal bottom.

Belibassakis & Athanassoulis (2006) addressed normally incident waves on a sloping
plane beach using polar coordinates. A polar MSE provides an accurate representation of
flow problems with radial-shaped bathymetries. The use of polar coordinates, as opposed
to Cartesian coordinates, introduces a bathymetry with a constant-slope bed as the basic
problem formulation. Therefore, the vertical profiles arising from the polar formulation
include the bottom gradient, which is absent from the Cartesian-based profiles. This
led Schwartz et al. (2023) to formulate the polar–Cartesian (PC) MSE (PCMSE) by
introducing the Cartesian equivalent of the polar vertical profile. This approach utilises
the advantage of each coordinate system: on the one hand, it introduces a more accurate
vertical profile than the Cartesian-based equations and, on the other hand, it provides
satisfactory results for non-radial problems. The analytical formulation of the coefficients
in the resulting equation was lengthy and complex, resolved by a series expansion in the
bottom steepness. Alternatively, the coefficients were calculated numerically, in which
case there are no limitations on the bottom slope. The equation is therefore also referred
to as the PC steep-slope equation (PCSSE).

A two-dimensional (2-D) long-wave limit of this equation, referred to as the long
PC steep-slope equation (LPCSSE), is developed in § 2. In this equation, an analytical
approximation of the coefficients is provided without limitations regarding the bottom
slope. In § 3, a long-wave 3-D PC equation is developed, complementing the 2-D and
quasi-3-D equations developed in Schwartz et al. (2023). In the PCSSE, the velocity
profiles are influenced by the wavenumbers in the x and y directions, which in turn are
dependent on the wave direction. This dependency creates a challenge in formulating a
general 3-D equation. However, when considering the long-wave limit, the velocity profiles
are independent of the wavenumber, facilitating the development of a 3-D equation for
this case. In § 4, 2-D and 3-D long-wave PC equations are developed in the time domain.
These equations are referred to as the long time-dependent PC equations (LTDPCEs). This
is accomplished by following the procedure presented in Porter (2019) which extended
the shallow-water equation to the next order. The equation provided there is referred
to as the extended shallow-water equation (ESWE) and is effectively a long-wave limit
of the complementary MSE. As stated in that work, the validity of such linear long-
wave-limit equations is ensured by assuming that the free-surface elevation, ζ , remains
small, with | ∇ζ |≈ (| ζ |/λ)� ((h/λ))3, where h denotes the depth and λ the wavelength.
Simulations of the 2-D LPCSSE and LTDPCE are presented in § 5 and compared with the
ESWE. In § 6, conclusions are drawn.

2. The 2-D long-wave PCSSE
The equations governing the irrotational flow of an incompressible, inviscid fluid with a
free surface, in terms of the polar coordinates, are given by

1
r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2
∂2ψ

∂θ2 = 0, −α < θ < 0, (2.1)
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Figure 1. Polar coordinates: problem description.

1
r

∂ψ

∂θ
+ 1
σ

∂2ψ

∂r2 = 0, θ = 0, (2.2)

ψ = 0, θ = −α, (2.3)

where r and θ are the radial distance and angle, respectively, θ = 0 represents the mean
free surface, θ = −α the bottom location and r = 0 the shore, as depicted in figure 1. This
formulation refers to a time-harmonic flow such that the time-harmonic stream function is
defined by Re[ψe−iωt ], where ω is the angular frequency of the incoming wave and σ =
ω2/g, g being the gravitational acceleration. Function ψ =ψ(r, θ) is a complex-valued
function.

Schwartz et al. (2023) derived the PCSSE using the following normalised, θ -dependent
profile:

Fp(θ)= sinh(γ (θ + α))

sinh(γ α)
, (2.4)

where γ is a constant, equivalent to the wavenumber in the Cartesian formulation.
The vertical analytical integration of the Cartesian-equivalent profile produced complex
terms, necessitating the numerical calculation of the coefficients. In the following, we
consider the long-wave limit of this profile, which significantly simplifies the coefficients
and enables the use of analytical expressions based on this approximation. This is achieved
by taking the leading-order term of the polar profile for a long-wave approximation
(γ θ, γ α� 1) (2.4):

Fp(θ)≈ 1 + θ

α
+ O

(
(γ α)3

)
. (2.5)

The equivalent Cartesian terms are derived by substituting the following relations
(figure 2):

θ = arctan
(

zh′

h

)
, α= arctan(h′). (2.6)

Here h′ is the slope of the bottom bathymetry and is defined in figure 1. The vertical
Cartesian-equivalent profile, neglecting the higher-order terms, is given as

Fpc
(
h(x), h′(x), z

)= 1 + arctan
(
zh′/h

)
arctan(h′)

. (2.7)

The vertical integration of this simplified profile still presents some complications.
Integrating arctan(n) with respect to a general parameter n leads to expressions
involving non-elementary functions. To avoid these terms and simplify the mathematical
representation of the coefficients, we utilise an approximation of this function, as provided
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Figure 2. Polar–Cartesian relations.

in Hastings (1955). This approximation is represented as a polynomial of n and has a
maximum error of 0.6 per mil in the range | n |≤ 1:

App1: arctan(n)≈ c1n + c3n3 + c5n5, (2.8)

with c1 = 0.995354, c3 = −0.288679 and c5 = 0.079331. In the rest of the region, a
similar approximation for the inverse parameter 1/n can be utilised, providing a rational
function approximation:

App2: arctan(n)≈ Pi

2
−
(

c1
1
n

+ c3
1
n3 + c5

1
n5

)
in n > 1, (2.9)

App3: arctan(n)≈ − Pi

2
−
(

c1
1
n

+ c3
1
n3 + c5

1
n5

)
in n <−1 (2.10)

with the same maximum error.
Noting that (z/h)≤ 1, the term in the numerator of (2.7), (zh′/h), can be classified by

dividing it into three regions:

(i) | h′ |≤ 1. The absolute value of the integrand is smaller than that along the integration
range, and therefore:

∫ 0
−h F dz = ∫ 0

−h App1 dz.
(ii) h′ > 1. The integrand crosses two approximation regions, and therefore the

integration is divided into two parts:
∫ 0
−h F dz = ∫ −h/h′

−h App3 dz + ∫ 0
−h/h′ App1 dz.

(iii) h′ <−1. The approximation is also divided into two parts:
∫ 0
−h F dz =∫ h/h′

−h App2 dz + ∫ 0
h/h′ App1 dz.

Applying this approximation requires distinguishing between the different regions of
the bottom slope along the flow. Once the region is identified, the appropriate integrand
can be substituted. An additional option is to numerically integrate the vertical profile. In
both options, there are no limitations on the steepness of the bottom slope, leading to a
2-D steep-slope equation, referred to as the LPCSSE.

3. The 3-D PCSSE
The challenge in deriving an equation for a 3-D geometry stems from the varying direction
of the depth gradient at each location. In addition, the wavenumber components in the
x and y directions are influenced by the depth gradient direction, necessitating their
determination at each point. By taking the long-wave limit, the velocity profiles become
independent of the wavenumber, helping to overcome this challenge. The remaining issue
is addressed by defining a local axis system where the x axis is aligned with the depth
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gradient direction at each point and the y axis is perpendicular to the x axis. This results
in a locally horizontal depth in the direction of y.

The time-harmonic vector stream function is defined as

Ψ (x, y, z)= ( f1ψ1(x, y), f2ψ2(x, y)). (3.1)

The vertical profiles of the vector stream function are defined by

f1(h, h′, z)= sinh
(
γ (arctan(zh′/h)+ arctan(h′)

)
sinh (γ arctan(h′))

, (3.2)

f2(h, z)= sinh (k(z + h))

sinh(kh)
, (3.3)

where γ is the x component and k is the y component of the wavenumber vector, f1 is the
Cartesian equivalent of the polar profile and f2 corresponds to a horizontal bottom.

The velocities are calculated accordingly:

u(x, y, z)= (u(x, y, z), v(x, y, z))= (
f1zψ1, f2zψ2

)
, (3.4)

w(x, y, z)= −∇ · Ψ = − f1xψ1 − f1ψ1x − f2ψ2y , (3.5)

where ∇ = (∂x , ∂y).
The free-surface location is derived from the linear kinematic condition:

η(x, y)= 1
iω

∇ ·Ψ0(x, y)= 1
iω

(
ψ1x (x, y)+ψ2y (x, y)

)
. (3.6)

These terms are substituted into the time-averaged Lagrangian density:

L =
∫ 0

−h

(
|u|2 + |v|2 + |w|2

)
dz − g|η|2

= d1|ψ1|2 + d2|ψ2|2 + c|ψ1|2 + a1|ψ1x |2 + a2|ψ2y |2
+ 2b1Re(ψ1ψ1x ∗)+ 2b2Re(ψ1ψ2y ∗)+ 2eRe(ψ1xψ2y ∗), (3.7)

where the coefficients are defined as

a1 =
∫

f 2
1 dz − 1

σ
, a2 =

∫
f 2
2 dz − 1

σ
, b1 =

∫
f1 f1x dz, b2 =

∫
f2 f1x dz,

(3.8)

c =
∫

f 2
1x

dz, e =
∫

f1 f2 dz − 1
σ
, d1 =

∫
f 2
1z

dz, d2 =
∫

f 2
2z

dz. (3.9)

The variation with respect to ψ1 results in

δL

δψ1
= ∂L

∂ψ1
− ∂

∂x

∂L

∂ψ1x

= 0,

a1ψ1xx + eψ2xy + a1xψ1x + (ex − b2)ψ2y + (b1x − c − d1)ψ1 = 0. (3.10)

The variation with respect to ψ2 provides the coupled equation

δL

δψ2
= ∂L

∂ψ2
− ∂

∂y

∂L

∂ψ2y

= 0,

a2ψ2yy + eψ1xy + b2ψ1y − d2ψ2 = 0. (3.11)

Equations (3.10) and (3.11) constitute a coupled system on the dynamic x, y axes. The
equations are now rotated to the static axis system for which x̃ is perpendicular and ỹ is

1009 A64-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.303


R. Schwartz

x̃

ỹ

xy

δ

Local
bottom

gradient
direction

Figure 3. The dynamic x , y and static x̃ , ỹ Cartesian axis systems. The x axis is aligned with the direction
of the local bottom gradient. The z and z̃ axes are parallel to the drawing plane. Angle δ represents the
counterclockwise angle between the two axis systems.

parallel to the shoreline. Defining δ as the counterclockwise rotation angle between the
two systems (figure 3), we can define

x̃ = x cos δ − y sin δ, (3.12)
ỹ = x sin δ + y cos δ. (3.13)

The relationships between the derivatives in the (x̃, ỹ) and (x, y) coordinate systems
are given by

ψy = − sin(δ)ψ̃x̃ + cos(δ)ψ̃ỹ, (3.14)

ψyy = sin2(δ)ψ̃x̃ x̃ − sin(2δ)ψ̃x̃ ỹ + cos2(δ)ψ̃ỹ ỹ, (3.15)

ψx = cos(δ)ψ̃x̃ + sin(δ)ψ̃ỹ, (3.16)

ψxx = cos2(δ)ψ̃x̃ x̃ + sin(2δ)ψ̃x̃ ỹ + sin2(δ)ψ̃ỹ ỹ, (3.17)

ψxy = sin(2δ)
2

(ψ̃ỹ ỹ − ψ̃x̃ x̃ )+
(

cos2(δ)− sin2(δ)
)
ψ̃x̃ ỹ . (3.18)

Additionally, the relationships between the coefficients are given by

b1 = cos(δ)b̃x1 + sin(δ)b̃y1, b2 = cos(δ)b̃x2 + sin(δ)b̃y2, (3.19)

c = cos2(δ)c̃x + sin(2δ)c̃xy + sin2(δ)c̃y, (3.20)

where

b̃x1 =
∫

f̃1 f̃1x̃ dz, b̃y1 =
∫

f̃1 f̃1ỹ dz, b̃x2 =
∫

f̃2 f̃1x̃ dz, b̃y2 =
∫

f̃2 f̃1ỹ dz,

(3.21)

c̃x =
∫

f̃ 2
1x̃

dz, c̃xy =
∫

f̃1x̃ f̃1ỹ dz, c̃y =
∫

f̃ 2
1ỹ

dz. (3.22)
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Equations (3.10) and (3.11) are now expressed in the static coordinate system. The
transformed form of equation (3.10) is given by

ã1

(
cos2(δ)ψ̃1x̃ x̃ + sin(2δ)ψ̃1x̃ ỹ + sin2(δ)ψ̃1ỹ ỹ

)
+ ẽ

(
1
2

sin(2δ)(ψ̃2ỹ ỹ − ψ̃2x̃ x̃ )+ (cos2(δ)− sin2(δ))ψ̃2x̃ ỹ

)
+
(

cos(δ)ã1x̃ + sin(δ)ã1ỹ

) (
cos(δ)ψ̃1x̃ + sin(δ)ψ̃1ỹ

)
+ (

cos(δ)ẽx̃ + sin(δ)ẽỹ − cos(δ)b̃x2 − sin(δ)b̃y2
) (

cos(δ)ψ̃2ỹ − sin(δ)ψ̃2x̃

)
+
(

cos2(δ)b̃x1x̃ + 1
2

sin(2δ)b̃y1x̃
+ 1

2
sin(2δ)b̃x1ỹ + sin2(δ)b̃y1ỹ

− cos2(δ)c̃x̃ − sin(2δ)c̃x̃ ỹ − sin2(δ)c̃ỹ − d̃1

)
ψ̃1 = 0. (3.23)

Similarly, the transformed form of equation (3.11) is given by

ã2

(
sin2(δ)ψ̃2x̃ x̃ − sin(2δ)ψ̃2x̃ ỹ + cos2(δ)ψ̃2ỹ ỹ

)
+ ẽ

(
1
2

sin(2δ)(ψ̃1x̃ ỹ − ψ̃1x̃ x̃ )+ (cos2(δ)− sin2(δ))ψ̃1x̃ ỹ

)
+ (

cos(δ)b̃x2 + sin(δ)b̃y2
) (
ψ̃1ỹ cos(δ)− ψ̃1x̃ sin(δ)

)
− d̃2ψ̃2 = 0. (3.24)

Dividing both equations by cos2(δ) provides

ã1

(
ψ̃1x̃ x̃ + 2 tan(δ)ψ̃1x̃ ỹ + tan2(δ)ψ̃1ỹ ỹ

)
+ ẽ

(
tan(δ)(ψ̃2ỹ ỹ − ψ̃2x̃ x̃ )+ (1 − tan2(δ))ψ̃2x̃ ỹ

)
+
(

ã1x̃ + tan(δ)ã1ỹ

) (
ψ̃1x̃ + tan(δ)ψ̃1ỹ

)
+ (

ẽx̃ + tan(δ)ẽỹ − b̃x2 − tan(δ)b̃y2
) (
ψ̃2ỹ − tan(δ)ψ̃2x̃

)
+
(

b̃x1x̃ + tan(δ)b̃y1x̃
+ tan(δ)b̃x1ỹ + tan2(δ)b̃y1ỹ

−c̃x̃ − 2 tan(δ)c̃x̃ ỹ − tan2(δ)c̃ỹ − d̃1

tan2(δ)

)
ψ̃1 = 0, (3.25)

ã2

(
tan2(δ)ψ̃2x̃ x̃ − 2 tan(δ)ψ̃2x̃ ỹ + ψ̃2ỹ ỹ

)
+ ẽ

(
tan(δ)(ψ̃1x̃ ỹ − ψ̃1x̃ x̃ )+ (1 − tan2(δ))ψ̃1x̃ ỹ

)
+ (

b̃x2 + tan(δ)b̃y2
) (
ψ̃1ỹ − tan(δ)ψ̃1x̃

)
− d̃2

cos2(δ)
ψ̃2 = 0. (3.26)

Equations (3.10) and (3.11) are to be solved in the dynamic x , y, z coordinate system
with the appropriate lateral boundary conditions. Following this, the system is rotated at
each point by the rotation angle δ, as outlined in equations (3.12) and (3.13). Alternatively,
equations (3.25) and (3.26) can be solved along with the rotated lateral boundary
conditions.
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4. The time-domain equation
Generally, mild-slope-type equations are time-harmonic, meaning they are defined in the
frequency domain. Porter (2019) developed an ESWE by accounting for the next order in
the wavelength. Following a similar procedure and using the PC vertical profiles, a MSE
is formulated in the time domain. The 2-D case is addressed in § 4.1, while the 3-D case is
covered in § 4.2.

4.1. The 2-D equation
The horizontal velocity is defined by a separation of variables:

u(x, z, t)= f1z (z, h(x), h′(x))u0(x, t), (4.1)

where f1 is the vertical profile as calculated in equation (3.2).
Integrating vertically provides the stream function

ψ(x, z, t)= f1u0, (4.2)

and taking the horizontal derivative provides the vertical velocity component

w(x, z, t)= − f1x u0 + f1ζt , (4.3)

where the linear kinematic free-surface condition, u0x = −ζt , was substituted. Here,
ζ(x, t)= η(x)e−iωt .

It is noted that the bottom boundary condition, w+ h′u = 0 on z = −h, is satisfied
under this representation. This is in addition to the continuity equation, which is inherently
satisfied by the stream function definition.

Next, the horizontal component of the linearised momentum equation is utilised:

ρwt = −pz − ρg, (4.4)

and by substituting the vertical velocity profile, we derive

pz = ρ
(

f1x u0t − f1ζt t − g
)
, (4.5)

where p denotes the pressure and ρ the fluid density.
The equation is vertically integrated from an arbitrary elevation, z, to the free surface,

retaining only the leading-order terms:

p |ζz = pa − p(z)= ρ

((∫ 0

z
f1x dz

)
u0t −

(∫ 0

z
f1dz

)
ζt t − g(ζ − z)

)
, (4.6)

after which the pressure is isolated:

p(z)= pa + ρ

(
g(ζ − z)−

(∫ 0

z
f1x dz

)
u0t +

(∫ 0

z
f1dz

)
ζt t

)
. (4.7)

Taking the derivative in the x direction:

px = ρ

(
gζx −

(∫ 0

z
f1x dz

)
x

u0t −
(∫ 0

z
f1x dz

)
u0xt +

(∫ 0

z
f1dz

)
x

ζt t

+
(∫ 0

z
f1dz

)
ζt t x

)
. (4.8)
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Defining e = ∫ 0
z f dz, the Leibniz integration rule is utilised to derive

px = ρ
(
gζx − exx u0t − ex u0xt + exζt t + eζt t x

)
. (4.9)

This expression is substituted into the horizontal component of the momentum equation,
applied in a vertically averaged sense:∫ 0

−h
ut dz = − 1

ρ

∫ 0

−h
px dz, (4.10)

(1 − E2)) u0t = −ghζx − 2E1ζt t − E0ζt t x , (4.11)

where E0 = ∫ 0
−h e dz, E1 = ∫ 0

−h ex dz and E2 = ∫ 0
−h exx dz.

We then divide by the left-hand coefficient and differentiate with respect to x :

u0xt = − ∂

∂x

(
ghζx + 2E1ζt t + E0ζt t x

1 − E2

)
. (4.12)

The linear relation u0xt = −ζt t is utilised to eliminate u0 and provide an equation as a
function of ζ :

ζt t = ∂

∂x

(
ghζx + 2E1ζt t + E0ζt t x

1 − E2

)
. (4.13)

This equation is referred to as the LTDPCE in the following sections.

4.2. The 3-D equation
The same procedure is applied here to the 3-D case. As in the equation in the frequency
domain, a local axis system is oriented such that the x axis is aligned with the bottom
gradient and perpendicular to the y axis. The same profiles are utilised:

u(x, y, z, t)= (u(x, y, z, t), v(x, y, z, t))

= (
f1z (h, h′, z)u0(x, y, t), f2z (h, h′, z)v0(x, y, t)

)
, (4.14)

Ψ (x, y, z, t)= ( f1u0, f2v0) , (4.15)
w(x,y, z, t)= −∇ · Ψ = − f1x u0 − f1u0x − f2v0y , (4.16)

where f1 and f2 are defined in equations (3.2) and (3.3).
The relation to the free-surface location is provided by the linear kinematic free-surface

condition:

ζt (x, y, z, t)=w |z=0= −u0x − v0y . (4.17)

The bottom boundary condition, w+ ∇ · u = 0, is satisfied in this representation.
Next, the horizontal component of the linearised momentum equation is utilised:

ρwt = −pz − ρg, (4.18)

and by substituting the vertical velocity profile, we derive

pz = ρ
(

f1x u0t + f1u0xt + f2v0yt − g
)
. (4.19)
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The equation is vertically integrated from an arbitrary elevation z to the free surface
while retaining only the leading-order terms:

p |ζz = pa − p(x, y, z)= ρ

((∫ 0

z
f1x dz

)
u0t

+
(∫ 0

z
f1dz

)
u0xt +

(∫ 0

z
f2dz

)
v0yt − g(ζ − z)

)
, (4.20)

after which the pressure is isolated:

p = pa + ρ

(
g(ζ − z)−

(∫ 0

z
f1x dz

)
u0t −

(∫ 0

z
f1dz

)
u0xt −

(∫ 0

z
f2dz

)
v0yt

)
.

(4.21)
Taking the derivatives in the horizontal directions:

px = ρ

(
gζx −

(∫ 0

z
f1xx dz

)
u0t − 2

(∫ 0

z
f1x dz

)
u0xt −

(∫ 0

z
f1dz

)
u0xxt

−
(∫ 0

z
f2x dz

)
v0yt −

(∫ 0

z
f2dz

)
v0xyt

)
, (4.22)

py = ρ

(
gζy −

(∫ 0

z
f1x dz

)
u0yt −

(∫ 0

z
f1dz

)
u0xyt −

(∫ 0

z
f2dz

)
v0yyt

)
. (4.23)

Defining g1 = ∫ 0
z f1 dz, g2 = ∫ 0

z f2 dz and utilising the Leibniz integration rule:

py = ρ
(
gζy − g1x u0yt − g1u0xyt − g2v0yyt

)
, (4.24)

px = ρ
(
gζx − g1xx u0t − 2g1x u0xt − g1u0xxt − g2x v0yt − g2v0xyt

)
. (4.25)

These expressions are now substituted into the horizontal components of the momentum
equation, applied in a vertically averaged sense:

F1u0t = −ghζx + G1cu0t + 2G1bu0xt + G1au0xxt + G2bv0yt + G2av0xyt , (4.26)

F2v0t = −ghζy + G1bu0yt + 2G1au0xyt + G2av0yyt , (4.27)

where F1 = ∫ 0
−h f1z dz, F2 = ∫ 0

−h f2z dz, G1a = ∫ 0
−h g1dz, G1b = ∫ 0

−h g1x dz, G1c =∫ 0
−h g1xx dz, G2a = ∫ 0

−h g2dz and G2b = ∫ 0
−h g2x dz.

Equations (4.17), (4.26) and (4.27) provide a system of partial differential equations that
can be solved for the vector stream function components and free-surface location. The
equations are rotated to the fixed x, y axis system in the same way as in the 3-D PCSSE.

5. Simulations
Numerical simulations of the LPCSSE and the LTDPCE are compared with those of the
ESWE, as these equations provide a first-order long-wave approximation. Additionally,
the PCSSE derived by Schwartz et al. (2023) was simulated, with no visible differences
observed compared with the LPCSSE in the examples and regions considered in the
presented simulations. The simulations are achieved by numerically calculating the
coefficients and using the NDsolve function in Mathematica. All simulations are time-
harmonic, ensuring no additional treatment is needed for the time-dependent models.
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Booij’s ramp

(a) (b)

(c) (d )

Roseau

Constant-slope beach

Bragg II

Figure 4. Illustration of the test case bathymetries.
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(b)
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LPCSSE

LTDPCE
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Exact

LPCSSE

LTDPCE

10

σh0

σh0

20 50

Figure 5. Reflection coefficient for a progressive wave flowing over Booij’s ramp. (a) The full domain.
(b) Enlargement of a part of the region.

The spatial step size is approximately 0.01. They are conducted on several bottom
topographies (figure 4), including Booij’s ramp, a constant-slope beach with normal and
oblique incident waves, Roseau’s bathymetry and a class II Bragg resonance. The results
are presented in the following figures.

The bed shape in the form of a ramp, as tested by Booij (1983), is simulated in
figure 5. The ramp consists of a constant-slope region between two semi-infinite horizontal
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ESWE
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Figure 6. Normalised free-surface values versus σh for a normal incidence simulation. Regular standing
wave with (a) 45◦ bed slope and (b) 30◦ bed slope.

segments. Both PC models provide a better match to the exact solution in the range σh0
between 8 and 15 as shown in figure 5(b), as well as for waves shorter than σh0 = 4. For
longer waves, the differences become indistinguishable.

The next test case involves normal and oblique incident waves on a constant-slope
beach. An exact solution for waves that are normally incident to the bottom gradient is
found in Stoker (1957) for bottom slopes of Π/2n, where n is an integer. A propagating
wave solution is given as the sum of two standing waves: a regular standing wave,
finite at the origin, and a singular standing wave, infinite at the origin. Simulations of
the regular standing wave were performed on bed slopes up to 45◦. A relative error
Er = (Rm − Ra)/(Ra) is defined, where Rm and Ra are the PCMSE/ESWE model and
the analytical reflection coefficients, respectively. For 45◦ degrees (figure 6a) the LPCSSE
provides a very accurate result up to σh0 = 1.3 (Er = 0.0015), while the ESWE deviates
from the exact solution well before that (Er = 0.17 at σh0 = 1.3). The LTDPCE closely
follows the LPCSSE until σh0 = 1.2, then remains between the LPCMSE and ESWE
(Er = 0.025 at σh0 = 1.3). For 30◦ degrees (figure 6b), the results are similar but less
pronounced. The analytical LPCSSE was simulated in this case, requiring only App1
(2.8) for the calculation, and produced results identical to the approximated analytical
equation.

Ehrenmark (1998) presented an exact solution for obliquely incident waves over a plane
beach. The solution is limited, as in the normal incidence of Stoker, to bottom slopes
of Π/2n, where n is an integer. Figure 7 shows the case of 45◦ oblique incidence on a
45◦ bottom slope. The ESWE model performs better up to σh = 1.2 (maximum error of
0.034 for LPCMSE, 0.056 for LTDPCE and 0.007 for ESWE), but beyond that, the PC
equations provide more accurate results (for example, at σh = 1.5, the relative error is
0.064 for LPCMSE, 0.011 for LTDPCE and 0.18 for ESWE).
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Figure 7. Normalised free-surface values versus σh for an oblique incidence simulation and an incidence
angle of 45◦.

Roseau (1976) derived the only analytical solution for waves propagating over a non-
constant-slope bathymetry. In his solution, the bed location is defined by

x(ξ)

h0
= ξ − (2Πβ)−1

(
1 − hL

h0

)
ln
(

1 + e2βΠξ + 2eβΠξ cos(βΠ)
)
, (5.1)

z(ξ)

h0
= −1 + (Πβ)−1

(
1 − hL

h0

)
arctan

(
sin(βΠ)

e−βΠξ + cos(βΠ)

)
, (5.2)

where β ∈ (0, 1) is a shoaling parameter and the bed is defined parametrically as
z(ξ)= −h(x(ξ)). The bed function tends to two flat semi-infinite sections at the limits
x → ±∞. In figure 8, a comparison of the reflection coefficients for the steepness value
β = 0.5 is presented. The LPCSSE provides a significantly better match than the ESWE
up to approximately σh0 = 1.2. The LTDPCE is even better, with results very close to
the exact solution up to σh0 = 1.6. This is the region where the long-wave equations
are expected to perform. The relative error of the reflection coefficients is presented in
figure 8(b). For more moderate slopes, i.e. for smaller β values, the errors of all models
reduce significantly.

The classical MSE, which accounts for second-order terms, generally provides a good
agreement with the class I Bragg resonance. This phenomenon involves the interaction
of two surface waves and one bottom undulation that satisfy predefined conditions (see
e.g. Liu & Yue 1998). This is not the case in class II, for which they fail to provide a
reasonable approximation. Class II involves the interaction of two surface waves and two
bottom undulations. A simulation of the impact of class II on the free-surface values is
provided in figure 9. This test case was presented by Guazelli et al. (1992) and involves
two bed wavenumbers, kb1 = π/6 cm−1 and kb2 = π/3 cm−1, a patch length of L = 48 cm
outside of which the bed is horizontal and a ratio of the average bottom depth to the bed
wavenumber amplitude of �H/H0 = 0.25 and H0 = 2.5 cm. Guazelli’s model, which is
used for the comparison, accounts for three evanescent modes. In the first peak (σh ≈ 1.7),
the PC-based models show a significantly better match than the ESWE compared with the
numerical results of Guazelli. This peak is the result of the class II resonance. In the
second peak (σh ≈ 3.1), the LTDPCE and ESWE are very far off. The LPCSSE shows
a reasonable match with the peak location and an excellent match with the width and
maximum value of the peak curve. This peak is the result of class I resonance.
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Figure 8. (a) Simulation of the reflection coefficient versus σh0 for the Roseau bathymetry; β = 0.5,
hL/h0 = 0.1. (b) Simulation of the relative error versus σh0.
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Figure 9. Comparison of the reflection coefficient values obtained from simulations of the LPCSSE (red dot-
dashed curve), ESWE (blue small-dashed curve), LPCTDE (orange large-dashed curve) and the experimental
results obtained by Guazzelli, Rey & Belzons (1992) as shown in figure 2 of that article (black solid curve).

6. Conclusions
The formulation of a 2-D long-wave PCSSE is outlined. Unlike the full PCSSE, an
approximate, explicit expression of the coefficients in the equation is developed, with no
limitations on the steepness of the bed. This is achieved by approximating the tanh function
as a finite polynomial. Due to this simplification, the vertical profile of the flow parameters
is simplified, allowing for analytical vertical integration. Following this, an extension of
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the quasi-3-D equation for obliquely incident waves to a full 3-D equation is formulated.
A local axis system is defined, with one axis pointing in the depth gradient direction,
resulting in a locally horizontal bottom in the perpendicular direction. After deriving an
equation in the dynamic axis system, the equation is rotated to the fixed axis system, where
the axes are parallel and perpendicular to the beach. This general case was absent in the
development of the original equation and is an important contribution to its application.
The equations stated thus far are developed using a time-averaged variational approach in
the frequency domain. Corresponding 2-D and 3-D equations in the time domain are also
developed.

The LPCSSE and LTDPCE were compared with the ESWE for several 2-D test cases,
in addition to the quasi-3-D case of obliquely incident waves. The PC-based equations
provide a better match to the analytical results in almost all of the simulations. The
differences were more pronounced for steeper bottom slopes. These results demonstrate
the advantage of a PC-based equation over an equivalent Cartesian-based equation in the
long-wave region.

Declaration of interests. The author reports no conflict of interest.

REFERENCES

BELIBASSAKIS, K.A. & ATHANASSOULIS, G.A. 2006 A coupled mode technique for the run-up of non-
breaking dispersive waves on plane beaches. In Proc. 25th Int.Conf. on Offshore Mechanics and Arctic
Engineering, OMAE2006. American Society of Mechanical Engineers (ASME).

BERKHOFF, J.C.W. 1972 Computation of combined refraction-diffraction. In The 13th International
Conference on Coastal Engineering, pp. 471–490. American Society of Civil Engineers (ASCE).

BOOIJ, N. 1983 A note on the accuracy of the mild-slope equation. Coast. Engng 7 (3), 191–203.
CHAMBERLAIN, P.G. & PORTER, D. 1995 The modified mild slope equation. J. Fluid Mech. 291, 393–407.
EHRENMARK, U.T. 1998 Oblique wave incidence on a plane beach: the classical problem revisited. J. Fluid

Mech. 368, 291–319.
GUAZZELLI, E., REY, V. & BELZONS, M. 1992 Higher-order Bragg reflection of gravity surface waves by

periodic beds. J. Fluid Mech. 245, 301–317.
HASTINGS, C. 1955 Approximations for Digital Computers. Princeton University Press.
KIM, J.W. & BAI, K.J. 2004 A new complementary mild slope equation. J. Fluid Mech. 511, 25–40.
KIRBY, J.T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171–186.
LIU, Y. & YUE, D.K.P. 1998 On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid

Mech. 356, 297–326.
MILES, J.W. & CHAMBERLAIN, P.G. 1998 Topographical scattering by gravity waves. J. Fluid Mech. 361,

175–188.
PORTER, R. 2019 An extended linear shallow water equation. J. Fluid Mech. 876, 413–427.
ROSEAU, M. 1976 Asymptotic Wave Theory. Amsterdam- Oxford.
SCHWARTZ, R., ORON, A. & AGNON, Y. 2023 The polar-Cartesian mild-slope equation. J. Fluid Mech. 970

(A4), 1–22.
SMITH, R. & SPRINKS, T. 1975 Scattering of surface waves by a conical island. J. Fluid Mech. 72 (02),

373–384.
STOKER, J.J. 1957 Water Waves. Interscience.
TOLEDO, Y. & AGNON, Y. 2010 A scalar form of the complementary mild-slope equation. J. Fluid Mech. 656,

407–416.

1009 A64-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.303

	1. Introduction
	2. The 2-D long-wave PCSSE
	3. The 3-D PCSSE
	4. The time-domain equation
	4.1. The 2-D equation
	4.2. The 3-D equation

	5. Simulations
	6. Conclusions
	References

