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Abstract

The W-operator, W([n]), generalises the cut-and-join operator. We prove that W([n]) can be written as the
sum of n! terms, each term corresponding uniquely to a permutation in Sn. We also prove that there is a
correspondence between the terms of W([n]) with maximal degree and noncrossing partitions.
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1. Introduction

The cut-and-join operator ∆,

∆ =
1
2

∑
i, j≥1

(
(i + j)pi p j

∂

∂pi+ j
+ i jpi+ j

∂2

∂pi∂p j

)
,

introduced by Goulden and Jackson [1, 2], is an infinite sum of differential operators
in variables pi, i ≥ 1. It plays an important role in calculating the simple Hurwitz
number [2–4, 6] and in many other enumerative geometry problems [7, 8, 12].

Mironov, Morosov and Natanzon [9, 10] constructed the W-operators W([n]), where
[n] = (1i1 2i2 . . .nin ) is a partition of a positive integer n. The W-operators are differential
operators acting on the formal power series C[[Xi j]]i, j≥1, where the Xi j are coordinate
functions on the positive-half-infinite matrix. A subring ofC[[Xi j]]i, j≥1 isC[p1, p2, . . .],
where pk = Tr(Xk) and X = (Xi j)i, j≥1. A direct calculation shows that W([2]) is the cut-
and-join operator ∆ on the ring C[p1, p2, . . .]. We study the structure of the operators
W([n]), n ≥ 1, as operators on the ring C[p1, p2, . . .].

In Section 2, we review the natural quiver structure of permutations and show how
all permutations in Sn+1 can be constructed from permutations in Sn. The key element
is Construction 2.2. In Section 3, we review the properties of W([n]) and prove the
following theorem about the structure of W([n]).
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Theorem 1.1. The W-operator, W([n]), is a well-defined operator on C[p1, p2, . . . ]. It
can be written as the sum of n! summands FSα, each of which corresponds to a unique
quiver Q̂α or, equivalently, a unique permutation α ∈ Sn.

In Section 4, we define the degree of each summand (term) of W([n]) and show that
the maximal degree is n + 1. The summands with maximal degree can be used to study
certain Hurwitz numbers (see [5]). In Section 5, we count the number of summands
of W([n]) with maximal degree by showing that there is a one-to-one correspondence
between the summands with maximal degree and the noncrossing permutations of
[n] = {1, . . . , n} (Theorem 5.4).

2. Permutation group and quivers

We first review the quiver structure of permutations. Then, we give a new inductive
construction of the permutations in Sn by constructing n distinct permutations in
Sn from a given permutation in Sn−1. The idea of this construction comes from the
structure of the W-operator (Remark 3.6).

A quiver is a directed graph. A quiver Q = (V, A, s, t) is a quadruple, where V is the
set of vertices, A is the set of arrows and s and t are two maps A→ V . For a ∈ A, s(a)
is the source of this arrow and t(a) is the target. We assume that V and A are finite sets.
If B is a subset of A and VB = {s(a), t(a) : a ∈ B}, we call (VB, B, s′, t′) the subquiver
of Q, where s′ = s|B, t′ = t|B. A quiver Q = (V, A, s, t) is connected if the underlying
undirected graph of Q is connected. A connected quiver Q = (V, A, s, t) is a loop if, for
any vertex v ∈ V , there is a unique arrow a ∈ A such that s(a) = v and a unique arrow
b ∈ A such that t(b) = v. A chain is obtained by omitting a single arrow in a loop.

Any permutation α ∈ Sn has a natural quiver structure Qα = (Vα, Aα, s, t), where
Vα = {1, . . . , n} and Aα = {i→ α(i) : 1 ≤ i ≤ n}. The quiver Qα only contains loops.
Since we want to use induction, we construct another quiver Q̂α from Qα.

Construction 2.1. Given α ∈ Sn, let Qα be the corresponding quiver. There is a unique
arrow a in Qα such that s(a) = 1. We substitute this arrow by a new one â, where
s(â) = n + 1 and t(â) = t(a). Denote the new set of arrows by Âα, the new vertex set by
V̂α = {1, . . . , n, n + 1} and the new quiver by Q̂α = (V̂α, Âα, s, t).

For example, if α = (321) ∈ S3, then Qα and Q̂α are

Qα : 3 2 1 and Q̂α : 4 3 2 1.

Here, Qα is a loop, while Q̂α is a chain. In general, Q̂α consists of one chain and
possibly a number of loops. The chain in Q̂α always starts from n + 1 and stops at 1.
Since we can construct Qα uniquely from Q̂α, we have a one-to-one correspondence
between permutations α and quivers Q̂α.
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Let α ∈ Sn. From the quiver Q̂α, we construct n + 1 quivers corresponding to
permutations in Sn+1. To construct a new quiver Q̂β representing an element β ∈ Sn+1,
we add one more vertex n + 2 into V̂α and add arrows a1, a2 in Âα such that

s(a1) = n + 2, t(a2) = n + 1,

where a1, a2 can be the same arrow. Here is the construction.

Construction 2.2. Given α ∈ Sn, write α = α1α2 . . . αk as the product of disjoint cycles.
We assume that 1 ∈ α1. The corresponding subquiver for α1 in Q̂α is the chain

Q̂α1 : n + 1 · · · 1.

Case 0. We extend the quiver for α1 directly to

Q̂β1 : n + 2 n + 1 · · · 1.

This subquiver represents a well-defined cycle β1 (by replacing n + 2 by 1), leading to
a permutation β ∈ Sn+1, where β = β1α2 . . . αk. In this case, a1, a2 are the same arrow

a1 = a2 : n + 2 n + 1.

Next, we consider the general case. Choose an arbitrary arrow a : i→ j in Q̂α. The
idea is to cut this arrow and reconnect the chain and loops in Q̂α. Since there are n
choices of the arrow in Q̂α, we can construct n permutations.

Case 1: Cut case, a ∈ Q̂α1 . In this case, Q̂α1 is

Q̂α1 : n + 1 · · · i j · · · 1.

First, cut the arrow i→ j, giving

n + 1 · · · i, j · · · 1.

Then, add the two arrows

a1 : n + 2 j a2 : i n + 1

to get the quivers

Q̂β1β2 : n + 2 j · · · 1, i n + 1 · · · .

They represent two disjoint cycles in Sn+1 by replacing n + 2 by 1. Let β1 and
β2 be the permutations corresponding to these two quivers, where 1 ∈ β1, and let
β = β1β2α2 . . . αk be the permutation in Sn+1 obtained by cutting the arrow a.

Case 2: Join case, a < Q̂α1 . Without loss of generality, assume that a ∈ Q̂α2 . The
corresponding quivers for α1 and α2 are
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Q̂α1α2 : n + 1 · · · 1, i j · · · .

As in Case 1, we cut the arrow i→ j to get

n + 1 · · · 1, j · · · i.

With the same process as in Case 1, we add the two arrows

a1 : n + 2 j a2 : i n + 1,

giving the chain

Q̂β1 : n + 2 j · · · i n + 1 · · · 1.

The quiver Q̂β1 represents a cycle in Sn+1 by replacing n + 2 by 1. Let β1 be the
corresponding permutation of Q̂β1 and let β = β1α3 . . . αk be the permutation in Sn+1
constructed in this case.

The following theorem is a direct result from Construction 2.2.

Theorem 2.3. For any α ∈ Sn, Construction 2.2 gives n + 1 distinct permutations in
Sn+1. Applying the construction to all α ∈ Sn gives all (n + 1)! permutations of Sn+1.

Definition 2.4. Let α be a permutation in Sn and let j be an integer such that 0 ≤ j ≤ n.
Denote by [α, j] the permutation in Sn+1 obtained from α in Construction 2.2 as
follows:

(1) [α, 0] corresponds to Case 0; and
(2) [α, j] for j > 0 corresponds to Case 1 and Case 2 by cutting arrow a with t(a) = j.

3. W-operator

First, we review the properties of the W-operator W([n]) (details can be found
in [9, 10]). Then, we calculate W([n + 1]) from W([n]) and relate the structure of the
W-operator W([n]) to the permutation group Sn and the quivers in Section 2.

Let X := (Xab)a≥1,b≥1 be an infinite matrix. Given a positive integer k, let

pk =
∑

a1,...,ak≥1

Xa1ak Xakak−1 . . . Xa2a1

denote the trace of Xk. Clearly, pk is a formal power series in C[[Xab]]a,b≥1.
The operator matrix D = (Dab)a≥1,b≥1 is the infinite matrix whose (a, b)-entry is

Dab =

∞∑
c=1

Xac
∂

∂Xbc
.
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In the rest of the paper, we prefer to write Dab = Xac∂/∂Xbc with the sum over c
implied. As differential operators, the normal ordered product of Dab and Dcd is

: DabDcd := Xae1 Xce2

∂

∂Xbe1

∂

∂Xde2

,

meaning that we always calculate the differentiation first. The normal ordered product
: Dan+1an Danan−1 . . .Da2a1 : is defined similarly.

Definition 3.1. For any positive integer n, the W-operator W([n]) is defined by

W([n]) :=
1
n

: tr(Dn) :=
1
n

∑
a1,...,an≥1

: Da1an Danan−1 . . .Da2a1 : .

Next, we review some important formulas.

Lemma 3.2 [9]. Let F(p) be an element in C[p1, p2, . . . ]. Then

DabF(p) =

∞∑
k=1

k(Xk)ab
∂F(p)
∂pk

.

Lemma 3.3 [9]. We have

Dcd(Xk)ab =

k−1∑
j=0

(X j)ad(Xk− j)cb.

In particular, by setting a = ai, b = a j, c = an+1, d = an, Lemma 3.3 gives

∞∑
k j=1

Dan+1an (Xk j )aia j =

∞∑
k j=1

k j−1∑
kn=0

(Xkn )aian (Xk j−kn )an+1a j =

∞∑
k j=1

∞∑
kn=1

(Xkn )aian (Xk j )an+1a j .

Lemma 3.4 [9, 10]. We have

Dan+2an+1 Daia j =
∑

k≥1, j≥0

(
(k + j)(X j)aian+1 (Xk)an+2a j

∂

∂pk+ j

)
+

∑
k, j≥1

(
k j(Xk)an+2an+1 (X j)aia j

∂2

∂pk∂p j

)
,

: Dan+2an+1 Daia j : =
∑
k, j≥1

(
(k + j)(X j)aian+1 (Xk)an+2a j

∂

∂pk+ j

)
+

∑
k, j≥1

(
k j(Xk)an+2an+1 (X j)aia j

∂2

∂pk∂p j

)
.

Remark 3.5. The calculation of the differential operator Dan+2an+1 Daia j in Lemma 3.4 is
an application of the chain rule; the first line comes from the action on the polynomial
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[6] The W-operator and noncrossing partitions 191

part (Lemma 3.3) and the second line comes from the action on the differential part
(Lemma 3.2).

Notice that the only difference between the two formulas in Lemma 3.4 is that the
subscript j in the first sum starts from 0 in the first formula and from 1 in the second.
This arises because the normal ordered products : Dan+2an+1 Daia j : and Dan+2an+1 Daia j

differ by one term: that is,

Dan+2an+1 Dan+1an−1 =: Dan+2an+1 Dan+1an−1 : +Xan+2e1

[
∂

∂Xan+1e1

, Xan+1e2

]
∂

∂Xane2

.

The same approach can be used to calculate : Dan+2an+1 . . .Da2a1 : from the product
Dan+2an+1 . . .Da2a1 . In the formula for the normal ordered product : Dan+2an+1 . . .Da2a1 :,
the sum always goes from one to infinity, while some subscripts start from zero in the
formula for Dan+2an+1 . . .Da2a1 .

Remark 3.6. We now explain the connection with Construction 2.2. Fix a permutation
α ∈ Sn and positive integers k, k j and a j (1 ≤ j ≤ n). Let Q̂α = (V̂α, Âα) be the quiver
from Construction 2.1. We consider a special differential operator∏

b∈Âα

(Xk j )as(b)at(b)

∂

∂pk
,

where the polynomial part
∏

b∈Âα(Xk j )as(b)at(b) corresponds to the quiver Q̂α. We
calculate Dan+2an+1

(∏n
b∈Âα

(Xk j )as(b)at(b)∂/∂pk
)

by the chain rule.

(1) When Dan+2an+1 acts on the differential part, we use the formula in Lemma 3.2. In
the language of quivers, we add one more arrow an+2 → an+1 to the quiver Q̂α,
which corresponds to Case 0 in Construction 2.2.

(2) When Dan+2an+1 acts on the polynomial part, without loss of generality, we assume
that it acts on (Xk j )aia j and use Lemma 3.3. In the language of quivers, we cut
the arrow i→ j and add two arrows i→ n and n + 1→ j, which corresponds to
Case 1 and Case 2 in Construction 2.2.

Now we are ready to prove Theorem 1.1 and calculate the W-operator W([n]) by
induction. We restate the theorem here for convenience.

Theorem 3.7. W([n]) is a well-defined operator on C[p1, p2, . . . ]. It can be written as
the sum of n! summands FSα, each of which corresponds to a unique quiver Q̂α or,
equivalently, a unique permutation α ∈ Sn.

Proof. To calculate W([n]), we need the formula for : Da1an Danan−1 . . .Da2a1 : for any
positive integers ai (1 ≤ i ≤ n). By Lemma 3.4 and Remark 3.5, it is equivalent to
calculating the product Da1an Danan−1 . . .Da2a1 . To facilitate the induction, we replace
Da1an by Dan+1an .

For the base step, n = 1, by Lemma 3.2,

Da2a1 =

∞∑
k1=1

k1(Xk1 )a2a1

∂

∂pk1

.

We associate this summand to the quiver
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Q̂(1) : 2 1,

which corresponds to the subscript of (Xk1 )a2a1 . Note that there is only one summand.
Thus we define

FS′(1) =

∞∑
k1=1

k1(Xk1 )a2a1

∂

∂pk1

.

Replacing a2 by a1 and taking the sum over a1,

W([1]) =
∑
k1≥1

k1 pk1

∂

∂pk1︸           ︷︷           ︸
FS(1)

.

Denote by FS(1) the summand in W([1]) corresponding to FS′(1) = Da2a1 .
When n = 2, we have to calculate Da3a2 Da2a1 .

Da3a2 Da2a1 =

∞∑
k1=1

(Da3a2 (k1(Xk1 )a2a1 ))
∂

∂pk1

+

∞∑
k1=1

k1(Xk1 )a2a1

(
Da3a2 ◦

∂

∂pk1

)
.

By Lemma 3.4,

Da3a2 Da2a1 =
∑

k1≥1,k2≥0

(
(k1 + k2)(Xk2 )a2a2 (Xk1 )a3a1

∂

∂pk1+k2

)
+

∑
k1,k2≥1

(
k1k2(Xk2 )a3a2 (Xk1 )a2a1

∂2

∂pk1∂pk2

)
.

We associate the first summand with the quiver Q̂(1)(2)

Q̂(1)(2) : 2 , 3 1,

which comes from the subscripts of the polynomial part (Xk2 )a2a2 (Xk1 )a3a1 . Similarly,
the second summand corresponds to the quiver Q̂(12)

Q̂(12) : 3 2 1.

Now Da3a2 acting on (Xk1 )a2a1 gives the first summand, which corresponds to Case 1
cutting the arrow 2→ 1 in Q̂(1) in Construction 2.2. The same argument holds for the
second summand, where Da3a2 acts on ∂/∂pk1 , and this action corresponds to Case 0
in Construction 2.2.

By Lemma 3.4 and Remark 3.5, : Da3a2 Da2a1 : and Da3a2 Da2a1 only differ by the term
with subscript j = 0 in the first summand. Therefore we can use quivers to describe the
summands of : Da3a2 Da2a1 : in the same way as Da3a2 Da2a1 . Using the notation FS′α for
the summand corresponding to α ∈ S2,

: Da3a2 Da2a1 :=
∑
α∈S2

FS′α.
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In conclusion, : Da3a2 Da2a1 : is the sum of two summands, which correspond to the
quivers Q̂α, α ∈ S2, that is,

: Da3a2 Da2a1 : =
∑

k1,k2≥1

(
(k1 + k2)(Xk2 )a2a2 (Xk1 )a3a1

∂

∂pk1+k2

)
︸                                                ︷︷                                                ︸

FS′(1)(2)

+
∑

k1,k2≥1

(
k1k2(Xk2 )a3a2 (Xk1 )a2a1

∂2

∂pk1∂pk2

)
︸                                            ︷︷                                            ︸

FS′(12)

.

Replacing a3 by a1 and taking the sum over a1, a2,

W([2]) =
1
2

∑
k1,k2≥1

(k1 + k2)pk1 pk2

∂

∂pk1+k2︸                                 ︷︷                                 ︸
FS(1)(2)

+
1
2

∑
k1,k2≥1

k1k2 pk1+k2

∂2

∂pk1∂pk2︸                             ︷︷                             ︸
FS(12)

.

We define FSα to be summand of W([2]) which corresponds to FS′α in the formula for
: Da3a2 Da2a1 :.

Similarly, when n = 3, we can calculate : Da4a3 Da3a2 Da2a1 : from the product
Da4a3 Da3a2 Da2a1 . Consider the operator Da4a3 acting on Da3a2 Da2a1 . Since the
polynomial part of each summand is a product of two terms (the corresponding
quiver has two arrows), we get three new summands by the chain rule: two come
from the polynomial part and one from the differential part. By Theorem 2.3 and
Remark 3.6, each of the new summands corresponds to a unique permutation in S3.
Thus : Da4a3 Da3a2 Da2a1 : can be written as the sum of summands FS′α labelled by
permutations α in S3. Replacing a4 by a1 and taking the sum over a1, a2, a3, we get the
formula for W([3]). We define FSα to be the summand of W([3]), which corresponds
to the summand FS′α. In this way, the operator W([n]) can be written as the sum of
n! summands by induction, and each summand corresponds to a unique permutation
in Sn.

We give two examples to show that W([n]) is a well-defined operator on
C[p1, p2, . . . ]. When n = 1, consider Da2a1 . Let a2 = a1. Taking the sum over a1,

W([1]) =
∑

k1

k1 pk1

∂

∂pk1

.

Now consider : Da3a2 Da2a1 :. Let a3 = a1. Taking the sum over a1, a2,

W([2]) =
1
2

∑
a1,a2≥1

: Da1a2 Da2a1 :

=
1
2

∑
k1,k2≥1

(
(k1 + k2)pk1 pk2

∂

∂pk1+k2

+ k1k2 pk1+k2

∂2

∂pk1∂pk2

)
.

Clearly, W([1]) and W([2]) are well-defined operators on C[p1, p2, . . . ]. The operator
W([n]) can be proved to be a well-defined operator on C[p1, p2, . . . ] by induction. �
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Example 3.8. We write W([3]) as a sum of 3! summands, each corresponding to a
unique permutation in S3.

W([3]) =
1
3

∑
k1,k2,k3≥1

(
k1k2k3 pk1+k2+k3

∂3

∂pk1∂pk2∂pk3

(321)

+ k1(k2 + k3)pk1+k3 pk2

∂2

∂pk1∂pk2+k3

(13)(2)

+ k2(k1 + k3)pk1+k2 pk3

∂2

∂pk2∂pk1+k3

(12)(3)

+ k3(k1 + k2)pk3+k2 pk1

∂2

∂pk3∂pk1+k2

(1)(23)

+ (k1 + k2 + k3)pk1 pk2 pk3

∂

∂pk1+k2+k3

(1)(2)(3)

+ (k1 + k2 + k3)pk1+k2+k3

∂

∂pk1+k2+k3

)
(123).

4. Degree of the summand FSα
Definition 4.1. Given any summand FSα of W([n]), define dP(FSα) to be the degree
of its polynomial part and dD(FSα) to be the order of its differential part. The degree
d(FSα) of the summand FSα is d(FSα) = dP(FSα) + dD(FSα).

We give two easy examples to explain this definition. Consider the summand

FS(1)(2) =
1
2

∑
k1,k2≥1

(k1 + k2)pk1 pk2

∂

∂pk1+k2

.

Then

dP(FSα) = 2, dD(FSα) = 1, d(FSα) = 3.

Similarly, the degree data of FS(12) are

dP(FSα) = 1, dD(FSα) = 2, d(FSα) = 3.

The following lemma describes the relationship between the degrees of FSβ and
FSα, where β = [α, j] (see Definition 2.4).

Lemma 4.2. Let α ∈ Sn.

(1) If [β] = [α, 0] (Case 0), then

dP(FSβ) = dP(FSα), dD(FSβ) = dD(FSα) + 1, d(FSβ) = d(FSα) + 1.

(2) If [β] = [α, j] and j is a vertex in the chain of Q̂α (Case 1), then

dP(FSβ) = dP(FSα) + 1, dD(FSβ) = dD(FSα), d(FSβ) = d(FSα) + 1.
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[10] The W-operator and noncrossing partitions 195

(3) If [β] = [α, j] and j is not a vertex in the chain of Q̂α (Case 2), then

dP(FSβ) = dP(FSα) − 1, dD(FSβ) = dD(FSα), d(FSβ) = d(FSα) − 1.

Proof. Notice that dP(FSα) is exactly the number of disjoint cycles of α.
When j = 0, the differential degree of FS′β increases by one by Lemma 3.2. The

disjoint cycle of β = [α, 0] is the same as α, so dP(FSβ) = dP(FSα).
When j ≥ 1, Lemma 3.3 and Remark 3.6 imply that the operator Dan+nan+1 fixes the

differential degree. Now we consider the polynomial degree. If j is in the chain of Q̂α,
Case 1 in Construction 2.2 shows that β has one more disjoint cycle than α. When j is
not in the chain of Q̂α, β corresponds to Case 2 and dP(FSβ) = dP(FSα) − 1.

This proves the lemma. �

From Lemma 4.2, the maximal degree of summands in W([n]) is n + 1 and the other
possible degrees are n − 1, n − 3, . . . .

Definition 4.3 (Ordinary summand). Let α be a permutation in Sn. We say that FSα
is an ordinary summand (OS) if d(FSα) = n + 1. An ordinary summand FSα is of type
(r, n − r + 1) if dP(FSα) = r and dD(FSα) = n − r + 1.

5. Noncrossing permutations

In this section, we prove that the permutation α is a noncrossing permutation if and
only if FSα is of maximal degree. As a corollary of this correspondence, we show that
the number of ordinary summands with maximal degree is the Catalan number.

Noncrossing permutations come from noncrossing partitions with respect to a
fixed order of objects. A partition of [n] = {1, . . . , n} is noncrossing if whenever four
elements, 1 ≤ a < b < c < d ≤ n, are such that a, c are in the same block and b, d are
in the same block, then the two blocks coincide. With respect to the natural order of
integers, each noncrossing partition corresponds to a unique permutation, where each
block corresponds to a disjoint cycle and the order i > j implies an arrow i→ j in the
disjoint cycle.

Definition 5.1 (Noncrossing permutation). Let α be a permutation in Sn and suppose
that α = α1 . . . αr is its decomposition into disjoint cycles. The permutation α is a
noncrossing permutation if it satisfies the following conditions.

(∗1) For each arrow a in the unique chain of Q̂α, we have t(a) < s(a) and there is only
one arrow b in each loop of Q̂α such that s(b) < t(b).

(∗2) Any two distinct cycles αi and α j, satisfy at least one of the following conditions:

(a) for any m in αi, either m > n for any n in α j or m < n for any n in α j;
(b) for any m in α j, either m > n for any n in αi or m < n for any n in αi.

Condition (∗1) means that we have an order on the finite set which determines
the permutation. The definition of the order depends on the order of the elements
in the set {1, . . . , n} and we choose the standard order for positive integers. Condition
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(∗2) corresponds to the noncrossing condition. If αi and α j satisfy only one of the
conditions (a), (b), then one is contained in the other. If αi and α j satisfy both
conditions, they are disjoint. For instance, consider the permutations

τ1 = (123)(45), τ2 = (125)(34), τ3 = (124)(35).

The two disjoint cycles in τ1 satisfy both conditions, while the cycles (125) and (34)
in the permutation τ2 satisfy only one of the conditions (a), (b).

Note that there is a one-to-one correspondence between noncrossing partitions and
noncrossing permutations [11]. Therefore, although we are working with noncrossing
permutations, everything can be considered in terms of noncrossing partitions.

Next, we show that FSα is an ordinary summand if and only if α is a noncrossing
permutation.

Lemma 5.2. Given α ∈ Sn, if FSα is an OS, then α satisfies condition (∗1).

Proof. We prove this lemma by induction on n. For the base step n = 1, Q̂(1) is the only
quiver and FS (1) is an OS. There is only one arrow 2→ 1 in the quiver Q̂(1). Clearly,
(1) satisfies condition (∗1).

By induction, we assume that, for all α ∈ Sk−1, if FSα is an OS, then α satisfies
(∗1). Let β = [α, j] be a permutation in Sk such that FSβ is an OS. This implies that
FSα is also an OS. Indeed, if FSα is not an OS, then d(FSα) < k. By Lemma 4.2,
d(FSβ) < k + 1, which violates the fact that β is an OS.

Let α = α1 . . . αr be the decomposition of α into disjoint cycles with 1 ∈ α1. By
Lemma 4.2, the integer j is either zero or the target of some arrow in the chain of Q̂α.

Case A. If j = 0, then β = β1α2 . . . αr, where Q̂β1 is constructed from Q̂α1 by adding
another arrow k + 1→ k. By induction, the statement is true for β.

Case B. If j , 1, then β is constructed from α by cutting the arrow a : i→ j, which is
an arrow a in the chain of Q̂α. We use the notation of Case 1 in Construction 2.2. Let
β = β1β2α2 . . . αr. The quiver Q̂β1 of the cycle β1 is

Q̂β1 : k + 2 j · · · 1,

where j→ · · · → 1 is a subquiver of α1. For all arrows in this chain, the source is larger
than the target. The quiver Q̂β2 is

Q̂β2 : i k + 1 · · · ,

where k + 1→ · · · → i is a subquiver of α1 by construction. So the only arrow a in the
cycle Q̂β2 satisfying s(a) < t(a) is i→ k + 1. Hence, the statement is true for n = k. �

Lemma 5.3. Given α ∈ Sn, if FSα is an OS, then α satisfies condition (∗2).
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Proof. We prove the lemma by induction on n. When n = 1, it is clear that the unique
permutation (1) in S1 satisfies condition (∗2).

By induction, we assume that, for all α ∈ Sk−1, if FSα is an OS, then α satisfies (∗2).
Let β = [α, j] be a permutation in Sk such that FS β is an OS. Let α = α1 . . . αr be the
decomposition of α into disjoint cycles. We will prove that if FSβ is an OS, then β
satisfies condition (∗2). Note that if [β] = [α, j] and FSβ is an OS, then FSα is also an
OS. This property comes from the proof of Lemma 5.2.

If j = 0, then β = β1α2 . . . αr, where Q̂β1 is constructed from Q̂α1 by adding another
arrow k + 1→ k. In other words, we put another element k into the cycle α1 (see
Construction 2.2). By assumption, any two disjoint cycles of α ∈ Sk−1 satisfy at least
one of the conditions, so we only have to check whether the pair (β1, αi) satisfies
condition (∗2) for 2 ≤ i ≤ r. Since α1 contains the smallest element 1, if α1 and αi

are disjoint, then any element in α1 is smaller than any element in αi. Since k is the
largest element, the statement is true for β1 and αi. Next, suppose that α1 and αi are
not disjoint. Since 1 is contained in α1, it follows that αi is contained in α1. Clearly,
this still holds for β1 and αi. So (β1, αi) satisfies condition (∗2).

Now suppose that β is constructed from α by cutting the arrow a : i→ j lying in the
chain of α. We use the notation of Case 1 in Construction 2.2. Let β = β1β2α2 . . . αr.
For 2 ≤ i ≤ r, we check whether the following three types of pairs satisfy the condition:
the pairs are

(β1, β2), (β1, αi), (β2, αi).

(a) (β1, β2). Since FSα is OS, all arrows a in Q̂α1 satisfy t(a) < s(a). Hence, when
cutting the arrow i→ j, any elements in β2 are larger than any elements in β1. The
condition is true in this case.

(b) (β1, αi). By induction, we know that the lemma is true for (α1, αi), 2 ≤ i ≤ r. Since
the elements of β1 form a subset of the elements of α1, it is also true for (β1, αi) for
2 ≤ i ≤ r.

(c) (β2, αi). If β2 is a single disjoint ‘one cycle’ (k), the statement is true. If β2 , (k),
assume that the largest element in β2 other than k is φ. If φ is smaller than the smallest
element in αi, then any element u other than k in β2 is smaller than any element in
αi. Also, k is larger than any element in αi. Hence, the statement is true in this case.
Next, suppose that φ is larger than the smallest element in αi. By construction, φ is
an element in α1, which contains 1. Hence, φ is larger than any element in αi by
induction. Similarly, any other element in β2 is larger or smaller than all elements in
αi by induction. So, the statement is true. This finishes the proof of this lemma. �

Theorem 5.4. The summand FSα is an OS if and only if α is a noncrossing permutation.

Proof. The ‘only if’ part follows from Lemmas 5.2 and 5.3. So, we only have to prove
the ‘if’ part. We do so by induction on n.

When n = 1 it is clear, since (1) is the only permutation.
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By induction, we assume that if α ∈ Sk−1 satisfies condition (∗), then FSα is an OS.
We will prove that if β ∈ Sk satisfies condition (∗), then FSβ is an OS. Assume that
[β] = [α, j] for some α in Sn−1 and some nonnegative integer j. We make two claims.

Claim 1: j is 0 or in the chain of Q̂α.

Claim 2: α is a noncrossing permutation.

By Claim 1, j is 0 or in the chain of Q̂α. By Claim 2, FSα is an ordinary summand.
By Construction 2.2 and Lemma 4.2, FSβ is also an OS. Therefore, if the above two
claims are correct, the theorem is proved. Now we prove these two claims. �

Proof of Claim 1. If not, β is constructed from α by cutting an arrow a : i→ j which
is not in the chain of Q̂α. By Case 2 in Construction 2.2, we get a long chain

k + 1 j · · · i k · · · 1.

In this chain, i < k, which contradicts the assumption that β satisfies condition (∗1). So,
j must be in the chain of Q̂α or j = 0. �

Proof of Claim 2. By Claim 1, j = 0 or j is in the chain of Q̂α. If j = 0, it is easy to
prove that α is a noncrossing permutation. Next, we assume that j is in the chain of
Q̂α. With the same notation as in Construction 2.2, let β = β1β2α2 . . . αr with 1 ∈ β1.

First, we check that α satisfies condition (∗1). By the assumption on β, there is
exactly one arrow a in the quiver of αi such that t(a) > s(a), where 2 ≤ i ≤ r. So we
have to show that all arrows a in the chain of Q̂α satisfy t(a) < s(a). Suppose that there
is an arrow a in the chain of Q̂α with s(a) < t(a). If t(a) , j, then this arrow will be in
either β1 or β2, which contradicts the assumption on β. If t(a) = j, then

Q̂β1 : k + 1 j · · · 1

and

Q̂β2 : i k · · · .

Since k > j > i, it follows that (β1, β2) does not satisfy condition (∗2). So t(a) < s(a)
for each arrow a in the chain of Q̂α and there is exactly one arrow b in each loop of Q̂α

such that s(b) < t(b).
Next, we prove that α satisfies condition (∗2). The problem pair is (α1, αi) for

2 ≤ i ≤ r. By assumption, β1 contains the smallest element 1 and β2 contains the
element k. Hence, by Construction 2.2 and Lemma 5.3, any element in β1 is smaller
than any element in β2. Since β is a noncrossing permutation, for any cycle αi with
2 ≤ i ≤ r, there are three possible cases.

(a) αi is contained in β1. If we pick an arbitrary element m in β1, then either m > n for
any n in αi or m < n for any n in αi.
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Table 1. Ordinary summands in W([3]) and noncrossing permutations in S3.

Ordinary summand Noncrossing permutation
pk1+k2+k3 ∂

3/∂pk1∂pk2∂pk3 (321)
pk1+k3 pk2 ∂

2/∂pk1∂pk2+k3 (13)(2)
pk1+k2 pk3 ∂

2/∂pk2∂pk1+k3 (12)(3)
pk3+k2 pk1 ∂

2/∂pk3∂pk1+k2 (1)(23)
pk1 pk2 pk3 ∂/∂pk1+k2+k3 (1)(2)(3)

(b) αi is contained in β2. If we pick an arbitrary element m in β2, then either m > n for
any n in αi or m < n for any n in αi.

(c) αi is disjoint with β1 and β2. Any element in αi is larger than any element in β1 and
smaller than any element in β2.

In the first case, if αi is ‘contained’ in β1, then any element in β2 is larger than any
element in αi, because the elements in β2 are always larger than the elements in β1.
By the construction of α1, the condition is true for (α1, αi). The same argument holds
for the second case. For the third case, β1 and β2 are constructed from α1 by cutting
the arrow with target j and adding another element k. Hence αi is ‘contained’ in α1.
Therefore α satisfies condition (∗2). �

Example 5.5. In this example, we give the correspondence between the ordinary
summands of W([3]) and noncrossing permutations in S3 based on Theorem 5.4.

By Theorem 3.7, we know that W([3]) has 3! summands and that each corresponds
to a unique permutation in S3, as given in Example 3.8. Note that the first five
summands in Example 3.8 are ordinary summands of maximal degree four, while the
last one is of degree two. The correspondence between ordinary summands in W([3])
and noncrossing permutations in S3 is given in Table 1, where we omit the symbol

∑
and the coefficients.

Corollary 5.6. The number of (r,n − r + 1)-type OS in W([n]) is the Narayana number

1
n + 1

(
n + 1

r

)(
n − 1
r − 1

)
.

The number of all ordinary summands in W([n]) is the Catalan number
n∑

r=1

1
n + 1

(
n + 1

r

)(
n − 1
r − 1

)
=

1
n + 1

(
2n
n

)
.

Proof. By Theorem 5.4, there is a one-to-one correspondence between the ordinary
summands and noncrossing permutations (also noncrossing partitions). The number
of (r, n − r + 1)-type OS is exactly the number of noncrossing partitions with r blocks,
which is the Narayana number [11]. The number of all ordinary summands in W([n])
is the sum of Narayana numbers, which is the Catalan number. �
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