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Abstract

Two characterizations of semisimple classes of associative and alternative rings (and
semigroups with 0) are given:
(i) A class is a semisimple class if and only if it is hereditary, closed under extensions and

subdirect sums;
(ii) A class is a semisimple class if and only if it is hereditary, closed under extensions, and has the
co-inductive property.

The first characterization sharpens Armendariz’s (1968) result proved for associative rings,
the second one is categorically dual to a characterization of radical classes due to Amitsur (1954).

1. Introduction

The purpose of this paper is to characterize the semisimple classes of
associative, alternative rings and semigroups with 0, respectively, as heredi-
tary classes being closed under subdirect sums and extensions. Here the
requirement of being subdirectly closed can be replaced by the co-inductive
property. Semisimple classes of groups have been characterized similarly by
Tran Van Hao (1962) as early as 1962. A semisimple class is a class consisting
of rings (semigroups) having zero radical with respect to an appropriate
Kurosh—-Amitsur radical. A class S is called hereditary, whenever I 9A €8
implies I €S, further, S is said to be closed under subdirect sums, if any
subdirect sum of S-rings (subdirect product of S-semigroups) is again in S. We
say that S is closed under extensions, if B<1A, B €S and A/B €8S implies
AES.

For details of the theory of radical and semisimple classes we refer to
Wiegandt (1974). Concerning axiomatizations of semisimple classes of as-
sociative rings we refer to the papers Armendariz (1968), Divinsky (1973) and
van Leeuwen (to appear). In the proofs we use methods developed by
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Anderson, Divinsky and Sulisiski (1965). In the case of alternative rings the
proof is based on a lemma which may be applicable in other contexts, too.
In this paper we shall frequently refer to the following three conditions:
(i) the class S is hereditary;
(i) the class 8 is closed under subdirect sums;
(iii) the class S is closed under extensions.

2. Associative rings
In this section we shall prove

THEOREM 1. A class S of associative rings is a semisimple class if and
only if S satisfies conditions (i), (ii) and (iii).

Proor. Armendariz (1968) (see also Wiegandt (1974) Theorem 30.1)
has proved that a class S is a semisimple class if and only if S satisfies
conditions (i), (ii), (iii) and

(iv) If K<<I <9 A such that O# I/K €8, then there exists an ideal L of
A such that LCK and I/L €8.

Hence all that we have to show is that conditions (i), (ii) and (iii) imply
condition (iv).

Let I be an ideal of a ring A as demanded in condition (iv), and consider
the ideal J =M, (K, <I|I/K,€E€S) of I. By the hypothesis J# I. Since S
satisfies (ii), it follows that O # I/J € S. We want to show that J is an ideal of
the ring A. Having proved this and putting L = J we obtain the requirement
of condition (iv).

Choose an element a € A and define the mapping

¢ J—(aJ+I)J

by ¢ (x) = ax + J for all x € J. By Proposition 5.1 of Wiegandt (1974) ¢ maps
J homomorphically onto the ideal (aJ +J)/J of I/J. Since I/JES, by
condition (i) we get

J/Kerp =(aJ +J)JES

where Kerg ={y €J|ay € J}. We claim that Ker¢ is an ideal in I. Suppose
y €EKerg and i€l Then a(iy)={(ai)y €J and a(yi)=(ay)i € J, since
y € Ker . Since a(iy), a(yi) € J, it follows that iy, yi € Ker¢. Thus Kerg is
an ideal of I. Now

I/Kercp/J/Kenp =]/JeS

holds and since J/Ker¢ €S condition (iii) implies I/Ker¢p € S. Hence
J=M,K, CKerg and it follows that (aJ + J)/J = J/Ker¢ =0. Thus aJ CJ
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for any a € A. The case Ja CJ can be handled analogously and so J is an
ideal in A.

Remarks. If the class S consists of semiprime rings, then the implication
(1), (i1), (ii1) = (iv) is nearly trivial.

Conditions (i), (ii) and (iii) are independent as exhibited by the following
examples. :

1) Consider the class Z, of all zero-rings on elementary p-groups (i.e.
groups A with pA = 0 where p is a fixed prime). Now Z, is subring-hereditary
(which is much more than (i)), it is subdirectly closed, but it fails to have (iii),
since the zero-ring Z(p?®) on the cyclic group of order p*is not contained in Z,.

2) Let C denote the class of all rings but a single simple ring A (and all
isomorphic copies of A). The class C is not hereditary, but satisfies conditions
(ii) and (iii).

3) Let P be an arbitrary (not necessarily hereditary) radical class. Then P
is homomorphically closed. If, in addition, P is closed under subdirect sums,
then P is inherited by subrings (cf. Wiegandt (1974) Theorem 31.4), in
particular P is hereditary. So if a radical class P is closed under subdirect sums,
then P satisfies (i), (ii) and (iti). Hence a radical class P is closed under
subdirect sums if and only if it is a semisimple class (cf. Armendariz (1968)
Theorem 4.5). So any hereditary radical class which is not a semisimple class,
satisfies (i) and (iii) but not (ii). In particular, the class J of all Jacobson radical
rings is such a class, moreover, J is homomorphically closed, inherited by
one-sided ideals (this is more than (i)) and closed under taking discrete and
complete direct sums and even inverse limits (this is definitely less than (ii)). It
is worth mentioning that if the Jacobson radical rings are considered as
algebras with addition, multiplication and circle operation, then J is a variety,
so it also satisfies (ii).

3. Alternative rings
A not necessarily associative ring A is said to be an alternative ring, if
(xx)y =x(xy) and  y(xx)=(yx)x
for every x and y of A. The associator (x,y, z) is defined as
(x,y,2)=(xy)z ~ x(yz)
and for alternative rings we have the equalities

(1) (x,y,z):(y,z,x)=(z,x,y)= _(x’z’)’): —(Z,y,x)= *(y,x,z).
We shall use also
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2) (u,rv,s)+(v,ru,s)=v(u,r,s)+u(vrs).
Further, if J<<I<J A, then
G) AUNHC
4) J+aJ<I for every a € A,
(6) (I)y(AN)cJ,
6) [(at)(aD)][(aJ)(aJ)]CJ for every a € A.
These assertions have been proved in Anderson, Divinsky and Sulifiski (1965)
Lemma 4.
Our goal is to prove

THEOREM 2. A class S of alternative rings is a semisimple class if and
only if S satisfies conditions (i), (ii) and (iii).

Proor. Armendariz (1968) has considered only associative rings, so we
cannot follow the scheme of the proof of Theorem 1.

Let S be a semisimple class of a radical class R of alternative rings. By
Corollary 2 of Theorem 2 of Anderson, Divinsky and Sulinski (1965) the class
S is hereditary. Let A be a subdirect sum of S-rings. Then A contains ideals
A, suchthat A/A, €Sand (,A, =0. Now A/A, € S implies that R(A) C
A.. Hence R(A)CM,A,. =0. Thus A €S and (ii) has been established.
Consider a ring A such that A/B = C and B, C € S. Again, A/B € S implies
that R(A) C B. Since B €8S, it follows that RCA)C R(B)=0. Hence A €8
and (iti) has been proved.

Conversely, suppose that S satisfies conditions (i), (ii) and (iii). We claim
that S is the semisimple class $US of the upper radical class % S determined
by the hereditary class S. Obviously S C $US. All that we have to show is that
FUS CS. To this end define the operator T associating to any ring A the
ideal T(A)=,(I.<A | A/I, €S8). By the definition of the upper radical, a
ring A isa US-ring if and only if T(A ) = A. Moreover, it follows from (ii) that
A/T(A)€ES and similarly that T(A)/T(T(A))€S. The crucial point of the
proof is to show that T(T(A))<? A. Having proved this, we can complete the
proof as follows. Consider the isomorphism

M—MZA/T(A)ES

T(A)T(T(A))

and apply (iii); we get A/T(T(A))ES. Hence by the definition of T(A) it
follows that T(A)C T(T(A)), whence T(A)=T(T(A)). Thus T(A) is a
US-ideal of A and consequently T(A)C US(A). The inclusion T(A)D
US(A) is a trivial consequence of the definition of the operator T. Thus we
have the equality T(A) = % S(A) for every alternative ring A. In particular, if
A € FUS, then T(A)=0 and (ii) implies that A €S. Thus $USCS.

https://doi.org/10.1017/51446788700018176 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700018176

176 L. C. A. van Leeuwen, C. Roos and R. Wiegandt [5]

The proof will be complete if we exhibit T(T(A))<1 A. For this
purpose we shall prove the following lemma which may be useful in other
contexts too.

Lemma. Let Q be a class of alternative rings satisfying conditions (i) and
(iii). Suppose I<SA, J =, (K.<I|I/K,€EQ) and I/J €EQ. Then J<A.

Proor. If J is not an ideal of A, then there exists an element a € A
such that aJZ J or JaZ J. Assume that aJZ J. Now, define the mapping

o:J—(aJ+ )]

by ¢(y)=ay +J for all y €J. We claim that ¢ maps J homomorphically
onto (aJ + J)J. Obviously ¢ is surjective and preserves addition. Applying (3)
we get

e(yiy)=alyy)+J=1J
for each y,, y, € J. Further
@ (y)e(y2) = (ay.)(ay) +J.
So ¢ will preserve the multiplication if and only if
(*) (aJ)(aJ)C T

holds. To prove (*), suppose that (aJ)(aJ) £ J. Then there exists an element
x € J such that (ax)(aJ)Z J. Define the mapping

Wi J—[(ax)(a))+ T)J
by ¢(z)= (ax)(az)+ J for all z € J. Clearly ¢ preserves addition and maps J
onto [(ax)(aJ)+ J]/J. Further, using (3) we obtain
¥(z,2:)= (ax)|a(z:z)]|+ T =7
and applying (6) we get
b (z)¥(z2) = [(ax) (az))] [(ax) (az2)] + T = J.

Thus ¢ is a homomorphism. Next, consider
Kery ={z € J|(ax)(az)€E J}.

Now we are going to show that Kery <tI. To do so, take elements i € I,
z € Kery. We have to show that iz, zi € Kery. z € Kery implies that
(ax)(az) € J. Firstly we show that iz € Ker ¢. This means that (ax)[a(iz)] €
J. Using the definition of the associator and (1) we have
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() (ax)[a(iz)] = (ax)[(ai)z ~ (ai,2)] = (ax)[(ai)z}  (ax)(a, i, 2)
= [(ax)(ai)]z — (ax, ai, z)+ (ax) (i, a, z).
Applying (2) we get
(ax)(i,a,z)=(ax,ai,z)+ (i,a(ax), z)— i(ax, a, z).
Substituting this into (**) we obtain
(ax)[a(iz)] = [(ax)(ai)]z + (i, a(ax), z)— i(ax, a, z)
= [(ax)(ai)) z + [i(a(ax)))z - i{(a(ax))z] - i[((ax)a)z ~ (ax)(az)].

Here the first three terms are obviously in J and since (ax)(az) € J also
the last one is in J. Thus iz € Ker¢; that is Ker is a left ideal of I
Interchanging z and i we obtain

(ax)[a(zi)] = [(ax)(az)]i + [z (a(ax))]i
= z[(a(ax))i] - z[((ax)a)i - (ax)(ai)].

The first term of the right hand side is in J since (ax)(az) € J. The other
terms are obviously in J. Hence zi € Ker ¢ and Ker ¢ is a right ideal of I too.
This proves that Ker ¢ <1 I. We proceed by showing that (ax)(aJ)+ J < I To
this end it suffices to prove

(a) I[(ax)(a))] C (ax)(a])+J
and
(b) [(ax)(al)]I C(ax)(aJ)+J.

To see (a), apply in order (1), (5) and (4):
I(ax)(al)] = [I(ax)](aJ)+ (I, ax,a)) = [I(ax)](aT )+ (ax, L, aJ)
C1y(a)) + [(ax)If(a)) + (ax)[I(a])]
CJ+U)(a))y+ (ax)(aJ + )T J + (ax)(a)) + (ax)J C (ax)(a))+ J.
To obtain (b), apply (4):
[(ax)(aD)]I = (ax)[(a])I] + (ax,al, I) C (ax){(aJ + J)+ (ax, I, aJ).

Here the first term is in (ax) (aJ) + J and the second one as well (cf. the proof
of part (a)). Thus (ax)(aJ)+J is indeed an ideal of I
Taking into account the hereditariness of Q and the isomorphism

J/Kerd =[(ax)(aJ)+ J}/T<I/JEQ

we obtain that J/Ker ¢ € Q. Furthermore, by (iii) and by the isomorphism
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I/Kery

T/Kery - 1/7EQ

we have I/Ker ¢y € Q. Hence by the definition of J we obtain that J D Ker ¢y 2
J, or Ker ¢ = J. Consequently (ax)(aJ) C J. This contradiction proves (*), and
hence ¢ is a homomorphism.

Next, consider

Kere ={x€J|ax €J}.

We exhibit that Ker¢ <. Let i € I, x € Ker ¢. We claim that ix, xi € Ker ¢.
We have ax € J and we have to show that a(ix), a(xi)E J We get

a(xi)=(ax)i —(a,x,i)=(ax)i —(i,a,x)
=(ax)i—(iayx +i{ax)EJI+ I+ 1JCJ.
Hence xi € Ker ¢ holds. Taking into account xi € Ker ¢ we have
a(ix)=(ai)x —(a, i, x)e J+J=1J.
Hence Ker ¢ is an ideal of I. By (4) we have that aJ +J << and so
J/Kero=(aJ+ 1)/ J<I/JEQ.

By condition (i) we get J/Ker ¢ € Q. Considering the isomorphism

I/Kergp _
T/Kerg ~117EQ

condition (iii) is applicable which yields I/Ker¢ € Q. Consequently Kerg 2
J, that is aJ C J (a contradiction), so J is a left ideal of A.

By similar arguments we get that Ja C J. Thus J is a two-sided ideal of A
and the Lemma is proved.

Putting I = T(A) and J = T(T(A)) the Lemma yields the desired relation
T(T(A))<<A. Thus the proof of Theorem 2 has been completed.

ReEMARk. Theorem 2 cannot be extended to arbitrary not necessarily
associative rings. Leavitt and Armendariz (1967) have given examples for
non-hereditary semisimple classes in the class of all not necessarily associative
rings.

4. Semigroups with 0

One possible way of defining Kurosh~Amitsur radicals for semigroups
with 0, is the following. A class R of semigroups with 0 is called a radical class
if
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(I) R is closed under Rees factor semigroups;

(I)  for any semigroup A, R(A)=U,(I.<A|IL. ER)ER;

(III) R(A/R(A))=0 where A/R(A) denotes the Rees factor semigroup
of A by R(A).

Investigations concerning such radicals can be found in Eqbal Ahmed and

Wiegandt (1973), Grigor (1971 and 1973) and Wiegandt (1972). An analogous

proof to that of Theorem 1 (considering Rees factor semigroups, 0-disjoint

unions and subdirect products for homomorphic images, sums and subdirect

sums, respectively) yields the following statement:

A class S of semigroups with 0 is a semisimple class if and only if S is
hereditary, closed under subdirect products and closed under extensions.

5. Characterization by co-inductive property

We say that a class S of associative or alternative rings (semigroups with
0) has the co-inductive property, if S satisfies condition

(iv) if Bi.DB;D---B, 2D - is a descending chain of ideals of any ring
(semigroup) A such that A/B, €S for all ¥y and B = M,B,, then also
A/B€S.

THEOREM 3. A class S of associative or alternative rings (semigroups) is

a semisimple class if and only if conditions (i), (iii), and (iv) are satisfied.

Proor. Since any semisimple class satisfies (i) and (iii), we only show
that S satisfies (iv), if S is a semisimple class. Let I/B denote the % S-radical of
A/B. We have

A/B
B,/B

=A/B,ES

for all y, whence B,/B D I/B. Hence B, DI for all y implying BD L
Consequently B = I. Thus A/B €8.

Now, suppose that S satisfies (i), (iii) and (iv). Taking into account our
previous results, it suffices to show that S satisfies condition (ii). In fact, S will
be proved to satisfy the following stronger condition:

(v) for any ring (semigroup) A, A/ .B, €S holds where B, runs through
all ideals of A satisfying A/B, € 8S.

From (v) it readily follows that S is closed under subdirect sums (products). It
follows from (iv) and Zorn’s lemma that any ring (semigroup) A contains an
ideal B such that A/B € § and which is minimal with respect to this property.
Up till now B is not necessarily unique, but we proceed by showing that
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actually this is the case. Let C be any ideal of A such that A/C € 8. Consider
the isomorphism

_A/(BNC)
AIB=grBnC)

We have

B/(BNC)=(B+C)/C<A/C.

Since A/C€S and S is hereditary, we conclude B/(BN C)eS. Also
A/B € 8. Hence by using condition (iii) we obtain that A/(B N C)€S. By
the minimality of B this implies that B C B N C, whence B C C. This proves
that B is the smallest ideal of A satisfying A/B €S. Consequently the
intersection [),B, equals B. So S satisfies (v) and the proof is complete.

Let us remark that the statement of Theorem 3 is dual to the following
characterization of radical classes due to Amitsur (1954):

A class R of rings is a radical class if and only if
(i*) R is homomorphically closed,

(iii*) R is closed under extensions,
(iv*) R has the inductive property: if B,C B,C --- C B, C - - - is a chain of
R-ideals of any ring A, then U,B, €R.

Finally we present several characterizations of semisimple classes. Recall
that a subring (subsemigroup) B of a ring (semigroup) A is said to be an
accessible subring (subsemigroup), if there are finitely many subrings (sub-
semigroups) B,,---, B, of A such that B=B,<B,<---<4B, = A.

For a class S of associative or alternative rings (semigroups with 0) the
following conditions (1), (1), (III), (IV) and (V) are equivalent:

(I) S is a semisimple class of an appropriate radical class;
(1) S satisfies
(A) If AES, then every non-zero ideal of A has a non-zero
homomorphic image (Rees factor semigroup) in S,
(B) If every non-zero ideal of A has a non-zero homomorphic image
(Rees factor semigroup) in S, then A €8S,
(III) S satisfies '
(Ao) If A €S, then every non-zero accessible subring (subsemigroup)
of A has a non-zero homomorphic image (Rees factor semigroup) in
S,
(Bo) If every non-zero accessible subring (subsemigroup) of A has a
non-zero homomorphic image (Rees factor semigroup) in S, then
AES;
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(IV) S is a hereditary class closed under subdirect sums (products) and
extensions
(V) S is a hereditary, co-inductive class being closed under extensions.

The equivalence of (I) and (II) is well known. Divinsky (1973) has proved
the equivalence of (II) and (IIl) for associative rings. Though in the lecture
notes by Wiegandt (1974) only associative rings are considered, there the
proof of the equivalence of (II) and (III) is based on methods of Leavitt and
Yu-lee Lee (1969), Yu-lee Lee (1969) and Watters (1969) and it works for
alternative rings too. For semigroups with 0 the proofs are analogous to those
for associative rings. Finally. the equivalence of (I), (IV) and (V) has been
established in this paper.

ADDED IN Proor. For associative rings A. D. Sands has proved the
same statement in his paper “"Strong upper radicals”, Quart. J. Math. Oxford,
27 (1976), 21-24.
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