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WHICH 3-MANIFOLDS EMBED IN TRIODð I ð I?

DALE ROLFSEN AND LI ZHONGMOU

ABSTRACT. We classify the compact 3-manifolds whose boundary is a union of
2-spheres, and which embed in Tð Ið I, where T is a triod and I the unit interval. This
class is described explicitly as the set of punctured handlebodies. We also show that
any 3-manifold in T ð I ð I embeds in a punctured handlebody.

1. Introduction and statement of results. Working in the PL category, we let I
denote the interval [0Ò 1], and T the triod consisting of three intervals joined together
at a common endpoint, that is, the cone on three points. One of the authors [4] showed
that the contractible 3-complex T ð T ð I is universal for 3-manifolds, meaning that
every compact 3-manifold, which does not have a closed component, can be embedded
in T ð T ð I. This sharpened an earlier result of [2]. Of course, a contractible 3-complex
cannot contain any closed 3-manifolds.

Our goal is to investigate the question of which 3-manifolds with boundary embed in
T ð I ð I, a space intermediate between the universal complex and the cube I ð I ð I.
One reason this is of interest is that Gillman [1] showed that T ð I ð I does not contain
a fake cube, that is, a contractible compact 3-manifold topologically distinct from the
cube. The Poincaré conjecture asserts fake cubes do not exist, and because of [4] one
can restrict attention to submanifolds of T ð T ð I. An understanding of those which lie
in T ð I ð I can be considered a step toward understanding compact 3-manifolds (with
boundary) in general.

Even in the cube Ið Ið I (or ordinary 3-space), the classification of all 3-dimensional
submanifolds is a complicated business. For example, if a torus boundary is considered,
the problem is essentially classical knot theory. However, if all boundary components
are 2-spheres, the situation is much simpler. Using standard results, it is easy to prove
that any 3-manifold which embeds in I ð I ð I and has boundary a union of spheres,
must be a disjoint union of copies of Punctured S3. By Punctured M, for any 3-manifold
M we mean the result of deleting the interiors of finitely many disjoint 3-balls (at least
one) from M.

DEFINITION. Let C denote the class of manifolds consisting of:
(1) Punctured S3,
(2) Punctured (S1 ð S2) # (S1 ð S2) # Ð Ð Ð # (S1 ð S2), (k ½ 1 summands),
(3) Punctured (S1ð̃S2) # (S1 ð S2) # Ð Ð Ð # (S1 ð S2), (k ½ 1 summands),
(4) Disjoint unions of finitely many of the above 3-manifolds.
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In the above, S1ð̃S2 denotes the nonorientable 2-sphere bundle over S1. We can now
state our main results.

THEOREM 1. Suppose M is a compact 3-manifold and ] M is a union of 2-spheres.
Then M embeds in T ð I ð I if and only if M is in the class C .

COROLLARY. If M 2 C and N ² M is a sub-3-manifold with boundary a union of
spheres, then N 2 C .

THEOREM 2. Suppose Mis an arbitrary compact 3-manifold which embeds in TðIðI.
Then M also embeds in a manifold of class C .

2. Proof of Theorem 1. First we’ll check that any manifold in class C embeds
in T ð I ð I. It clearly suffices to consider connected manifolds, and it is obvious
that Punctured S3 embeds. The connected sum and boundary connected sum (in which
two manifolds with nonempty boundary are joined by a 1-handle attached to the two
boundaries) are related: Punctured (A # B) is a boundary connected sum of Punctured A
and Punctured B. Thus it suffices to embed Punctured (S1 ð S2) and Punctured (S1ð̃S2)
in T ð I ð I.

For terminology, we will use subscripts for parameters in the three intervals Ii = [0iÒ 1i]
comprising the triod

T = [01Ò 11] [ [02Ò 12] [ [03Ò 13]Ûf01 = 02 = 03 = 0g

The space Tð Ið I may be regarded as a “book” with three “pages” Ei = Iið Ið IÒ i =
1Ò 2Ò 3, joined along the “binding” B = f0g ð I ð I. It is useful to visualize E1 [ E2 as
(say) the cube jxj � 1Ò jyj � 1Ò jzj � 1 in 3-space with the binding B corresponding to
the square z = 0, along which E3 is attached. Now Punctured (S1 ð S2) is the result of
attaching a 1-handle H ≤ D2 ð D1 to S2 ð [0Ò 1] with one of the two disks D2 ð S0

identified with a disk in S2 ð f0g and the other with a disk in S2 ð f1g. If the handle
is attached to S2 ð [0Ò 1] as above, but in a nonorientable manner, then the result is
Punctured (S1ð̃S2).

S2 ð [0Ò 1] can be embedded in the cube E1 [ E2 (as described above) so that a disk
in S2 ð f0g and a disk in S2 ð f1g are subsets of B. Then the handle H can be attached
to these disks, and embedded in E3. In fact it is easy to see that there are different ways
to embed S2 ð [0Ò 1] so that, when the handle is attached, the result is either Punctured
(S1 ð S2) or Punctured (S1ð̃S2), and we have achieved the desired embeddings.

For the converse to Theorem 1, we will need to consider certain “surgeries” on
a manifold M. We will sort them into two types, according to whether the transition
M ! M0 increases or decreases the number of boundary components.

BOUNDARY-INCREASING SURGERIES. In the following, H denotes a 3-ball (handle)
parametrized as H = D2ðD1. Its boundary is the union of two parts: S1ðD1 and D2ðS0.

(1) Cutting along a disk: Let H ² M so that H\ ] M = ] H\ ] M ≤ S1 ðD1 separates
] M. The new manifold M0 is defined by M0 = M�

�
Int H[ Int(] M\ ] H)

�
. It will

be useful to distinguish the two subcases:
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(1.a) non-separating disk: M � H has the same number of connected components
as M.

(1.b) separating disk: M � H has more components than M.
(2) Adding a 2-handle: Attach H to M so that M\ Int H = ; and ] H\ ] M ≤ S1 ðD1

is a separating annulus in ] M. The new manifold M0 is defined by M0 = M [ H.

BOUNDARY-DECREASING SURGERIES. These are the inverses of the above, and may
be described as follows:

(10) Adding a 1-handle   : Let D1ÒD2 be two discs which lie in different boundary
components of M. We add H to M to obtain a new 3-manifold M0 = M [ H by
attaching the two disks D2 ð S0 to D1 and D2 respectively, the interior of H being
disjoint from M. Again we distinguish the subcases:

(1.a0)    to the same component of M: M [ H and M have the same number of
components.

(1.b0) Boundary connected sum: M [ H has fewer components than M.
(20) Drilling a tunnel: Let H ² M such that H \ ] M = ] H \ ] M = D2 ð S0, and

assume the two discs of D2 ð S0 lie in different boundary components of M. The
new 3-manifold M0 is defined by M0 = M �

�
Int H [ Int(H \ ] M)

�
.

We note that for each of the above surgeries, ] M is a union of 2-spheres if and only
if the same is true of ] M0. In the operations (1) and (2), ] M0 has one more connected
component than ] M, whereas it has one fewer in the case of (10) and (20).

LEMMA 1. The class C is closed under surgeries of type (10) and (20).

PROOF. The operation (20) can be interpreted, up to homeomorphism, as the same
as the operation M ! M̂, where M̂ is the union of M and a 3-cell attached to one of
the boundary components involved. The homeomorphism M̂ ≤ M0, can be visualized
as excavating the tunnel, and then excavating the added 3-cell. And it is easy to see
that M 2 C implies M̂ 2 C if no closed components have been created in M̂. Closure
under (1.b0), boundary-connected sum, is clear from the observation made earlier that a
boundary connected sum of Punctured A with Punctured B is equivalent to Punctured
(A # B). It may be necessary to use Lemma 2 (below) to replace (S1ð̃S2) # (S1ð̃S2)
by (S1ð̃S2) # (S1 ð S2). Finally, we need to check surgery of type (1.a0): attaching the
1-handle to distinct boundary components of a single component of M. Let M̃ denote M
with two 3-cells attached to those boundary components. Then M[H is homeomorphic
with the connected sum of M̃ with either Punctured (S1 ð S2) or Punctured (S1ð̃S2), and
it follows that M 2 C implies M [ H 2 C .

REMARK. C is also closed under (1) and (2), although we will not need this for the
proof of Theorem 1. Indeed, closure under (2) may be seen directly as above. Closure
under (1) follows from the Corollary to Theorem 1, since M0 ² M. C can be considered
to be the class generated by Punctured S3 and addition of 1-handles, that is the class of
punctured handlebodies.
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LEMMA 2. Let M be a nonorientable 3-manifold. Then

M # (S1ð̃S2) ≤ M # (S1 ð S2)

This is well-known. See [3], Lemma 3.17.
To resume the proof of Theorem 1, consider a 3-manifold M ² T ð Ið I. We wish to

show that M 2 C . The first step is to replace M by a submanifold which is “transverse”
to the binding B. As noted in [1], interior points of M have neighborhoods (in M) which
lie in just two pages of T ð I ð I, although this may not hold for boundary points of
M. However, M contains a copy of itself, M0, in its own interior, and we can suppose
] M0 is in PL general position with respect to B. Then B \ ] M0 is a collection of simple
closed curves, each of which has a neighborhood, in M0, which lies in just two pages
of T ð I ð I. Now we employ a standard argument: consider a component of ] M0 \ B
which is innermost on B; it bounds a disk in B whose interior is either contained in or
disjoint from M0. Then a neighborhood H of this disk can be removed from or added to
M0, a surgery of type (1) or (2), resulting in the elimination of that curve of intersection.
Finitely many such surgeries gives us a 3-manifold M00 ² TðIðI such that B[] M00 = ;.
It follows that B [ M00 = ;, so each component of M00 lies in a single page of T ð I ð I
and hence embeds in R3. It follows that M00 is a union of Punctured S3, so M00 2 C . Since
the transition M0 ! M00 is effected by type (1) and (2) surgeries, the reverse transition
M00 ! M0 can be realized by surgeries of type (1’) and (2’). Lemma 1 then implies
M ≤ M0 2 C .

3. Proof of Theorem 2. We consider a compact 3-manifold M ² T ð I ð I, which
may be assumed to be in general position with respect to the binding, as in the proof of
Theorem 1. Then the set B \ ] M is a union of simple closed curves interior to B, which
divide the 2-cell B into regions, which we will visualize as black (a component Fi of
F = B\M) and white (closures of components of the complement of F in B.) Each black
region has a neighborhood in M which lies in just two pages of T ð I ð I, and we label
that black region with the subscript fi of the third page, whose interior is not intersected
by this neighborhood. We may assume M is orthogonal to the binding B = f0g ð I ð I.
That is, for some è Ù 0, the intersection of M with a neighborhood Nè(B) is a union of
sets

[0jÒ èj] ð FiÒ j 2 f1Ò 2Ò 3g � ffig

in T ð I ð I, Fi ² I ð I ≤ B.
Our goal now is to engulf M by a 3-manifold whose boundary is a union of spheres.

As a start, let

M0 = M [ ([è1Ò 11] ð I ð I) [ ([è2Ò 12] ð I ð I) [ ([è3Ò 13] ð I ð I)

Also, if we let A be a thin annulus neighborhood of ] B in B, we may adjoin ([02Ò è2]ð
A) [ ([03Ò è3] ð A) to M0 to form M00. Then M ² M00 and, using M00 in place of M in the
above description of black and white regions in B, M00 is completely determined by the
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pattern of curves B \ ] M00 in B, together with the labels fi of the black regions Fi. We
have constructed M00 so that it has the property:

(1) The region of B � (B \ ] M00) which is outermost on B is black (call it F1), and
has label f1 = 1.

Next, we enlarge M00 to ensure that its boundary is spherical. Suppose there are any
white regions which are not an annulus or disk. We can split such a region up by adding
strips to the black region which surrounds it, separating the black islands within the
white. The enlarged black region is labelled the same as the original. Each strip S adds a
1-handle to the black set B\M00, which in turn adds a 2-handle ([0iÒ èi] [ [0jÒ èj])ð S to
M00.

In the same way, if a white annulus adjoins black regions having the same label, we
can connect those black regions by a strip and convert the white annulus into a white
disk. Finally, any white region which is a disk can be eliminated simply by painting it
black and annexing it to the surrounding black region (this adds a 3-handle to M00). After
these operations we are able to assume the further property of M00:

(2) Each white region (component of B� (B\M00)) is an annulus and it lies between
black regions having different labels.

LEMMA. Assuming the properties (1) and (2) above, ] M00 is a union of 2-spheres.

PROOF. We will use induction on the number of white regions. If there are no white
regions, then M00 = ([è1Ò 11]ð Ið I)[ ([02Ò 12]ð Ið I)[ ([03 Ò 13]ð Ið I) and its boundary
consists of two 2-spheres.

Next consider the case of exactly one white region; call it W. Then there are exactly
two black regions: F1 is an annulus between ] B and a curve C1, and the other black
region F2 is a disk with boundary curve C2; ] W = C1 [C2. The labels are: f1 = 1Ò f2 6= 1
(say f2 = 2, without loss of generality). Note that fè1g ð F1 is a subset of ] M00; denote
the curve fè1g ð C1 by ç. We will argue that both sides of ç in ] M00 are disks. On one
side we have the set

(fè1g ð F1) [
�
[è1Ò 11] ð ] (I ð I)

�
[ (f11g ð I ð I)Ò

which is clearly a disk. The other side of ç is the union of seven annuli and a disk, which
are (working inward from ç):

(fè1g ð W) [ ([01Ò è1] ð C2) [ ([03Ò è3] ð C2) [ (fè3g ð W) [

Ð Ð Ð [ ([03Ò è3]ð C1) [ ([02Ò è2]ð C1) [ (fè2g ð W) [ (fè2g ð F2)

They clearly fit together to form a disk and so the boundary component of M00 which
contains ç is a 2-sphere. There is one other boundary component of M00, namely

(f12g ð I ð I) [
�
[02Ò 12] ð ] (I ð I)

�
[

�
[03Ò 13] ð ] (I ð I)

�
[ (f13g ð I ð I)

This is also a 2-sphere and we’ve established the lemma in this case.
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Now consider the general case, with more than one white region. Being all annuli,
there must be (at least) one which is innermost in B; call it W. Let j be the label of the black
region surrounding W, let C denote the outer boundary of W and define ç = fèjgðC. We
can argue exactly as in the preceding case that ç bounds a disk in ] M00. It follows that the
boundary of M00 is the same as if W were “removed” from the diagram—that is W and
the black disk it encloses all become part of the surrounding black region (and get the
label j). Note that this last operation could destroy the property M ² M00. Nevertheless,
it allows us to conclude inductively that ] M00 is a union of 2-spheres. The proof of the
lemma, and of Theorem 2, are now complete.

We close this paper with the remark that the triod could be replaced by an arbitrary
graph in the following sense. The class of 3-manifolds with boundary a union of 2-
spheres, and which embed in a 3-complex of the form G ð I ð I, for some graph G, is
exactly the class C . Verification is left to the interested reader.
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