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Abstract
The theory ACUI of an associative, commutative, and idempotent binary function symbol+with unit 0was
one of the first equational theories for which the complexity of testing solvability of unification problems
was investigated in detail. In this paper, we investigate two extensions of ACUI. On one hand, we consider
approximate ACUI-unification, where we use appropriate measures to express how close a substitution is
to being a unifier. On the other hand, we extend ACUI-unification to ACUIG-unification, that is, unification
in equational theories that are obtained from ACUI by adding a finite set G of ground identities. Finally, we
combine the two extensions, that is, consider approximate ACUIG-unification. For all cases we are able to
determine the exact worst-case complexity of the unification problem.
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1. Introduction
An important topic in unification theory (Siekmann, 1989; Baader and Siekmann, 1994; Baader
and Snyder, 2001) is investigating the complexity of deciding solvability of unification problems
� w.r.t. an equational theory E, that is, for a fixed equational theory E one considers as input a set
of equations between terms of the form � = {s1 =? t1, . . . , sk =? tk}, and asks whether there exists
a substitution σ such that σ (si)=E σ (ti) holds for i= 1, . . . , k. The complexity is then measured
in the s of the unification problem �. The theory ACUI of an associative, commutative, and idem-
potent binary function symbol + with unit 0 was one of the first equational theories for which
the complexity of testing solvability of unification problems was investigated in detail (Kapur and
Narendran, 1992). Interestingly, it turned out that this complexity depends on which symbols
are allowed to occur in �. In elementary E-unification, the terms in � may only contain vari-
ables and the constant and function symbols occurring in E, that is, for E= ACUI these terms
are built using variables and +, 0. In E-unification with constants, additional free constants (i.e.,
constants not occurring in E) may be used, whereas in general E-unification both free constants
and free function symbols may occur in �. Kapur and Narendran (1992) have shown that ele-
mentary ACUI-unification and ACUI-unification with constants are polynomial, whereas general
ACUI-unification is NP-complete.

Our renewed interest in ACUI-unification stems from the fact that the theory ACUI is a common
subtheory of the equational theories corresponding to the Description Logics FL0 (Baader, 1996)
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and EL (Baader et al., 1999): for FL0, ACUI is extended with unary function symbols that behave
like homomorphisms and for EL the additional unary function symbols behave like monotone
operators. In both cases, the binary symbol + corresponds to concept conjunction, and 0 to the
top concept, which, in turn, are the description logic equivalents of “logical and” and “logical
true”. Unification with constants in (the equational theory corresponding to) FL0 is known to
be ExpTime-complete (Baader and Narendran, 2001) and NP-complete in (the equational theory
corresponding to) EL (Baader and Morawska, 2009). We believe that ACUI is thus a good testing
ground when trying to extend these results to more general settings. Here, we consider exten-
sions of ACUI-unification in two orthogonal directions, which we then bring together: generalizing
unification to approximate unification and adding a finite ground theory to ACUI.

In approximate E-unification, one does not require that the left- and right-hand sides of
the equations become equal modulo E, but only almost equal. The formal meaning of when a
substitution approximately (i.e., “almost”) solves a unification problem is formalized using dis-
tance measures between terms that are tailored towards the equational theory E in question.
Approximate unification with constants in FL0 was investigated in Baader et al. (2016) w.r.t. two
such measures. In contrast to approaches that try to speed up reasoning by employing approxi-
mate inference techniques (Pan et al., 2016), this work (Baader et al., 2016) uses approximation as
a way to extend the range of admissible solutions to a unification problem. In the present paper,
we consider approximate unification with constants in ACUI w.r.t. three different measures: the
first considers the number of equations that are violated, the second the number of constants vio-
lating at least one equation, and the third counts the overall number of violations (see Section 3
for exact definitions of these measures). It turns out that in the first and the third cases, the com-
plexity increases from P to NP-complete when going from exact ACUI-unification with constants
to the approximate case, whereas it stays in P for the second case.

The results for unification in the Description Logics FL0 and EL respectively shown in
Baader and Narendran (2001) and Baader and Morawska (2009) are restricted to the case where
equivalence of concept descriptions (corresponding to equality modulo the respective equational
theories mentioned above) is considered without a background knowledge base. It is not known
how to extend these decidability and complexity results to unification in the presence of so-called
general TBoxes, though for EL there are some positive results for a restricted form of TBoxes
(Baader et al., 2012). Since, from an equational theory point of view, general TBoxes correspond
to finite sets of ground identities, we are interested in equational theories for which decidability
of unification is stable under adding finite sets of ground identities. We will show in Section 4
that ACUI is such a theory. For the word problem, Marché proved in Marché (1996) that ACUI
remains decidable if it is extended with a finite set of ground identities, but no complexity bounds
are given. This result actually holds for a signature possibly containing several ACUI symbols and
free function symbols. In Section 4 we consider a restricted setting where the ground theory G
is built using only one ACUI symbol and free constants. In this case we can show that both the
word problem and unification with constants remain solvable in P. Actually, the result for uni-
fication holds for unification problems with so-called constant restrictions, which allows us to
employ the combination results from (Baader and Schulz, 1996) to show that general unifica-
tion in ACUI∪G is NP-complete for any finite set of ground identities G satisfying the restrictions
mentioned above. The complexity upper bounds shown in Section 4 (in P for unification with con-
stant restrictions and in NP for general unification) are actually somewhat stronger: these upper
bounds hold even if we view G to be part of the input, that is, measure the complexity in the size
of � and G. NP-hardness already holds for any fixed finite set of ground identities G.

In the last part of this paper, we are combining the two extensions, that is, we consider approx-
imate unification modulo ACUIG, that is, ACUI extended with a finite set of ground identities G.
For the cases where one considers the number of violated equations or the overall number of
violations, the NP-completeness results transfer from ACUI to ACUIG. For the remaining case
where one considers the number of constants violating at least one equation, things become more
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interesting: we will show that there is a finite set of ground identities G such that approximate
ACUIG-unification becomes NP-complete, but we will also exhibit a class of ground identities G
for which this problem remains in P.

In the following, we assume that the reader is familiar with the basic notions regarding equa-
tional theories and unification modulo equational theories, as they can be found, for example, in
Baader and Nipkow (1998), Baader and Snyder (2001).

2. Unification Modulo ACUI
In this section, we introduce the equational theory ACUI, characterize the word problem in ACUI
using sets of constants, and recall the polynomial-time decision procedure for ACUI-unification by
Kapur and Narendran (1992), which is based on a translation of ACUI-unification problems into
propositional Horn formulae. This translation will then be extended in the next section to deal
with approximate unification.

Let � = {+, 0} be the signature consisting of a binary function symbol + and a constant
symbol 0. We denote the equational theory that states that + is an associative, commutative, and
idempotent symbol with unit 0 by ACUI:

ACUI := {(x+ y)+ z = x+ (y+ z), x+ y= y+ x, x+ 0= x, x+ x= x}.
Furthermore, let F be a countably infinite set of constants and V a countably infinite set of vari-
ables, where we assume that F, V , and � are pairwise disjoint. We call the elements of F free
constants since they are not constrained by the identities of ACUI. We denote the set of terms built
from �, F, and V as T�(F,V), and the subset of ground terms, that is, terms in T�(F,V) that do
not contain variables, as T�(F). For example, if a, b ∈ F and x, y ∈V , then x+ y and a+ x belong
to T�(F,V), and a+ b+ b and b+ a+ a are elements of T�(F). The latter two terms are actually
equivalent modulo ACUI. More generally, two ground terms are equivalent modulo ACUI iff they
contain the same free constants. To be more precise, given a ground term t ∈ T�(F), we denote
the set of free constants occurring in t with S(t). For example, S(a+ b+ b)= {a, b} = S(b+ a+ a),
and S(a+ 0)= {a} = S(a+ a). The following result is well known.

Lemma 2.1. Let s, t ∈ T�(F). Then s=ACUI t iff S(s)= S(t).

Before we can define ACUI-unification, we need to introduce the notion of a substitution. A sub-
stitution is a mapping σ :V → T�(F,V) that is the identity for all but finitely many variables. It
can be homomorphically extended to a mapping from T�(F,V) to T�(F,V) in the obvious way,
that is, σ (c)= c for every c ∈ F ∪ {0}, and σ (t1 + t2)= σ (t1)+ σ (t2) for every t1, t2 ∈ T�(F,V).

Definition 2.2. ACUI-unification problem with constants.
Input: A finite system � = {s1 =? t1, . . . , sk =? tk} of equations between terms of T�(F,V).
Question: Is there a substitution σ such that σ (si)=ACUI σ (ti) for every i= 1, . . . , k?

Such a substitution is called an ACUI-unifier of �.

The ACUI-unification problems introduced in the above definition are called unification prob-
lems with constants since they may contain additional free constants (i.e., the elements of F, which
do not belong to �), but no additional free function symbols of arity > 0. Now, let � be such an
ACUI-unification problem with constants and C and X be the finite sets of constants and variables
respectively occurring in �. In order to check whether � has an ACUI-unifier or not, it is suffi-
cient to consider substitutions that are the identity on V \ X and replace every x ∈ X by a term
in T�(C), that is, a ground term containing (in addition to 0) only constants from C. In fact, any
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ACUI-unifier of � can be turned into one satisfying these properties by making it the identity on
V \ X and replacing variables and constants in F \ C occurring in σ (x) for x ∈ X with 0. If we apply
such a substitution σ to the terms occurring in �, then we obtain terms in T�(C). According to
Lemma 2.1, σ is an ACUI-unifier of � iff S(σ (s))= S(σ (t)) for every equation s=? t ∈ �, that is,
every constant c ∈ C occurring on the left-hand side σ (s) also occurs on the right-hand side σ (t)
and vice versa.

Example 2.3. Consider the following ACUI-unification problem with constants:

� = {x1 + x2 =? a+ b+ c,
a+ x2 =? b+ x3,
x1 + x3 =? a+ c}.

We haveC = {a, b, c} andX = {x1, x2, x3}. If we define σ (x1) := a+ c and σ (x2) := b, then σ solves
the first equation, since then all the constants inC occur on both sides. In order to solve the second
equation as well, we then must define σ (x3) such that a occurs in it, and c does not occur in it.
This is satisfied by setting σ (x3) := a, which then also satisfies the third equation. Note that setting
σ (x3) := a+ b would have satisfied the second equation, but not the third.

We will now recall Kapur and Narendran’s (1992) reduction of solvability of ACUI-unification
problems to satisfiability of propositional Horn formulae. Each equation in the unification prob-
lem � is translated into several Horn clauses, and the overall Horn formula is the conjunction of
all clauses for all equations. In this reduction, to which from now on we will refer to as the KN-
reduction, we use propositional variables p(a, x) for every a ∈ C and x ∈ X. The intuitive semantics
of these variables is that p(a, x) is true iff a is not in S(σ (x)) for the given substitution σ .

It is easy to see that each equation s=? t ∈ � can be written in the form

s0 + x1 + . . . + xm =? t0 + y1 + . . . + yn, (1)

where s0, t0 ∈ T�(F),m, n≥ 0, x1, . . . , xm ∈ X are distinct variables, and y1, . . . , yn ∈ X are distinct
variables.

Now, for each equation of the form (1) and each a ∈ S(s0) \ S(t0), we generate the Horn clause

p(a, y1)∧ . . . ∧ p(a, yn)→ ⊥.

Indeed, whenever an element a ∈ C is in S(s0) but not in S(t0), for the equation to hold true, a
must occur in the image of some yj. The symmetric Horn clauses are also produced, that is, for
each a ∈ S(t0) \ S(s0)

p(a, x1)∧ . . . ∧ p(a, xm)→ ⊥.

Constants a ∈ S(s0)∩ S(t0) are obviously harmless since they automatically occur on both sides of
the equation. Thus, it remains to deal with the constants a ∈ C that are not in S(s0)∪ S(t0). First, if
such a constant a does not occur in the image of any of the variables on the right-hand side, then
it should not occur in the image of any of the variables on the left-hand side, which is expressed
by the Horn clauses

p(a, y1)∧ . . . ∧ p(a, yn)→ p(a, xj) for all j= 1, . . . ,m.

Again, we also need the symmetric clauses, that is, for each a 
∈ C \ (S(s0)∪ S(t0)) we produce

p(a, x1)∧ . . . ∧ p(a, xm)→ p(a, yj) for all j= 1, . . . , n.

It is easy to see that the Horn formula obtained by conjoining all the Horn clauses derived from
the unification problem � is satisfiable iff � has a solution (see Kapur and Narendran (1992) for
details). The number of derived Horn clauses and their sizes are obviously polynomial in the size
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of the given ACUI-unification problem �. Since satisfiability of propositional Horn formulae can
be tested in linear time (Dowling and Gallier, 1984), this yields the following upper bound for
deciding solvability of ACUI-unification problems with constants.

Proposition 2.4. (Kapur and Narendran, 1992). ACUI-unification with constants is decidable in
polynomial time.

3. Approximate Unification Modulo ACUI
Intuitively, in approximate unification we consider the case where a given unification problem is
not solvable, and we ask what is the “best we can do” towards solving it. De facto, we will also
consider solvable unification problems as input for approximate unification, but then producing
an exact unifier should be the best we can do. Before introducing formal approaches for how to
rank the quality of approximate unifiers, we illustrate the underlying ideas using an example.

Example 3.1. Consider the following ACUI-unification problem with constants:

� = {x1 + x2 =? a,
x1 + x3 =? c,

b+ c+ x2 =? b+ x3,
b+ x2 + x3 =? c+ x1}.

Trying to solve the first two equations already fully determines the substitution σ = {x1 �→ 0,
x2 �→ a, x3 �→ c}. Even though σ solves the first two equations, it does not solve the remaining two.
Under σ , the set of free constants occurring in the left-hand side of the third equation becomes
{a, b, c}, while the right-hand side yields the set {b, c}. Likewise for the fourth equation we obtain
{a, b, c} on the left-hand side and {c} on the right-hand side.

How far away is this substitution from being an exact solution? One idea is to count the number
of equations that are not satisfied by it. In our example, this would yield the number 2 since σ does
not solve the third and fourth equations. It is easy to see that, w.r.t. this measure, σ is actually the
best we can do. In fact, in any solution of the fourth equation, b must occur in the image of x1,
and thus this substitution violates at least the first two equations. In addition, we have already seen
that a solution of the first two equations cannot satisfy the third and fourth equations. Thus, it is
not possible to satisfy more than two of the four equations.

The above measure fails, however, to assess how far from being solved are the violated equa-
tions. Another possibility is to count how many of the elements of C take part in at least one
violation, that is, occur on one side but not on the other when the substitution has been applied.
In our example, there are two such constants, namely a and b. In fact, after applying σ , both a and
b occur on the left-hand side of the fourth equation, but not on the right-hand side. In contrast,
c does not take part in any violation. Again, it is not hard to show that this is the best we can do
w.r.t. this measure.

Still, this new measure ignores for how many equations a given element of C takes part in a
violation. To take this aspect into account, we will also consider a measure that counts the over-
all number of violations, that is, sums up the number of equations each element of C violates.
Returning to our example, this would be 3 violations for the substitution σ : 2 for a, 1 for b, and 0
for c. For this measure, we can actually do better than σ . In fact, if we define θ(x1) := θ(x2) := 0
and θ(x3) := c, then a violates only the first equation, b violates only the fourth equation, and c
violates no equation. Consequently, θ gets assigned the value 2, which is better than 3, which was
the value for σ .
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In this example, and also in our general definitions, we consider only substitutions that are
the identity on V \ X and assign terms in T�(C) to the variables in X. The reason is that the
assignment to variables inV \ X has no influence on the images of the left- and right-hand sides of
equations in �, and that free constants and variables in the images may only introduce additional
violations, but cannot remove violations caused by constants in C.

In the following, we will investigate all three of the measures sketched in the example, and
determine the computational complexity of the corresponding decision problems, that is, given
a unification problem � and a natural number �, is there a substitution whose value w.r.t. the
given measure is ≤ �? It should be clear that these decision problems are in NP. Any substitution
basically assigns subsets ofC to the variables, and thus all such substitutions can be guessed in non-
deterministic polynomial time. For a given substitution, the value assigned to it by the respective
measure can obviously be computed in polynomial time. However, for the cases that are actually
NP-complete, we also provide a reduction to Max-HSAT (Jaumard and Simeone, 1987), which is
known to be NP-complete. This allows us to use existing optimized solvers for Max-HSAT (see
e.g., (Marques-Silva et al., 2017)) to solve approximate ACUI-unification problems. NP-hardness
will be shown by a reduction fromMax-HSAT.

For later reference, we now define this problem formally.

Definition 3.2. (Max-HSAT).

Input: A nonnegative integer � and a formula ϕ = ∧n
i=1 Ci over a finite set of propositional vari-

ables P, where Ci is aHorn clause, that is, of the form p1 ∧ · · · ∧ pm → q, with p1, . . . , pm being
propositional variables, and q either a propositional variable or ⊥. Note that m= 0 is possible,
where the empty conjunction is interpreted as .

Question: Does there exist a set of indices I ⊆ {1, . . . , n} of cardinality at least �, and a valuation
v : P → {0, 1} such that v(Ci)= 1 for all i ∈ I.

We call this decision problem Max-HSAT. For a given �, Max-HSAT(�) consists of all Horn
formulae ϕ = ∧n

i=1 Ci for which there is a valuation that satisfies at least � clauses Ci.

3.1 Minimizing the number of violated equations
As mentioned above, we consider only substitutions that are the identity on V \ X and assign
terms in T�(C) to the variables in X. We say that such a substitution σ violates an equation of the
form (1) if

S(s0 + σ (x1)+ . . . + σ (xm)) 
= S(t0 + σ (y1)+ . . . + σ (yn)).

Definition 3.3. (MinVEq-ACUI). Given an ACUI-unification problem with constants � and a non-
negative integer �, we now ask whether there exists a substitution σ such that at most � of the
equations of the system are violated by σ . We call this decision problem MinVEq-ACUI. For a
given �, MinVEq-ACUI (�) consists of all ACUI-unification problems with constants for which there is
a substitution that violates at most � equations of the system.

We will show that MinVEq-ACUI is NP-complete using reductions to and fromMax-HSAT.

3.1.1 Reducing MinVEq-ACUI to Max-HSAT
For this purpose, we introduce new propositional variables good(i), whose rôle is to determine
whether the ith equation is to be satisfied or not. We conjoin good(i) to the left-hand side of each
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of the Horn clauses derived from the ith equation, that is, if the ith equation is of the form (1),
then we generate the following Horn clauses:

− For each a ∈ S(s0) \ S(t0): good(i)∧ p(a, y1)∧ . . . ∧ p(a, yn)→ ⊥;
− For each a ∈ S(t0) \ S(s0): good(i)∧ p(a, x1)∧ . . . ∧ p(a, xm)→ ⊥;
− For each a 
∈ S(s0)∪ S(t0):

good(i)∧ p(a, y1)∧ . . . ∧ p(a, yn)→ p(a, xj) for all j= 1, . . . ,m;
good(i)∧ p(a, x1)∧ . . . ∧ p(a, xm)→ p(a, yj) for all j= 1, . . . , n.

− Furthermore, we add the Horn clause  → good(i).

If k′ is the number of clauses generated by the original KN-reduction (see Section 2) and k is the
number of equations in the unification problem �, then we obtain k′ + k Horn clauses in this
modified reduction. Let ϕ� = C1 ∧ · · · ∧ Ck′+k denote the Horn formula obtained by conjoining
these Horn clauses.

Before proving soundness and completeness of this modified reduction, we illustrate the above
construction with an example.

Example 3.4. Consider the following ACUI-unification problem with constants, which is not
solvable:

� = {x1 + x2 =? a,
b+ c+ x2 =? b+ x3,
x1 + x3 =? c}.

Then the modified reduction yields the following Horn clauses:

good(1)∧ p(a, x1)∧ p(a, x2)→ ⊥ good(3)→ p(a, x1)
good(1)→ p(b, x1) good(3)→ p(a, x3)
good(1)→ p(b, x2) good(3)→ p(b, x1)
good(1)→ p(c, x1) good(3)→ p(b, x3)
good(1)→ p(c, x2) good(3)∧ p(c, x1)∧ p(c, x3)→ ⊥
good(2)∧ p(a, x2)→ p(a, x3)  → good(1)
good(2)∧ p(a, x3)→ p(a, x2)  → good(2)
good(2)∧ p(c, x3)→ ⊥  → good(3)

The system contains k= 3 equations and the original KN-reduction would produce k′ = 13
clauses. Thus, ϕ� contains k′ + k= 16 Horn clauses.

The valuation that sets p(a, x1), p(a, x2), p(a, x3), p(c, x3), and good(3) to false and all other
variables to true satisfies all but the last clause. This corresponds to the substitution σ with
σ (x1)= σ (x2)= a and σ (x3)= a+ c, which satisfies the first two equations and violates the
third one.

Intuitively, setting the propositional variable good(i) to false “switches off ” the Horn clauses
induced by the ith equation in the original KN-reduction. Consequently, the satisfaction of these
clauses is no longer enforced, which means that the ith equation may be violated. By maximizing
satisfaction of the clauses  → good(i), we thus minimize the number of violated equations from
�. More precisely, we can show the following lemma.
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Lemma 3.5. Let � be an ACUI-unification problem with constants consisting of k equations and
generating k′ clauses in the KN-reduction introduced in Section 2. Then we have, for all 0≤ � ≤ k:

� ∈MinVEq-ACUI(�) iff ϕ� ∈Max-HSAT((k′ + k)− �).

Proof. Let � ∈MinVEq-ACUI(�). This means that there exists a substitution σ such that at most
� of the equations in � are violated by σ . We use σ to define a valuation of the propositional
variables occurring in ϕ� . For every a ∈ C and every variable x ∈ X we set p(a, x) to true iff a /∈
S(σ (x)). In addition, we set good(i) to true iff σ does not violate the ith equation of �.

Now, suppose that the ith equation of � is not violated by σ . Then our valuation makes
all clauses corresponding to the ith equation evaluate to true, and in addition it also satisfies
 → good(i). If the jth equation of � is violated, then good(j) is false. Consequently, all clauses
of ϕ� corresponding to the jth equation evaluate to true, but  → good(j) evaluates to false.
Summing up, the valuation induced by σ satisfies all the clauses of ϕ� , with the exception of
the clauses  → good(j) if the jth equation is violated by σ . Since σ violates ≤ � equations and
there are k′ + k clauses in ϕ� , the valuation satisfies ≥ (k′ + k)− � clauses, which shows that
ϕ� ∈Max-HSAT((k′ + k)− �).

For the opposite direction, let ϕ� ∈Max-HSAT((k′ + k)− �). This means that there is a valua-
tion v and a set of indices I ⊆ {1, . . . , k′ + k} with |I|� k′ + k− � such that v(Ci)= 1 for all i ∈ I.
Since k≥ �, we know that≥ k− � of the clauses → good(i) must evaluate to true, that is,≥ k− �

of the propositional variables good(i) evaluate to true. If i is an index for which v(good(i))= 1,
then all the clauses produced by the KN-reduction of Kapur and Narendran (see Section 2) for
the ith equation evaluate to true. By the correctness of the KN-reduction, the ACUI-unification
problem consisting of the equations for which v(good(i))= 1 has a solution. Thus, there is a
substitution that solves ≥ k− � equations of �, that is, violates ≤ � equations. This shows that
� ∈MinVEq-ACUI(�).

Since Max-HSAT is in NP, this lemma implies that MinVEq-ACUI also belongs to NP.

3.1.2 Reducing Max-HSAT to MinVEq-ACUI
Consider the Horn formula ϕ = C1 ∧ . . . ∧ Ck, where Ci is a Horn clause for i= 1, . . . , k. To con-
struct a corresponding ACUI-unification problem with constants �ϕ , it is sufficient to use a single
free constant a, that is, we will have C = {a}. For every propositional variable p appearing in ϕ, we
introduce a variable xp. Intuitively, a occurs in xp iff p is set to false. Now, each Horn clause in ϕ

yields the following equations:

− If Ci is of the form p1 ∧ . . . ∧ pn → p, then the corresponding equation is

xp1 + . . . + xpn + xp =? xp1 + . . . + xpn .
Obviously, this equation enforces that a cannot occur in xp if it does not occur in any of the
variables xpi .− If Ci is of the form p1 ∧ . . . ∧ pn → ⊥, then the corresponding equation is

xp1 + . . . + xpn =? a.
This equation enforces that amust occur in one of the variables xpi .− If Ci is of the form  → p, then the corresponding equation is

xp =? 0.
This equation ensures that a cannot occur in xp.

The following example illustrates the construction of �ϕ .
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Example 3.6. Consider the Horn formula

ϕ = (p1 ∧ p2 → p3)∧ (p1 ∧ p3 → ⊥)∧ (p2 ∧ p3 → ⊥)∧ ( → p1)∧ ( → p2).

The corresponding ACUI unification problem consists of the following equations:

xp1 + xp2 + xp3 =? xp1 + xp2 ,
xp1 + xp3 =? a, xp2 + xp3 =? a,
xp1 =? 0, xp2 =? 0.

It is easy to see that ϕ is not satisfiable. The valuation v that makes p1 and p2 true, and p3 false
satisfies all clauses except for the first one. Given the intuition that a occurs in xpi iff pi is set to
false, this valuation induces the following substitution σ :

σ := {xp1 �→ 0, xp2 �→ 0, xp3 �→ a},
which solves all equations in the ACUI-unification problem except for the first one.

More generally, we will show that there is a 1–1-relationship between valuations satisfying cer-
tain clauses and substitutions satisfying the corresponding equations. It is worth noting, however,
that in Max-HSAT the number of satisfied clauses is maximized, whereas in MinVEq-ACUI the
number of violated equations is minimized.

Lemma 3.7. Let ϕ = C1 ∧ . . . ∧ Ck be a Horn formula and �ϕ the corresponding ACUI unification
problem. Then we have, for all 0≤ � ≤ k:

ϕ ∈Max-HSAT(�) iff �ϕ ∈MinVEq-ACUI(k− �).

Proof. Suppose that ϕ ∈Max-HSAT(�). This means that there exists a valuation v and a set of
indices I ⊆ {1, . . . , k}, |I| ≥ � such that v(Ci)= 1 for every i ∈ I. Given such a valuation v, we
define the substitution σ as follows:

σ (xpi) := a if v(pi)= 0 and σ (xpi) := 0 if v(pi)= 1.

We show that, for every i ∈ I, the ith equation is solved by this substitution. Indeed, if the ith
equation is of the form:

− xp1 + . . . + xpn + xp =? xp1 + . . . + xpn , then Ci = p1 ∧ · · · ∧ pn → p evaluates to true under
v. This means that either v(pj)= 0 for some j ∈ I or v(p)= 1. In the first case, a then occurs
on both sides of the equation, and thus the equation is solved. In the second case, σ (xp)= 0,
and again the equation is solved by σ .

− xp1 + · · · + xpn =? a, then Ci = p1 ∧ · · · ∧ pn → ⊥ evaluates to true under v. This means that
v(pj)= 0 for some j ∈ I, and thus σ (xpj)= a for some j ∈ I. Consequently, σ (xp1 + · · · + xpn)
is a sum of as and 0s, which implies that the ith equation is solved by σ .

− xp =? 0, then Ci =  → p evaluates to true under v. This means that v(p)= 1, and thus
σ (xp)= 0. This shows that the ith equation is solved by σ .

Consequently, the substitution σ solves at least � equations of �ϕ , and thus violates at most k− �

equations, which implies �ϕ ∈MinVEq-ACUI(k− �).
For the opposite direction, if �ϕ ∈MinVEq-ACUI(k− �), then there is a substitution σ such

that at least � equations of �ϕ are not violated. We can assume without loss of generality that σ

uses a as the only free constant. If we define v(p)= 0 iff a occurs in σ (xp), then we can show (in
the same way as above) that v satisfies at least � clauses of ϕ, which implies ϕ ∈Max-HSAT(�).
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Since Max-HSAT is NP-hard, this lemma implies that MinVEq-ACUI is also NP-hard. Put
together, the two lemmas yield the exact complexity of MinVEq-ACUI.

Theorem 3.8. MinVEq-ACUI is NP-complete. The NP-hardness result holds even for ACUI-
unification problems with only one free constant.

3.2 Minimizing the number of violating elements
For the second measure, instead of minimizing the number of violated equations, we will mini-
mize the number of violating elements ofC, where as beforeC is the set of free constants occurring
in the unification problem.

Given a substitution σ , we say that a ∈ C violates an equation of the form (1) w.r.t. σ if

a ∈ S(s0 + σ (x1)+ . . . + σ (xm))� S(t0 + σ (y1)+ . . . + σ (yn)),
where � denotes the symmetric difference of two sets. We say that a ∈ C violates � w.r.t. σ if it
violates at least one equation in � w.r.t. σ .

Definition 3.9. Given an ACUI-unification problem with constants � and a nonnegative integer �,
we now ask whether there exists a substitution σ such that at most � constants violate � w.r.t.
σ . We call this decision problem MinVEl-ACUI. For a given �, MinVEl-ACUI (�) consists of all
ACUI-unification problems � with constants for which there is a substitution w.r.t. which at most
� constants violate �.

In contrast to the problemMinVEq-ACUI considered in the previous section,MinVEl-ACUI can
be solved in polynomial time. In order to show this, we use projections of equations to free con-
stants. As noted earlier, any term t ∈ T�(F,V) can be written in the form t = t0 + x1 + . . . + xn,
where t0 ∈ T�(F) is a ground term and x1, . . . , xn are variables in V . Given a constant a ∈ F,
the projection of such a term onto a is defined to be ta = πa(t0)+ x1 + . . . + xn, where for a
ground term t0 ∈ T�(F) we set πa(t0)= a if a occurs in t0, and 0 otherwise. Then the projec-
tion of an equation s=? t to a is sa =? ta, and the projection of an ACUI-unification problem
with constants � to a, denoted by �a, is the system of the projections of the equations in � to a.
Finally, the projection of a ground substitution σ to a is the substitution σ a :V → T�({a}) defined
as σ a(x) := σ (x)a.

Consider the unification problem � and the substitution σ introduced in Example 3.4. The
constant a violates � w.r.t. σ , while b, c do not. For the elements of C = {a, b, c}, we obtain the
following projections of �:

�a �b �c

x1 + x2 =? a
x2 =? x3

x1 + x3 =? 0

x1 + x2 =? 0
b+ x2 =? b+ x3
x1 + x3 =? 0

x1 + x2 =? 0
c+ x2 =? x3

x1 + x3 =? c

Likewise, for the substitution σ we obtain the projections:

σ a σ b σ c

σ a(x1) = a
σ a(x2) = a
σ a(x3) = a

σ b(x1) = 0
σ b(x2) = 0
σ b(x3) = 0

σ c(x1) = 0
σ c(x2) = 0
σ c(x3) = c

https://doi.org/10.1017/S0960129519000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000185


Mathematical Structures in Computer Science 607

One can easily check that σ b and σ c solve �b and �c, respectively, whereas σ a does not solve �a.
This is closely related to the fact that a violates � w.r.t. σ , but b and c do not.

Lemma 3.10. Let � be an ACUI-unification problem with constants. Then the following holds:

(1) The constant a ∈ C violates � w.r.t. σ iff σ a does not solve �a.
(2) Given substitutions σa :V → T�({a}) for all a ∈ C, we define the substitution σ :V → T�(C)

as
σ (x)=

∑
a∈C

σa(x) for all x ∈V .

Then we have σ a = σa for all a ∈ C.
(3) There is a substitution σ :V → T�(C) such that at most � of the elements of C violate � w.r.t.

σ iff at most � of the ACUI-unification problems �a (a ∈ C) are not solvable.

Proof. We will show the first two facts stated in the lemma, and then use them to prove the third.

(1) This is an easy consequence of the following equivalences. The constant a violates the
equation s=? t ∈ � w.r.t. σ iff a ∈ S(σ (s))� S(σ (t)) iff a ∈ S(σ (s)a)� S(σ (t)a) iff a ∈
S(σ a(sa))� S(σ a(ta)) iff σ a does not solve sa =? ta ∈ �a.

(2) σ a(x)= (
∑

a′∈C σa′(x))a = ∑
a′∈C (σa′(x)a)= σa(x)a = σa(x).

(3) Suppose that there is a substitution σ :V → T�(C) such that at most � elements ofC violate
� w.r.t. σ . Because of the first fact this implies that at least k− � of the projected unification
problems �a are solved by the projected substitutions σ a. Consequently, at most � of the
projected problems �a are not solvable.
For the opposite direction, suppose that at most � of the systems �a are not solvable.
For every a ∈ C, if �a is solvable, let σa :V → T�({a}) be a substitution that solves it,
and an arbitrary substitution V → T�({a}) otherwise. Define the substitution σ :V →
T�(C) as σ (x) := ∑

a∈C σa(x) for all x ∈V . Then the constant a ∈ C violates � w.r.t. σ

iff σ a = σa solves �a iff �a is solvable. Consequently, at most � of the elements of C violate
� w.r.t. σ .

This completes the proof of the lemma.

Due to the third fact stated in the above lemma, to check whether � ∈MinVEl-ACUI(�), it is
sufficient to check which of the ACUI-unification problems �a for a ∈ C are solvable. This can
obviously be done in polynomial time.

Theorem 3.11. The problem MinVEl-ACUI is in P.

3.3 Minimizing the number of violations
A disadvantage of the violated elements measure used in the previous section is that it does not
distinguish between constants that violate only one equation and those violating many equations.
To overcome this problem, we count for each violating constant how many equations it actually
violates. We say that a ∈ C violates � p times w.r.t. σ if it violates p equations in � w.r.t. σ . Further,
we say that σ violates � q times if q= ∑

a∈C pa where, for each a ∈ C, the element a violates � pa
times w.r.t. σ .

Definition 3.12. (MinV-ACUI). Given an ACUI-unification problem with constants � and a non-
negative integer �, we now ask whether there exists a substitution σ that violates � at most � times.
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Figure 1. The Horn clauses obtained by applying the modified reduction to � from Example 3.4.

We call this decision problemMinV-ACUI. For a given threshold value �, MinV-ACUI (�) consists of
those ACUI-unification problems with constants � for which there is a substitution that violates � at
most � times.

The approach used in Section 3.1 to solve MinVEq-ACUI can easily be adapted to solve this new
problem. Basically, we now introduce propositional variables good(i, a) (instead of simply good(i))
to characterize whether the element a ∈ C violates the ith equation. We conjoin good(i, a) to the
left-hand side of each of the Horn clauses derived from the ith equation for a. Furthermore, we
add the Horn clauses  → good(i, a) instead of  → good(i). Following the earlier notation, we
obtain k′ + k|C| Horn clauses in this modified reduction, and again use ϕ� to denote the Horn
formula obtained this way.

If we apply this modified reduction to the ACUI-unification problems of Example 3.4, then
we obtain the Horn clauses depicted in Figure 1. Consider the substitution θ with θ(x1)=
θ(x2)= a and θ(x3)= c. Then a violates the second and the third equations, whereas b and
c do not violate any equation w.r.t. θ . We can use θ to define a valuation v, which sets
p(a, x1), p(a, x2), p(c, x3), good(2, a), good(3, a) to false and all other propositional variables to
true. This valuation satisfies all clauses in Figure 1, except for → good(2, a) and → good(3, a).

The following lemma states correctness of themodified reduction. Since its proof is very similar
to the proof of Lemma 3.5, we leave it to the reader.

Lemma 3.13. Let � be an ACUI-unification problem consisting of k equations, and generating k′
clauses in the KN-reduction introduced in Section 2, and let C be the set of free constants occurring
in �. Denote with ϕ� = C1 ∧ · · · ∧ Ck′+k|C| the Horn formula obtained by applying the the modified
reduction to �. Then we have

� ∈MinV-ACUI(�) iff ϕ� ∈Max-HSAT((k′ + k|C|)− �).

Since Max-HSAT is in NP, this lemma implies that MinV-ACUI is also in NP. NP-hardness
of MinV-ACUI actually follows directly from Lemma 3.7. In fact, the reduction considered in this
lemma requires only a single constant a. In this setting, counting the number of violated equations
is the same as counting the number of all violations, and thusMinV-ACUI coincides withMinVEq-
ACUI. This shows that MinV-ACUI is NP-hard.

Theorem 3.14. The problem MinV-ACUI is NP-complete.
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4. Unification Modulo ACUIG
In this section, we consider unification modulo ACUIG, that is, ACUI extended with a finite set of
ground identities G. We will prove that, in this setting, we obtain the same complexity bounds
as for ACUI-unification. Initially, we will demonstrate that the word problem in ACUIG is decid-
able in polynomial time. Subsequently, we will use this result to prove that ACUIG-unification with
constant restrictions, a notion that generalizes unification with constants, is also decidable in poly-
nomial time. Finally, using previous combination results from Baader and Schulz (1993) and the
hardness result for general ACUI-unification by Kapur and Narendran (1992), we will conclude
that general ACUIG-unification is NP-complete.

4.1 The word problem for ACUIG
Just as in Section 2, we consider the signature � = {+, 0} and the equational theory ACUI that
states that + is an associative, commutative, and idempotent binary function symbol with unit 0.
But now we extend ACUI with a finite set of ground identities G⊆ T�(F)× T�(F), and denote
the equational theory obtained this way by ACUIG. The word problem for ACUIG asks whether
two given terms s, t ∈ T�(F) are equivalent modulo ACUIG, that is, whether s=ACUIG t holds or
not. As already mentioned in the introduction, we can measure the complexity of this problem
in two different ways. On one hand, we can assume that G is fixed beforehand, and then consider
the word problem for the fixed equational theory ACUIG= ACUI∪G. The complexity of the word
problem is then measured in the size of the input terms s, t. On the other hand, we can view
G to be part of the input and then measure the complexity in the combined size of s, t, and G.
If the complexity is measured in terms of s, t only, we will call this term complexity, and otherwise
combined complexity. We will actually show that the word problem for ACUIG is in P for combined
complexity, which obviously implies that it is also in P for term complexity.

Recall that modulo ACUI, two ground terms s, t ∈ T�(F) are equivalent iff they contain the
same constants. However, in the presence of ground identities G, the latter condition is suffi-
cient, but not necessary for two terms to be equivalent. In fact, ACUI⊆ ACUIG obviously yields
that S(s)= S(t) implies s=ACUIG t. However, the opposite direction need no longer hold, as
shown by the following example. Consider the terms s= b+ a+ a and t = a+ b+ c, with cor-
responding sets S(s)= {a, b} and S(t)= {a, b, c}, and the ground theory G= {a+ b= c}. We have
s= b+ a+ a=ACUI a+ b+ a+ b=G a+ b+ c= t, and thus s=ACUIG t, even though S(s) 
= S(t).
Intuitively, the identity in G can be used to add c to the set {a, b}.

We will now show how to decide whether two terms are equivalent modulo ACUIG. For this
purpose, we saturate the sets of constants occurring in the terms using the identities in G to add
constants, as we have done with c in our example.

Definition 4.1. Given a finite set of constants A⊆ F, its saturation AG is obtained by iteratively
applying the identities of G as follows:

• begin with setting AG :=A;
• as long as there is an identity gi = hi in G such that S(gi)⊆AG and S(hi) 
⊆AG (or S(hi)⊆AG

and S(gi) 
⊆AG), extend AG by setting AG :=AG ∪ S(hi) (respectively, by setting AG :=AG ∪
S(gi)).

This saturation process terminates after a number of iterations that is bounded by the cardi-
nality of G. In fact, once an identity gi = hi is applied in the saturation process, it is no longer
applicable since the set AG then contains S(gi)∪ S(hi). It is also easy to see that the result of the
saturation does not depend on the order in which rules are applied. Thus, each finite set A⊆ F has
a unique saturation AG, which can be computed in time polynomial in the cardinality of A and
the size of G.
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Example 4.2. Consider the set of ground identities

G= {a+ b+ c= d, b+ c+ e= f }
and the term s= a+ f , which yields the start set A= {a, f }. The saturation process for A starts
with settingAG := {a, f }. For the second identity, we have that S(f )= { f } ⊆AG, but S(b+ c+ e)=
{b, c, e} 
⊆AG. Hence, we can extend AG to the new set AG :=AG ∪ S(b+ c+ e)= {a, b, c, e, f }.
Now, for the first identity, we have that S(a+ b+ c)= {a, b, c} ⊆AG, but S(d)= {d} 
⊆AG, and
thus we obtain AG :=AG ∪ S(d)= {a, b, c, d, e, f }. This is the final saturated set since it cannot be
further extended using the identities in G.

The following lemma is an easy consequence of the definition of saturation.

Lemma 4.3. Let A, B be finite subsets of F. Then the following holds:

A⊆AG, AGG =AG, A⊆ B⇒AG ⊆ BG, AG ∪ BG ⊆ (A∪ B)G.

Proposition 4.4. Let s, t ∈ T�(F). Then s=ACUIG t iff S(s)G = S(t)G. In particular, the combined and
thus also the term complexity for the word problem for ACUIG is in P.

Proof. Decidability in polynomial time obviously follows from the equivalence in the first state-
ment since the saturation AG of a finite set A⊆ F can be computed in polynomial time, and the
cardinality of S(s), S(t) is bounded by the size of s, t.

To show the equivalence, first assume that S(s)G = S(t)G. To conclude from this that s=ACUIG t,
it is sufficient to show that saturation steps correspond to rewrite steps in ACUIG. Thus, assume
that l ∈ T�(F), and that gi = hi is an identity inG such that S(gi)⊆ S(l). Then l is of the form l=ACUI
gi + l′. We now have l=ACUI gi + l′ =ACUI gi + gi + l′ =G hi + gi + l′ =ACUI hi + l, and S(hi + l)=
S(l)∪ S(hi). This shows that there are terms sG, tG ∈ T�(F) such that u=ACUIG uG and S(uG)=
S(u)G for u ∈ {s, t}. By Lemma 2.1, we thus know that S(s)G = S(t)G implies sG =ACUI tG, and thus
we have s=ACUIG sG =ACUI tG =ACUIG t.

Second, assume that S(s)G 
= S(t)G. To show that this implies s 
=ACUIG t, we construct a model
A of ACUIG in which the identity s= t does not hold. As interpretation domain, we use all satu-
rated sets over the constants occurring in s, t, or G, that is, � := {AG |A⊆ C}, where C consists
of the elements of F that occur in s, t, or G. Since saturation adds only constants occurring in G,
we know that A⊆ C implies AG ⊆ C. The binary symbol + is interpreted as union followed by
saturation, that is, AG + BG := (AG ∪ BG)G, 0 as ∅G, and c ∈ C as {c}G. Given a term u ∈ T�(C), its
interpretation in this algebra is S(u)G. This can easily be shown by induction on the structure of
u, where the induction step uses the fact that

(AG ∪ BG)G = (A∪ B)G, (2)

which is an easy consequence of Lemma 4.3. Thus, S(s)G 
= S(t)G implies that the terms s, t have
different interpretations in A. To show s 
=ACUIG t, it is thus sufficient to show that A satisfies all
identities of ACUIG. For the identities in ACUI, this is an easy consequence of (2) and the fact that
set union is associative, commutative, and idempotent and has ∅ as unit. Now consider an identity
gi = hi ∈G. When saturating the corresponding sets S(gi) and S(hi), one can in a first step go both
from S(gi) and from S(hi) to S(gi)∪ S(hi) (unless this step is void due to an inclusion). Saturating
further, one thus obtains identical saturated sets, which shows that gi and hi are interpreted in A
by the same saturated set.

Continuing Example 4.2, recall that the term s= a+ f has the saturated set S(s)G =
{a, b, c, d, e, f }. It is easy to see that, for t = b+ d + e, saturation produces the sequence of sets

S(t)= {b, d, e} → {a, b, c, d, e} → {a, b, c, d, e, f } = S(t)G,
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where in the first step the identity d = a+ b+ c is applied, and in the second the identity b+ c+
e= f . Thus, we have S(s)G = S(t)G, which shows that s= a+ f =ACUIG b+ d + e= t.

4.2 ACUIG-unification with constant restriction
As in the previous subsection, let� = {+, 0}, F a countably infinite set of constants, andV a count-
ably infinite set of variables. Given a finite set of ground identities G⊆ T�(F)× T�(F), we now
consider unification modulo ACUIG= ACUI∪G. Note that in this setting the constants occurring
in G are no longer free constants, but theory constants. Thus, an ACUIG-unification problem with
constants may contain the constant 0, the constants from G, and additional free constants, that
is, elements of F that do not occur in G. For a given unification problem, a constant restriction
prohibits the occurrence of certain free constants in the image of certain variables.

Definition 4.5. ACUIG-unification problem with constant restriction.

Input: A finite system � = {s1 =? t1, . . . , sk =? tk} of equations between terms in T�(V , F), a finite
set of ground identities G= {g1 = h1, . . . , gm = hm} between terms in T�(F), and a mapping r :
D→ 2X where X ⊆V is the set of variables occurring in � and D⊆ F is the set of free constants
occurring in �.

Question: Is there a substitution σ such that σ (si)=ACUIG σ (ti) for every i= 1, . . . , k and for every
x ∈ X and d ∈D we have that d does not occur in σ (x) if x ∈ r(d)? Such a substitution is
called an ACUIG-unifier of � w.r.t. r.

Note that we consider the set of ground identities G to be part of the input. Thus, the
complexity upper bound of P shown below for deciding ACUIG-unification with constant restric-
tion holds for combined complexity, which implies the same upper bound also for term
complexity.

In the following, we assume that C ⊆ F is the set of constants occurring in � or G, and X ⊆V is
the set of variables occurring in �. As before, in order to check whether � has a unifier w.r.t. r, it is
sufficient to consider substitutions that are the identity onV \ X and replace every x ∈ X by a term
in T�(C). In fact, any ACUIG-unifier of � w.r.t. r can be turned into one satisfying these properties
by making it the identity on V \ X and replacing variables and constants in F \ C occurring in
σ (x) for x ∈ X with 0.

Intuitively, our algorithm for solving ACUIG-unification with constant restriction starts with a
maximal substitution σ that respects the constant restriction. More precisely, maximal means
that σ (x) contains all theory constants (constants occurring in G) and all free constants not
disallowed by the constant restriction. Using the set notation, we have that S(σ (x))= {c ∈ C |
c occurs in G or c ∈D and x 
∈ r(c)}. Note that this is an overapproximation of any solution θ (i.e.,
S(θ(x))⊆ S(σ (x)) holds for all variables x), if a solution exists at all.

Next, whenever an equation s=? t is not satisfied by the current substitution σ modulo ACUIG,
we know that S(σ (s))G 
= S(σ (t))G. Assume for example that S(σ (s))G 
⊆ S(σ (t))G. By Lemma 4.3
we obtain that S(σ (s)) 
⊆ S(σ (t))G, that is, there occurs a constant a in σ (s) such that a /∈ S(σ (t))G.
This constant is either introduced to σ (s) by the substitution, or it already occurs in s. In the
latter case, since the substitution σ is an overapproximation of any solution, we cannot remedy
this situation by adding the constant a to σ (t). Thus, the algorithm terminates in this case and
returns Fail. Otherwise, there exists a variable x occurring in s such that S(σ (x)) 
⊆ S(σ (t))G. In
this case, we trim the substitution, so that it no longer introduces this violation. This trimming
process is such that the obtained substitution remains an overapproximation of any solution. The
algorithm terminates successfully if all the equations are satisfied modulo ACUIG, in which case
the current substitution σ is a solution. This happens after a polynomial number of steps since
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Figure 2. Algorithm for ACUIG-unification with constant restriction.

in each iteration of the while-loop the set S(σ (x)) for at least one variable x becomes smaller in
the trimming step. Otherwise, the algorithm must terminate with failure at some point due to the
reasons explained above.

The formal description of our algorithm, called Algorithm 1, can be found in Figure 2. In this
description, we use the following notation for turning a set of constants into the term that sums
up these constants: given A⊆ C, we denote with

∑
(A) the term

∑
a∈A a. Note that S(

∑
(A))=A

and
∑

(S(s))=ACUI s for all s ∈ T�(C).
Before proving correctness of this algorithm, we illustrate how it works on two examples, one

where the input is a solvable unification problem, and the other where the input problem is not
solvable.

Example 4.6. Consider the system of equations

� = {g + x2 =? a+ x1, b+ x1 =? c+ f + g, c+ x2 =? a+ c+ e},
the set of ground identitiesG= {a+ b+ c= d, b+ c+ e= f } from Example 4.2, and the constant
restriction

r(g)= {x2}.
Note that g is the only free constant occurring in �, and thus it is the only constant occurring
in this constant restriction. Also note that if we had x1 ∈ r(g), then the second equation of �

would not be solvable. In addition, without G, this second equation would not be solvable either:
b belongs to the left-hand side, but could never belong to the right-hand side without additional
ground identities.

The algorithm begins by setting

σ (x1) := a+ b+ c+ d + e+ f + g and σ (x2) := a+ b+ c+ d + e+ f .

Next, the algorithm enters the while-loop and picks in each iteration an equation that is not
satisfied modulo ACUIG:

− The second equation is not satisfied by σ modulo ACUIG:
we have S(σ (c+ f + g))G = {b, c, e, f , g}, and hence S(σ (x1)) 
⊆ S(σ (c+ f + g))G. The

https://doi.org/10.1017/S0960129519000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000185


Mathematical Structures in Computer Science 613

algorithm then proceeds to set σ (x1) := ∑
({a, b, c, d, e, f , g} ∩ {b, c, e, f , g})= b+ c+ e+

f + g.
− The third equation is not satisfied by σ modulo ACUIG:

we have that S(σ (a+ c+ e))G = {a, c, e}, and hence S(σ (x2)) 
⊆ S(σ (a+ c+ e))G. The algo-
rithm then proceeds to set σ (x2) := ∑

({a, b, c, d, e, f } ∩ {a, c, e})= a+ c+ e.
− The first equation is not satisfied by σ modulo ACUIG:

we have S(σ (x1))= {b, c, e, f , g} 
⊆ S(σ (g + x2))G = {a, c, e, g}.
The algorithm proceeds to set σ (x1) := ∑

({b, c, e, f , g} ∩ {a, c, e, g})= c+ e+ g.

The algorithm then terminates since all equations are satisfied modulo ACUIG, and yields the sub-
stitution σ = {x1 �→ c+ e+ g, x2 �→ a+ c+ e} as output, which is indeed an ACUIG-unifier of �

that respects the constant restriction r.

Next, we provide an instance that admits no solution, and demonstrate how the algorithm
reaches this conclusion.

Example 4.7. Consider the system of equations

� = {a+ x2 =? x1, b+ x1 =? c+ f + g, c+ x2 =? c+ e},
the set of ground identities G= {a+ b+ c= d, b+ c+ e= f } considered in the previous exam-
ple, and the constant restriction

r(g)= ∅.
Note that g is the only free constant occurring in �, and that r(g)= ∅ means that, in effect, there
is no constant restriction, that is, all substitutions are admissible w.r.t. this constant restriction.

The algorithm begins by setting
σ (x1) := a+ b+ c+ d + e+ f + g and σ (x2) := a+ b+ c+ d + e+ f + g.

Next, the algorithm enters the while-loop and picks in each iteration an equation that is not
satisfied modulo ACUIG:

− The second equation is not satisfied by σ modulo ACUIG:
we have S(σ (c+ f + g))G = {b, c, e, f , g}, and hence σ (x1) 
⊆ S(σ (c+ f + g))G.
The algorithm then proceeds to set σ (x1) := ∑

({a, b, c, d, e, f , g} ∩ {b, c, e, f , g})= b+ c+
e+ f + g.

− The third equation is not satisfied by σ modulo ACUIG:
we have that S(σ (c+ e))G = {c, e}, and hence σ (x2) 
⊆ S(σ (c+ e))G.
The algorithm then proceeds to set σ (x2) := ∑

({a, b, c, d, e, f , g} ∩ {c, e})= c+ e.
− The first equation is not satisfied by σ modulo ACUIG:

we have S(σ (x1))= {b, c, e, f , g} 
⊆ S(σ (a+ x2))G = {a, c, e}.
The algorithm proceeds to set σ (x1) := ∑

({b, c, e, f , g} ∩ {a, c, e})= c+ e and σ (x2) :=∑
({c, e} ∩ {b, c, e, f , g})= c+ e.

− The first equation is still not satisfied by σ modulo ACUIG, but we have S(σ (x1))= {c, e} ⊆
S(σ (a+ x2))G = {a, c, e} and S(σ (x2))= {c, e} ⊆ S(σ (x1))G = {c, e}. Hence the if condition is
not satisfied and the algorithm returns Fail.

It is not hard to see that the problem indeed does not have an ACUIG-unifier. Basically, the first
equation implies that, for any unifier σ , a or d must occur in σ (x1) since otherwise a cannot
be produced on the right-hand side of the first equation. However, any such σ then violates the
second equation.
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Proposition 4.8. Algorithm 1 terminates in time polynomial in the size of G and �. If � has an
ACUIG-unifier w.r.t. r, then it provides such a unifier as output; otherwise it fails.

Proof. Termination in polynomial time is an easy consequence of the facts that (i) in each iteration
of the while-loop, at least one constant is removed from the image of a variable, or the loop is
exited; and (ii) saturation can be done in polynomial time.

Since the algorithm only returns a substitution if the while-loop is exited regularly, this substi-
tution satisfies all the equations of � modulo ACUIG. It satisfies the constant restriction due to the
fact that the original substitution satisfies it and that constants are only removed from, but never
added to, the image of variables during the run of the algorithm. Consequently, if the algorithm
returns a substitution, then this substitution is an ACUIG-unifier of � w.r.t. r. This shows that the
algorithm must return Fail in case � has no unifier w.r.t. r.

To prove the completeness of the algorithm, assume that σ̂ is a ACUIG-unifier of � w.r.t. r, and
that the algorithm terminates during the rth iteration of the while-loop. Let σ (0) be the substitu-
tion σ before the first iteration of the while-loop. For i ∈ {1, . . . , r − 1}, let σ (i) be the substitution
obtained at the end of the ith iteration of the while-loop.

We extend ⊆ to substitutions in a natural way by using point-wise comparison of constant
sets, that is, τ ⊆ τ ′ iff S(τ (x))⊆ S(τ ′(x)) for all x ∈ X. We prove by induction on i that σ̂ ⊆ σ (i), for
all i ∈ {0, . . . , r − 1}. The base case i= 0 is obvious: since σ̂ satisfies the constant restriction, we
clearly have σ̂ ⊆ σ (0). Let now i ∈ {0, . . . , r − 2}, and assume that we already know that σ̂ ⊆ σ (i).
We must prove σ̂ ⊆ σ (i+1).

Since the algorithm does not exit the while-loop at this iteration, there is an equation s=? t in�

that is not satisfied by σ (i) modulo ACUIG. In addition, since the algorithm does not fail at iteration
i, there exists a variable x in s such that S(σ (x)) 
⊆ S(σ (t))G or y in t such that S(σ (y)) 
⊆ S(σ (s))G.
Clearly, for every x ∈ X that does not appear in this equation, we have S(̂σ (x))⊆ S(σ (i)(x))=
S(σ (i+1)(x)). Let now x be a variable occurring in s (variables in t can be treated analogously). To
prove that S(̂σ (x))⊆ S(σ (i+1)(x)), it suffices to prove that S(̂σ (x))⊆ S(σ (i)(x)) and that S(̂σ (x))⊆
S(σ (i)(t))G. The first statement is true by the induction hypothesis. Now, we have

S(̂σ (x))
(1)⊆ S(̂σ (s))

(2)⊆ S(̂σ (s))G (3)= S(̂σ (t))G
(4)⊆ S(σ (i)(t))G,

where (1) holds because x occurs in s, (2) by Lemma 4.3, (3) because σ̂ is a unifier of �, and (4) by
Lemma 4.3 since σ̂ ⊆ σ (i). This finishes the induction proof.

Therefore, we now know that σ̂ ⊆ σ (r−1). There are two possible reasons for the algorithm
terminating in the rth iteration. Either the while-loop is exited regularly or the algorithm returns
Fail. In the first case, σ (r−1) is a unifier and the algorithm returns this substitution.

It remains to show that the second case cannot occur. In this case, we have that S(σ (r−1)(s))G 
=
S(σ (r−1)(t))G for some equation s=? t in �, but S(σ (r−1)(x))⊆ S(σ (r−1)(t))G for all variables x in
s and S(σ (r−1)(y))⊆ S(σ (r−1)(s))G for all variables y in t. This can only be the case if there is a
constant c ∈ C such that c occurs in s, but c 
∈ S(σ (r−1)(t))G; or c occurs in t, but c 
∈ S(σ (r−1)(s))G.
We show that this is impossible.

Thus assume that c occurs in s (the case where c occurs in t can be treated symmetrically). We
have

c
(1)∈ S(̂σ (s))

(2)⊆ S(̂σ (s))G (3)= S(̂σ (t))G
(4)⊆ S(σ (r−1)(t))G,

where (1) holds since c occurs in s, (2) by Lemma 4.3, (3) since σ̂ is a unifier of �, and (4) by
Lemma 4.3 since σ̂ ⊆ σ (r−1).

The following theorem is an immediate consequence of Proposition 4.8.
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Theorem 4.9. The combined complexity and thus also the term complexity of ACUIG-unification
with constant restriction is in P.

Note that this implies that elementary ACUIG-unification and ACUIG-unification with constants
are also decidable in polynomial time. The next section deals with general ACUIG-unification.

4.3 General ACUIG-unification
General ACUIG-unification problems � differ from the ones we have considered until now in that
the terms used in � may contain free function symbols, that is, function symbols not occurring
in the identities of ACUIG. For example, { f (x+ a, a+ b)=? f (b+ y, x)} is such a general ACUIG-
unification problem since it contains the additional function symbol f , which does not occur in
the identities of ACUIG. Using techniques for the combination of unification algorithms, one can
transfer complexity results for unification with constant restrictions to general unification. In fact,
the following was proved by Baader and Schulz (1996) for arbitrary equational theories E, where
linear constant restrictions are a special form of constant restrictions.

Theorem 4.10. (Baader and Schulz, 1996). If solvability of E-unification problems with linear
constant restriction is in NP, then solvability of general E-unification problems is also in NP.

Together with Theorem 4.9 from the previous subsection, this provides us with an NP-
upper bound for general ACUIG-unification. The corresponding lower bound can be obtained by
adapting the proof of NP-hardness for general ACUI-unification by Kapur and Narendran (1992).

Theorem 4.11. General ACUIG-unification is NP-complete, both w.r.t. combined complexity and
w.r.t. term complexity.

Proof. Membership in NP (for combined complexity, and thus also for term complexity) is an
immediate consequence of Theorem 4.9 together with Theorem 4.10 since P⊆NP and any linear
constant restriction is a constant restriction.

We show that NP-hardness (w.r.t. term complexity) holds for any fixed finite set of ground
identitiesG. This obviously implies NP-hardness also for combined complexity. This NP-hardness
result can be shown by the same reduction from the set-matching problem used in (Kapur and
Narendran, 1986) to show that general ACI-unification is NP-hard. To be more precise, this
reduction yields ACI-unification problems of the form

� = {g(s1)+ . . . + g(sm)=? g(t1)+ . . . + g(tn)},

where + is an associative, commutative, and idempotent function symbol, g is a unary free func-
tion symbol, and the terms s1, . . . , sm, t1, . . . , tn contain only free function symbols and variables.
The presence of a unit and of ground identities in ACUIG does not change solvability of such
problems compared to ACI since

− in the top-level sum the additional identities cannot be used due to the fact that all terms on
this level start with the free function symbol g;

− even if the variables occurring in the terms g(s1), . . . , g(sm), g(t1), . . . , g(tn) are replaced by
terms containing + and constant symbols from G (with the corresponding unifier being an
ACUIG substitution, and not an ACI one), we can obtain an ACI unifier by abstracting away
these “alien” subterms by free constants (see Lemma 4.1 in (Baader and Schulz, 1996) and
Example 4.12 below).
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This shows that such a problem � is solvable modulo ACI iff it is solvable modulo ACUIG for an
arbitrary finite set of ground identities G, which completes our proof of NP-hardness of general
ACUIG-unification w.r.t. term complexity.

Example 4.12. The above argument of abstracting away alien subterms, that is, subterms whose
root symbol is from a different signature, is well known in unification theory. We illustrate it here
using a simple example. Consider the general ACI-unification problem

� = {g(x)+ g( f (y))+ g(z)=? g(z)+ g(y)}
and the ground theory G= {a+ b= a+ b+ c, b+ c= a+ b+ c}. If we view � as an ACUIG-
unification problem, then it is easy to see that the substitution σ = {x �→ a+ b, y �→ b+ c, z �→
f (a+ b)} is an ACUIG-unifier of �. Note that σ replaces the variables occurring in � by terms
containing + and constant symbols from G, and is thus not an ACI-unifier of �. We obtain an
ACI-unifier from σ by replacing the terms a+ b and b+ c, which are equivalent modulo ACUIG,
by the same free constant d. This yields the substitution σ ′ = {x �→ d, y �→ d, z �→ f (d)}, which
clearly solves � modulo ACI.

5. Approximate Unification Modulo ACUIG
In this section, we investigate how the addition of a ground theory to ACUI affects the complexity
of approximate unification. Basically, we will investigate the same three measures that we treated
in Section 3, but must adapt their definition to the extended setting.

First, one needs to decide which are the constants that can lead to violations. In Section 3,
these were the free constants occurring in the problem since presence or absence of the theory
constant 0 cannot contribute to the violation of an equation. For example, given the equation x+
a=? a, the substitution σ = {x �→ 0} solves this equation, although syntactically, after applying
this substitution, the left-hand side 0+ a contains 0 whereas the right-hand side a does not. This
is the reason why we did not consider 0 when defining the set of constants S(t) contained in
a term t. In contrast, constants occurring in G may lead to a violation. For instance, consider
the equation from above and the ground theory G= {b+ c= b}. The substitution θ = {x �→ b}
does not solve the equation since θ(x+ a)= b+ a 
=ACUIG a= θ(a). Here, the constant b, which
is a theory constant for ACUIG, violates the equation. This motivates to consider both the free
constants occurring in � and the theory constants different from 0 occurring in G when counting
violations. However, when defining under what conditions such a constant violates an equation,
one cannot just consider the constants explicitly occurring on the left- and the right-hand side
after applying the substitution. In fact, if we consider the equation x+ c=? b, then the substitution
θ from above solves this equation, although c occurs in θ(x+ c)= b+ c, but not in θ(b)= b. To
see whether a theory constant from G really violates an equation, we first need to apply saturation
to the sets of constants occurring on each side of the equation.

In the following, let G be a ground theory, that is, a finite set of ground identities between
terms of T�(F), and � = {s1 =? t1, . . . , sk =? tk} an ACUIG-unification problem with constants.
We denote the set of constants appearing in � or G with C and the set of variables appearing in �

with X. As before, it is sufficient to consider only substitutions that are the identity on V \ X and
assign terms in T�(C) to variables in X.

Definition 5.1. The substitution σ violates the equation s=? t ∈ � modulo G if

S(σ (s))G 
= S(σ (t))G.
A constant a ∈ C violates s=? t ∈ � modulo G w.r.t. σ if

a ∈ S(σ (s))G � S(σ (t))G,
and it violates � modulo G w.r.t. σ if it violates at least one equation in � modulo G w.r.t. σ .
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A constant a ∈ C violates � modulo G p times w.r.t. σ if it violates p equations in � modulo G
w.r.t. σ . Finally, we say that σ violates � q times modulo G if q= ∑

a∈C pa where, for each a ∈ C,
the element a violates � modulo G pa times w.r.t. σ .

Given this redefined notions of violation, we can now formalize the three different decision
problems for approximate ACUIG-unification analogously to how this was done in Section 3 for
ACUI.

Definition 5.2. Let G be a ground theory, that is, a finite set of ground identities between terms of
T�(F). Given an ACUIG-unification problem with constants � and a nonnegative integer �, we ask
whether there exists a substitution σ such that:

− at most � of the equations of the system are violated modulo G by σ . We call this decision
problemMinVEq-ACUIG.

− at most � constants violate � modulo G w.r.t. σ . We call this decision problemMinVEl-ACUIG.
− σ violates � modulo G at most � times. We call this decision problemMinV-ACUIG.

It is easy to see that all three problems belong to NP w.r.t. combined complexity, and thus also
w.r.t. term complexity. In fact, as mentioned before, we can restrict the attention to substitutions
that assign terms in T�(C) to the variables in X. Recall that, modulo ACUI, terms with the same
constants are equivalent. Hence, for every x ∈ X, in order to define the assigned term σ (x) it suf-
fices to determine the set of constants S(σ (x)) occurring in it. Consequently, any such substitution
can be guessed in nondeterministic polynomial time. For a given substitution, the saturations of
the constant sets on the left- and right-hand sides of the equations can be computed in polynomial
time due to Proposition 4.4, and thus the violations modulo G can be counted also in polynomial
time. The only place where the ground theory plays a role in this straightforward NP-procedure is
during the computation of the saturations. Since this computation is polynomial w.r.t. combined
complexity, the NP upper bound also holds for combined complexity.

Proposition 5.3. The problems MinVEq-ACUIG, MinVEl-ACUIG, and MinV-ACUIG are in NP w.r.t.
combined complexity, and thus also w.r.t. term complexity.

In the next subsection, we will show that, for MinVEq-ACUIG and MinV-ACUIG, this NP upper
bound is optimal, by showing NP-hardness w.r.t. term complexity for any fixed finite set of ground
identities G. Note that the corresponding two problems are also NP-hard for ACUI, and actually
MinVEq-ACUI and MinV-ACUI are used in the reduction that establishes these hardness results.

Analyzing the complexity of MinVEl-ACUIG turns out to be more subtle. Recall that the cor-
responding problem is in P for ACUI. We will show that this upper bound in general does not
transfer from ACUI to ACUIG. In fact, we will exhibit a fixed finite ground theory G for which the
problem MinVEl-ACUIG is NP-hard w.r.t. term complexity. Obviously, this implies that MinVEl-
ACUIG is NP-hard w.r.t. combined complexity. However, there are fixed finite ground theories G
for which MinVEl-ACUIG is in P w.r.t. term complexity. An obvious example is G= ∅ since we
know that MinVEl-ACUI is in P, but we will also give some other examples of such theories.

5.1 The problems MinVEq-ACUIG and MinV-ACUIG
We show NP-hardness of MinVEq-ACUIG and MinV-ACUIG by reduction from MinVEq-ACUI
and MinV-ACUI, respectively.

Lemma 5.4. Let G be a finite ground theory. Then MinVEq-ACUIG and MinV-ACUIG are NP-hard
w.r.t. term complexity.

https://doi.org/10.1017/S0960129519000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000185


618 F. Baader et al.

Proof. We restrict the attention to MinVEq-ACUIG (since MinV-ACUIG can be treated similarly),
and reduce MinVEq-ACUI to MinVEq-ACUIG. Thus, let G be a fixed finite set of ground identities.
Given an ACUI-unification problem �, we can assume without loss of generality that � contains
none of the constants occurring in G (otherwise, we just rename the free constants in �). We now
view � as ACUIG-unification problem.

To show correctness of the reduction, first assume that σ is a substitution that uses only con-
stants occurring in �, and which violates at most � equations of �. Equations s=? t ∈ � that are
not violated satisfy σ (s)=ACUI σ (t), and thus also σ (s)=ACUIG σ (t). By Proposition 4.4, this implies
that these equations are also not violated modulo G by σ . Thus, if we view � as ACUIG-unification
problem, then σ violates at most � equations of � modulo G.

Second, assume that σ is a substitution that uses only constants occurring in � and G, and
which violates at most � equations of � modulo G. Consider the substitution σ ′ that is obtained
from σ by replacing every constant from G by 0. We claim that all equations not violated modulo
G by σ are not violated by σ ′. Thus, assume that s=? t ∈ � is an equation not violated by σ , which
means that

S(σ (s))G = S(σ (t))G. (3)

To show that this implies S(σ ′(s))= S(σ ′(t)), assume that c ∈ S(σ ′(s)). By our construction of σ ′
and the fact that theory constants from G do not occur in �, we know that c does not occur in
G. In addition, c ∈ S(σ ′(s)) implies c ∈ S(σ (s))G, and thus (3) yields c ∈ S(σ (t))G. Since saturation
w.r.t. G can only add theory constants from G, we obtain c ∈ S(σ (t)). Thus, c is contained in s or
introduced by σ . The latter implies that c is also introduced by σ ′ since only theory constants are
removed when going from σ to σ ′. Thus, we have shown that S(σ ′(s))⊆ S(σ ′(t)). Since the other
inclusion can be shown analogously, this shows that s=? t is not violated by σ ′. Consequently, σ ′
violates at most � equations of �.

Together with Proposition 5.3, this lemma yields the following complexity results.

Theorem 5.5. The problems MinVEq-ACUIG and MinV-ACUIG are NP-complete both w.r.t. term
complexity and w.r.t. combined complexity.

5.2 The problemMinVEl-ACUIG
For the setting where the number of violating elements is minimized, the situation is less clear.
Proposition 5.3 yields an NP upper bound for combined complexity. However, since MinVEl-
ACUI is in P, a reduction from it would not yield a matching NP lower bound for MinVEl-ACUIG.
One could try to adapt the polynomial-time algorithm forMinVEl-ACUI toMinVEl-ACUIG. Recall
that this algorithm is based on considering projections of the equations in � to the free constants,
and then solving the projected equations separately. While this would still work for the free con-
stants in an ACUIG-unification problem, we now also need to consider the theory constants from
G. For these, the separation into different equations does not work since the addition of constants
by saturation would not be taken into account. This problem is illustrated in the next example.

Example 5.6. Consider the system of equations

� = {a+ x2 =? x1, b+ x1 =? c+ f + g, c+ x2 =? c+ e},
and the set of ground identities

G= {a+ b+ c= d, b+ c+ e= f }
from Example 4.7. As shown in that example, � does not have an ACUIG-unifier. Thus, it makes
sense to look for approximate unifiers.
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If we tried to solve the projected systems of equations (as described in Section 3.2) inde-
pendently for each constant modulo ACUIG, then we would see that 5 out of the 7 systems
are not solvable: the systems for a, b, e, f , g are not solvable, whereas the ones for c, d are. This
yields the substitution θ = {x1 �→ c, x2 �→ c}, w.r.t. which five constants violate � (see the proof of
Lemma 3.10), and it also happens that only these five constants violate � modulo G.

However, by looking at the projections separately, we partially lose the possibility to prevent a
violation by using G to add the violating constant to the side where it does not occur syntactically.
For this, other constants than the violating one may need to be present. For instance, for the
substitution {x1 �→ c+ e, x2 �→ 0} the constant f is no longer violating (even though the projection
of � onto f is not solvable). Conversely, constants added by saturation may increase the number
of violating constants, and their addition may depend on the presence of several constants. If, for
instance,� also included the trivially unsatisfiable equation f =? 0, f would definitely be a violating
element. Due to the second identity, the constants b, c, ewould be violating as well. However, when
projecting onto these constants, we would obtain the harmless equation 0=? 0.

Returning to our original example, we can actually find a substitution w.r.t. which only
two constants violate �. If we set σ (x1) := σ (x2) := c+ e, then the first equation is violated
by a, and the second by g, while the third is not violated at all. Thus, w.r.t. σ there are
only two violating constants. The reason is that b, e, f do not violate the second equation
due to saturation w.r.t. G: σ (b+ x1)= b+ c+ e and σ (c+ f + g)= c+ f + g, but saturation
yields S(σ (b+ x1))G = {b, c, e, f } and S(σ (c+ f + g))G = {b, c, e, f , g}, and thus only g violates this
equation modulo G.

As illustrated by this example, the approach used for MinVEl-ACUI to get a polynomial-time
decision procedure in general does not work if we add ground identities.Wewill now show that, in
fact, there is a fixed finite set of ground identities for which MinVEl-ACUIG is NP-hard w.r.t. term
complexity. This obviously implies that the problem is also NP-hard for combined complexity.
We will use a reduction from the NP-complete problem of 3-colorability (Garey and Johnson,
1990) to prove the hardness result.

Definition 5.7. (3-colorability).

Given: A finite graph H = (X, E), where X is the set of vertices and E⊆ X × X is the set of edges of H.

Question: Does there exist a proper coloring of H with three colors (say a, b, c), that is, an
assignment σ : X → {a, b, c} such that σ (x) 
= σ (y) for every (x, y) ∈ E?

The fixed ground theory G3c employed to encode the “nature” of 3-colorability uses, as con-
stants, the colors a, b, c and additionally e and f . Let C be the set of these five constants. The
theory G3c then consists of the following identities:

− for every i, j ∈ {a, b, c}, i 
= j
i+ j+ e= f . (4)

We will explain the intuition underlying these identities once we have introduced the ACUIG3c-
unification problem. For the moment, just note that G3c in fact does not depend on the
input graph, that is, it is fixed in the sense that the same theory G3c is used for every input
graph.

The input graph H = (X, E) is represented by the unification problem, where the vertices from
X are used as variables. To be more precise, given an input graph H = (X, E), the corresponding
ACUIG3c-unification problem �H consists of the following equations:
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− for every x ∈ X

x+ e=? 0, (5)

− for every (x, y) ∈ E

x+ y+ e=? f , (6)

− finally, �H also contains the equations

a+ b+ c=? 0, (7)
e=? 0. (8)

At first sight, it may seem strange to have ground equations as part of a unification problem
since they either hold modulo the given equational theory or are violated, independently of what
substitution is used. However, in the context of MinVEl-ACUIG3c, such equations can have a rele-
vant effect. In fact, the equations (7) and (8) force all elements except f to be violating. Intuitively,
the question is then whether we can keep f from being violating. If this is the case, then the iden-
tities of G3c together with equation (5) ensure that every x ∈ X is assigned at most one of a, b, c.
Furthermore, together with equation (6) the identities of G3c ensure that x and y are assigned
at least two different colors, if (x, y) ∈ E. Combining these two observations, we see that every
variable (i.e., vertex) belonging to an edge is assigned a unique color, and that vertices that are
connected by an edge are assigned different colors.

Lemma 5.8. The graph H = (X, E) has a proper coloring iff there is a substitution σ such that at
most four constants violate the ACUIG3c-unification problem �H modulo G3cw.r.t. σ .

Proof. First, note that there is a substitution σ such that at most four constants violate the
ACUIG3c-unification problem�H moduloG3cw.r.t. σ iff the constant f does not violate�H modulo
G3c.

Now, assume thatH = (X, E) has a proper coloring, that is an assignment σ : X → {a, b, c} such
that σ (x) 
= σ (y) for every (x, y) ∈ E. Note that σ can also be viewed as a substitution. We claim
that f does not violate �H modulo G3cw.r.t. this substitution. To see this, let us go through the
equations of �H :

− Equations of the form (5): such an equation x+ e=? 0 could only be violated by f modulo
G3cw.r.t. σ if an identity of the form (4) produced f on the left-hand side; this is not possible
since σ (x) contains only one of the constants from {a, b, c} and not two different ones.

− Equations of the form (6): for every (x, y) ∈ E, since σ (x), σ (y) ∈ {a, b, c} and σ (x) 
= σ (y),
one of the identities (4) ensures that f does not violate the equation x+ y+ e=? f modulo
G3cw.r.t. σ .

− f clearly does not violate the equations (7) and (8) modulo G3c.

Conversely, assume that σ : X → T�(C) is a substitution such that f does not violate �H mod-
ulo G3cw.r.t. σ . Since, for every x ∈ X, f does not violate equation (5), we know that f does not
appear in σ (x). Furthermore, σ (x) contains no more than one of a, b, c; otherwise, an identity of
the form (4) would cause f to be violating. Moreover, since for every (x, y) ∈ E, f does not violate
equation (6), we know that one of the identities (4) was activated, and hence σ (x) and σ (y) con-
tain at least two different colors. Paired with the result for equations of the form (5), every variable
belonging to an edge is assigned exactly one color. Overall, we can thus define the coloring τ by
setting τ (x) to be the unique element of {a, b, c} that appears in σ (x) for vertices that belong to an
edge, and arbitrarily set τ (x) for the remaining vertices. Furthermore, by the fact that f does not
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violate any equation of the form (6), we also obtain that τ is a proper coloring ofH. This completes
the proof of the lemma.

This lemma shows that MinVEl-ACUIG3c is NP-hard w.r.t. term complexity. Together with
Proposition 5.3, we thus obtain the following theorem.

Theorem 5.9. There exists a ground theory G3c for which MinVEl-ACUIG3c is NP-complete w.r.t.
term complexity. This implies that MinVEl-ACUIG is NP-complete w.r.t. combined complexity.

Note, however, that there are finite ground theories G for which MinVEl-ACUIG is in P w.r.t.
term complexity. In fact, our results in Section 3.2, in particular Theorem 3.11, show that the
empty ground theory G= ∅ is such a theory.

Similarly, if we consider a theory G containing only identities of the form a= b for a, b ∈ C for
a finite set of constants C, then MinVEl-ACUIG is in P w.r.t. term complexity. Basically, the idea
is to reduce MinVEl-ACUIG to MinVEl-ACUI by replacing all occurrences of equivalent constants
by a single representative of the class. In the resulting system of equations, there is no interaction
between the different constants occurring in it, and hence it can be treated as a MinVEl-ACUI
problem. An optimal substitution for this instance is also optimal for the original one, although
the actual number of violating elements modulo G may be higher in the original problem. In
fact, if b is the chosen representative of an equivalence class of constants, and b violates an
equation in the MinVEl-ACUI instance, then all the elements of the class violate this equation
modulo G.

In order to provide less trivial examples of ground theories G for which MinVEl-ACUIG can be
decided in polynomial time, we restrict the syntactic form of the ground identities that may occur
in G.

Definition 5.10. The finite set of ground identities is called unary if every identity in G is of the
form a= a+ t for a constant a ∈ F ∪ {0} and a ground term t.

Note that unary theories actually also cover the case of identities of the form a= b. In fact, it
is easy to see that the theory Gi = {a= b} is equivalent to the unary theory Gu = {a= a+ b, b=
b+ a} in the presence of ACUI:

− we have a=ACUIGu a+ b=ACUIGu b+ a=ACUIGu b,− and a=ACUIGi a+ a=ACUIGi a+ b as well as b=ACUIGi b+ b=ACUIGi b+ a.

The name “unary” for theories satisfying the above definition stems from the fact that, for such
theories, the saturation rules are unary in the sense that their applicability depends on the pres-
ence of at most a single constant. Indeed, an identity of the form a= a+ t induces a rule that is
applicable whenever a ∈ F occurs in a given set of constants (or every time, if a= 0), and its effect
is to add the constants occurring in t to this set (unless they are already there).

Lemma 5.11. Let G be a unary ground theory and s, t ∈ T�(F). Then S(s+ t)G = S(s)G ∪ S(t)G. In
particular, this implies that S(s)G = ⋃

a∈S(s){a}G.

Proof. The inclusion from right to left follows from Lemma 4.3, and thus holds in general (i.e.,
also for non-unary theories): S(s)G ∪ S(t)G ⊆ (S(s)∪ S(t))G = S(s+ t)G.

To show the other direction, assume that a ∈ S(s+ t)G. We show a ∈ S(s)G ∪ S(t)G by induc-
tion on the number of saturation steps needed to add a to S(s+ t)G. In the base case, we have
a ∈ S(s+ t)= S(s)∪ S(t)⊆ S(s)G ∪ S(t)G. Thus, assume that a is added in step n of the saturation
process, and that all the constants that have been added previously are contained in S(s)G ∪ S(t)G.
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By definition of saturation, there is a constant b ∈ F ∪ {0} and an identity b= b+ u ∈G with
a ∈ S(u). If b= 0, then clearly a ∈ S(s)G (and also a ∈ S(t)G), since S(s)G (S(t)G) is saturated.
Otherwise, if b ∈ F, it holds that b ∈ S(s)G ∪ S(t)G by the induction hypothesis. If b ∈ S(s)G, then
the existence of the identity b= b+ u inG and the fact that S(s)G is saturated imply that a ∈ S(s)G.
In the same way, b ∈ S(t)G implies that a ∈ S(t)G.

Note that this lemma need not hold for non-unary ground theories. An easy counterexample is
G= {a+ b= c}, where c ∈ S(a+ b)G, but c 
∈ S(a)G ∪ S(b)G. Also note that the theory G3c used
in the proof of Theorem 5.9 does not satisfy this property. In fact, we have S(a+ b+ e)G3c =
{a, b, e, f }, but S(a+ b)G3c ∪ S(e)G3c = {a, b} ∪ {e}.

Given a unary ground theory G, we will show that MinVEl-ACUIG can be reduced to MinVEl-
ACUI. Before we can describe this reduction, we need to extend the notion of saturation from sets
of constants to terms, substitutions, and unification problems. Given a ground term s ∈ T�(F),
its saturation is sG := ∑

(S(s)G). Note that we have S(sG)= S(s)G for any s ∈ T�(F), and that
Lemma 5.11 yields (s1 + . . . + sn)G =ACUIG sG1 + . . . + sGn for s1, . . . , sn ∈ T�(F).

For a ground substitution σ : X → T�(F), we define its saturation σG as σG(x) := σ (x)G for
every x ∈ X. Recall that a term t ∈ T�(F,V) can be written in the form t = t0 + x1 + . . . + xn,
where t0 ∈ T�(F) and x1, . . . , xn ∈V . We set tG := tG0 + x1 + · · · + xn. Finally, given an ACUIG-
unification problemwith constants�, its saturation�G consists of the equations sG =? tG for every
s=? t in �.

The following lemma is an easy consequence of Lemma 5.11.

Lemma 5.12. Let G be a unary ground theory, t ∈ T�(F), and σ a ground substitution. Then
S(σG(tG))= S(σ (t))G.

Proof. Let t be of the form t = t0 + x1 + · · · + xn for a ground term t0. Then we have S(σG(tG))=
S(tG0 + σG(x1)+ · · · + σG(xn))= S(tG0 + σ (x1)G + · · · + σ (xn)G)= S(σ (t)G)= S(σ (t))G.

The idea is now to reduceMinVEl-ACUIG for� toMinVEl-ACUI for�G. The following theorem
states correctness of this reduction.

Theorem 5.13. Let G be a unary ground theory, � an ACUIG-unification problem, and � ≥ 0. Then
the following are equivalent:

(1) There is a substitution σ such that at most � constants violate � modulo G w.r.t. σ .
(2) There is a substitution θ such that at most � constants violate �G w.r.t. θ .

Proof. Assume initially that there exists a substitution σ w.r.t. which � has at most � violating
elements moduloG. It is easy to see that σG is a substitution w.r.t. which�G has at most � violating
elements. In fact, Lemma 5.12 yields for every s=? t ∈ �

S(σG(sG))� S(σG(tG))= S(σ (s))G � S(σ (t))G,

and hence �G (viewed as a MinVEl-ACUI instance) has at most � violating constants w.r.t. σG.
For the opposite direction, assume that there exists a substitution θ w.r.t. which �G has at

most � violating elements (not considering G). Recall that, in Lemma 3.10.3, when constructing
an optimal substitution for a MinVEl-ACUI problem, we only use non-violating elements. Hence,
we can assume without loss of generality that θ introduces no violating constants. Under this
assumption, we will now show that, also modulo G, � has at most � violating elements w.r.t. θ .
Indeed, assume that a does not violate �G w.r.t. θ . Then, for every s=? t ∈ � we have that a /∈
S(θ(sG))� S(θ(tG)).
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− If a ∈ S(θ(sG))∩ S(θ(tG)), we obtain by Lemma 5.12 that a ∈ S(θ(s))G ∩ S(θ(t))G, and hence
a does not violate s=? t modulo G.

− If a /∈ S(θ(sG))∪ S(θ(tG)), it is still possible that a ∈ S(θ(x)G) for some x occurring in s (the
case where x occurs in t is treated similarly), and hence a ∈ S(θ(s))G. By Lemma 5.11, we
obtain that there exists some b ∈ S(θ(x)) such that a ∈ {b}G. Since we assume without loss of
generality that θ does not introduce any violating elements, b is also not violating. Hence, b
occurs in θ(tG), and thus also in θ(t)G, which again by Lemma 5.11 implies that a ∈ S(θ(t))G.
If, on the other hand, a /∈ S(θ(x))G for all variables x occurring in s or t, then we have a /∈
S(θG(sG))∪ S(θG(tG)), which by Lemma 5.12 is the same as a /∈ S(θ(s))G ∪ S(θ(t))G.

In any case, we conclude that a /∈ S(θ(s))G � S(θ(t))G, and hence a does not violate s=? t
modulo G. To sum up, we have shown that every non-violating element of �G w.r.t. θ remains
non-violating modulo G for � w.r.t. θ , and thus the upper bound of � for violating elements also
holds in � modulo G.

Since saturation can be done in polynomial time (even if G is seen as part of the input) and
MinVEl-ACUI can be solved in polynomial time, this theorem yields the following complexity
result for the class of unary ground theories.

Corollary 5.14. Restricted to unary ground theories G, MinVEl-ACUIG is in P w.r.t. combined
complexity, and thus also w.r.t. term complexity.

Obviously, all we need for Theorem 5.13 to hold is that the property stated in
Lemma 5.11 holds for G. Let us call such a theory “well behaved.”

Definition 5.15. The ground theory G is called well behaved if S(s+ t)G = S(s)G ∪ S(t)G holds for
all terms s, t ∈ T�(F).

By Lemma 5.11, every unary theory is well behaved. From a syntactic point of view, the converse
need not be true. However, semantically it is true: every well-behaved theory G is equivalent to a
unary theory G′, where G and G′ are equivalent if =ACUIG = =ACUIG′ .

Lemma 5.16. A ground theory is well behaved iff it is equivalent to a unary theory.

Proof. The if direction is an immediate consequence of Lemma 5.11. To prove the only-if
direction, assume that G is a well-behaved theory. We define G′ as

G′ := {a= a+ b | a ∈ F(G)∪ {0}, b ∈ F(G), a 
= b, and a=ACUIG a+ b},
where F(G) denotes the constants from F occurring in G.

Clearly, G′ is a unary theory. To show that G and G′ are equivalent, it is sufficient to show
that S(s)G = S(s)G′ holds for all terms s ∈ T�(F), by Proposition 4.4. Since both G and G′ are well
behaved (G by assumption and G′ since it is unary), this is the case if S(a)G = S(a)G′ holds for all
constants a ∈ F ∪ {0}.

First, assume that b ∈ S(a)G. If b= a, then b= a ∈ S(a)G′ . Otherwise, b ∈ S(a)G implies that
b ∈ F(G) since only constants from G can be added by saturation. Now we have a=ACUIG∑

(S(a)G)=ACUIG
∑

(S(a)G)+ b=ACUIG a+ b. Note that the first identity in the above deriva-
tion is an easy consequence of Proposition 4.4 since S(a)G = S(a)GG = S(

∑
(S(a)G))G. The second

identity uses idempotency and the fact that b is a summand in
∑

(S(a)G) since b ∈ S(a)G.
If a ∈ F(G)∪ {0}, this shows that a= a+ b ∈G′, and thus we also have b ∈ S(a)G′ . Otherwise, it
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is easy to see that we must have 0=ACUIG b=ACUIG 0+ b, which yields 0= 0+ b ∈G′, and thus
b ∈ S(a)G′ .

Conversely, assume that b ∈ S(a)G′ . Again, this implies that a=ACUIG′ a+ b. By the definition
of G′, we have G′ ⊆ =ACUIG and thus =ACUIG′ ⊆ =ACUIG, which yields a=ACUIG a+ b. Clearly, this
implies b ∈ S(a)G.

6. Conclusion
In this paper, we have extended ACUI-unification in two directions. On one hand, we have consid-
ered approximate ACUI-unification w.r.t. three different ways of measuring the degree to which
the equations of the unification problem are violated by a given substitution that is not a uni-
fier. For two of these measures, the complexity of the associated decision problem increases from
P to NP-complete, whereas for one of them it stays in P. On the other hand, we have extended
ACUI-unification to ACUIG-unification, that is, unification in equational theories that are obtained
from ACUI by adding a finite set G of ground identities. We were able to show that adding such
identities does not change the complexity of the unification problem. Finally, we have combined
the two extensions, that is, we have investigated approximate ACUIG-unification. For the measures
for which already approximate ACUI-unification is NP-complete, the same holds for approximate
ACUIG-unification. For the third measure, which counts the number of violated elements, the
situation turns out to be more interesting. We were able to show that there is a finite set G of
ground identities such that approximate ACUIG-unification for this fixed theory is NP-complete.
But we have also introduced the class of unary ground theories G for which approximate ACUIG-
unification is in P. It would be interesting to see whether there exist ground theories that are not
equivalent to unary theories, but for which approximate ACUIG-unification is still in P.

These results are of interest for unification theory. In fact, while it was known for quite some
time that adding finite sets of ground identities to certain theories such as ACUI leaves the word
problem decidable (Marché, 1996; Narendran and Rusinowitch, 1996), no such preservation result
was available for unification. In addition, there are only very few results on approximate unifica-
tion. In (Iranzo and Rubio-Manzano, 2015), the authors introduce what they call proximity-based
unification, which basically is an extension of syntactic unification to the approximate case, and
use it in the context of fuzzy logic programming. Set unification, which is basically unification
modulo ACUI, has drawn considerable attention (Dovier et al., 2006) due to its applications in
various areas, such as deductive databases, theorem proving, and static program analysis, and it is
conceivable that these applications could also profit from approximate variants. Our results show
that the complexity of approximate unification strongly depends on measures used to define the
degree to which the equations of the unification problem are violated: while for some measures
going from exact unification to approximate unification increases the complexity, it stays the same
for other measures. We have no example of nontrivial measures where the complexity decreases
in the approximate case, though this is also conceivable. Adding ground identities in the approx-
imate case makes things even more interesting since it may now depend on the ground theory
whether the complexity increases or not when going to the approximate case. In the setting of
the violated elements measure considered in this paper, where this situation occurs, it would be
interesting to see whether one can show a dichotomy result, that is, whether one can prove that,
depending on which ground theory G is used, the complexity of approximate ACUIG-unification
is either in P or NP-complete. If this is actually the case, the next step would be to attempt a
classification of the two cases, that is, come up with conditions that ensure membership in P or
NP-completeness.

In addition to the fact that ACUI is a theory investigated extensively in unification theory and in
set unification, our interest in this theory is motivated by the fact that this theory is a common sub-
theory of the equational theories corresponding to the Description LogicsFL0 (Baader, 1996) and
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EL (Baader et al., 1999). Unification in DLs (Baader andMorawska, 2009; Baader and Narendran,
2001) was introduced as a novel inference problem that can be used to detect redundancies in
knowledge bases, and approximate variants (Baader et al., 2016) were investigated in order to
increase the recall of these approaches. The decidability and complexity results for unification in
FL0 and EL respectively shown in (Baader and Narendran, 2001) and (Baader and Morawska,
2009) are restricted to the setting without a background TBox. The big open problem in this area
is whether these results can be extended to unification in the presence of general TBoxes, which
corresponds to adding a finite set of ground identities to the corresponding equational theory.
While a negative result for ACUIG would have implied negative results for the two DLs, the meth-
ods used to show the positive results for ACUIG are too simple to be useful for FL0 and EL. For
EL, there are some positive results for the case where the TBox satisfies certain cycle-restrictions
(Baader et al., 2012), while for FL0 there are only positive results for matching in the presence of
TBoxes (Baader et al., 2018), but none for unification.

Approximate unification has been considered for FL0 (Baader et al., 2016), but with measures
that differ from the ones employed in the present paper for ACUI and ACUIG. Basically, instead of
constants, the sets that one needs to consider there are sets of words, and the measures employed
in (Baader et al., 2016) take the length of these words into account: violations caused by long words
are counted as less important than violations caused by shorter words. In addition, in (Baader
et al., 2016) only a single equation is considered, and thus measures counting the number of vio-
lated equations have not been considered there. It would be interesting to see how approximate
unification w.r.t. the measures considered in the present paper behaves for FL0. For EL, there
are, to the best of our knowledge, no results on approximate unification. Here it would be inter-
esting to see whether one can use similarity measures on EL concepts (Lehmann and Turhan,
2012) to define appropriate measures for approximate unification in EL, and whether approxi-
mate EL-unification w.r.t. such measures is decidable. The results of the present paper show that
the complexity of approximate unification modulo ACUI and ACUIG strongly depends on which
measures are used, and which ground theories are considered. We conjecture that the same is true
for unification in DLs.
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