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Abstract. We report in this paper the numerical simulations of the capture into the 3:1 mean-
motion resonance between the planets b and c in the 55 Cancri system. The results show that
this resonance can be obtained by a differential planetary migration. The moderate initial eccen-
tricities, relatively slower migration and suitable eccentricity damping rate increase significantly
the probability of being trapped in this resonance. Otherwise, the system crosses the 3:1 com-
mensurability avoiding resonance capture, to be eventually captured into a 2:1 resonance or
some other higher-order resonances. After capture into resonance, the system can jump from
one orbital configuration to another one if the migration continues, making a large region of
the configuration space accessible for a resonance system. These investigations help us under-
stand the diversity of resonance configurations and put some constraints on the early dynamical
evolution of orbits in the extra-solar planetary systems.
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1. Introduction
Up to date, more than 200 extra-solar planetary systems have been found. Those host-

ing more than one planet are multiple planet systems. In some of the multiple planet
systems, planets are observed to be locked in mean-motion resonance (MMR), for exam-
ple, the well-known 2:1 MMR in GJ876 system (e.g. Marcy et al. 2001) and the 3:1 MMR
in 55 Cancri system (e.g. Zhou et al. 2004). In a 3:1 MMR, at least one of the three reso-
nant angles (θ1 = λ1−3λ2 +2�1 , θ2 = λ1−3λ2 +2�2 , θ3 = λ1−3λ2 +�1 +�2 , where λ1,2
and �1,2 are the mean longitudes and periastron longitudes of the inner and outer planet
respectively) librates. The resonant systems are particularly attractive because not only
of the complicated dynamics of the resonance but also of interesting information about
its origin and early evolution buried in the configuration and dynamics.

The 55 Cancri system is the only example of 3:1 MMR found in the extra-solar plan-
etary systems till now. Four planets have been reported in this system and two of them,
55 Cnc b and 55 Cnc c, seem to be locked in a 3:1 MMR. In our previous work, we have
found that they are most likely in one of the three possible configurations (Zhou et al.
2004). G.Marcy declared in his lecture in this Symposium that a fifth planet has been
dug out from observing data of this system, enriching the whole story with more con-
notations. In the dynamical simulations of their 5-planet solution (Fischer et al. 2007),
they did not found the resonance between the two planets, although their orbital periods
are very close to the 3:1 commensurability. However, the current orbit determinations
may not be robust enough to determine the resonant angles, especially for orbits with
low eccentricities as be given in this new determination, thus the resonant character of
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Table 1. Orbital elements and masses. The mass of the central star is 1.03M� (McArthur
et al. 2004). In this paper we adopt the planet masses by assuming sin i = 1.

Parameter 55 Cnc e 55 Cnc b 55 Cnc c 55 Cnc d

M sin i (MJ ) 0.045 0.784 0.217 3.92
P (days) 2.81 14.67 43.93 4517.4
a (AU) 0.038 0.115 0.240 5.257
e 0.174 0.0197 0.44 0.327

this pair of orbits may change as more observations are included (Beaugé et al. 2008).
Furthermore, what we will discuss in this paper has some general significance so that we
may still adopt the orbital elements and planetary masses from the previous literature
(McArthur et al. 2004), as listed in Table 1

It is widely accepted that a planet may experience (generally inward) migration, and
through differential migrations of planets, different commensurabilities among planets
can be attained (e.g. Nelson & Papaloizou 2002). For example, the 2:1 MMR in GJ876,
whose configuration can be obtained through the inward migration of the outer planet
(Lee & Peale 2002).

On the other hand, the resonant capture probability depends on the order of the
resonance, the migration rate and the initial planetary eccentricity (Quillen 2006). The
formation process of the 3:1 MMR may be very different from the one of the 2:1 MMR.
As the only example of 3:1 MMR in extra-solar planetary systems, the 55 Cancri system
deserves a detailed investigation. In this paper, we will report our numerical simulations
of the capture into resonance, and the evolution of the resonance thereafter, provided
the migration continues.

2. Numerical simulations of resonance formation
There are more planets than the two (planet b and c) in our focus of attention in this

planetary system. However, besides these two planets, the massive one (55 Cnc d) is too
far and the close one (55 Cnc e) is too small. Moreover, even the newly reported planet
(55 Cnc f) is neither very massive (Mf sin i = 0.144MJup) nor very close to this planet
pair (af = 0.781 AU, Pf = 260 days). Therefore as a simplified model, it is reasonable to
discuss only the two planets under the influences of the central star and the disc.

2.1. Numerical Model
As usual, the influence of the disc on the planets is simply simulated by an artificial force,
which is acting on the outer planet to drive it to migrate inward. The force is defined so
that the semi-major axis of the planetary orbit will change following an exponential law:

a(t) = a0 + ∆a × e−t/τ . (2.1)

where a0 is the initial semi-major axis of the planet, and τ is the timescale of the migra-
tion. The two planets are assumed to be located initially on orbits with semi-major axes
of 1.25 AU and 0.5 AU, with an initial semi-major axes ratio of 2.5 (periods ratio 3.95),
which will evolve downward to the value 2.08 corresponding to the 3:1 MMR. Obviously
the value of τ determines the migration speed. The smaller the τ , the faster the migra-
tion, and vice versa. Different τ values were adopted in different papers. The standard
migration scenario (type II) gives an estimate of migration rate (Ward 1997):

∣∣∣∣ ȧa
∣∣∣∣ = 9.4 × 105

(
α

4 × 10−3

)(
H/a

0.05

)2

P−1 , (2.2)
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where α is a dimensionless coefficient describing the disk viscosity, H is the vertical
thickness of the disk and P is the orbital period in year of the planet. Taking the typical
parameters α = 4×10−4 and H/a = 0.05 (see e.g. Kley 2000), the τ for a planet starting
from 1.25 AU is ∼ 1.43× 104 yrs. Some other rules have been applied in different papers.
According to these rules, the τ would be, for example, 1.56× 104 yrs (Lee & Peale 2002),
1.38 × 104 yrs (Nelson & Papaloizou 2001), and 2.65 × 104 yrs (Kley 2003; Kley et al.
2004). In our simulations, it is set to be 2 × 104 , 1 × 105 , 2 × 105 and 5 × 105 yrs. Some
large values (meaning slow migration) are adopted here to guarantee the capture into
the 3:1 MMR.

Although it is still not very clear now how a certain disk will damp or stimulate the
eccentricity of an embedded planet, people hope the disk would circularize an orbit if
it was too eccentric. In order to control the unlikely eccentricity increasing during the
artificially induced migration, we have included an eccentricity-damping force in our
simulations. A parameter K was introduced to describe the damping rate, with which
we control the eccentricity e of a planet by:

|ė/e| = K |ȧ/a| . (2.3)

In our simulations, the parameter K has the values 0 (no damping), 1, 10 and 100.
The damping is always put on planet 55 Cnc c with the migrating force modifying its
semimajor axis simultaneously.

In the simulations, the two orbits are nearly coplanar (in the practice of numerical sim-
ulations we adopt an arbitrarily defined small inclination between these two orbits, say
0.1 degree), and the initial orbital eccentricities of planet 55 Cnc b (e0

1) and 55 Cnc c (e0
2)

are set to be 0.001 (a typical value for a nearly circular orbit) as well as 0.01, 0.05, 0.1, 0.2.
For each model (with certain τ,K, e0

1 , e
0
2), we numerically integrate 100 systems with ran-

domly selected orbital angles (longitudes of periastrons, mean longitudes, and ascending
nodes). Each testing try is integrated up to a time of 2τ . During an integration, if the two
semi-major axes are locked in a definite value and keep this value at least for ten percent
of the integration time, that is τ/5, we say the system is in the given commensurability.

2.2. Results
Generally, the migration may drive the two planets into a given commensurability. The
inner planet 55 Cnc b will also migrate after it has been captured into a commensura-
bility. The final configuration of a system depends sensitively on the migration speed
and the initial conditions. We summarize some remarkable outcomes from our numerical
simulations as follow.

(1) The migration with τ ∼ 2×104 yrs is too fast to form the 3:1 MMR. If we start from
nearly circular orbits (e0

1 = e0
2 = 0.001) and neglect the eccentricity damping (K = 0),

all the 200 runs for τ = 2×104 yrs and τ = 1×105 yrs cross the 3:1 MMR without being
trapped and are eventually captured into the 2:1 resonance. The 3:1 MMR is observed to
occur only when τ = 2 × 105 yrs. When τ = 2 × 104 yrs, the number of simulation runs,
in which the 3:1 MMR forms, is very small, if not null, no matter what e0

1 , e
0
2 and K are.

(2) A slow migration favors the formation of the 3:1 MMR. For initially near circular
orbits, when τ = 2× 105 yrs, we have obtained 53 out of the 100 runs trapped in the 3:1
MMR and the number increases to 100 when τ = 5 × 105 yrs.

(3) The initial eccentricities strongly affects the resonance trapping. A nonzero but
small initial eccentricity of either orbit (e0

1 or e0
2 ∼ 0.01) will increase significantly the

probability of the 3:1 MMR. For the runs with e0
1 or e0

2 = 0.01, although there is no 3:1
MMR when τ = 2 × 104 yrs, we found 163 out of the totally 200 runs trapped in this
resonance when τ = 1×105 yrs. Higher initial eccentricities (e0

1 , e
0
2 ∼ 0.05, 0.10) will bring
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in more higher-order resonances, such as the 5:2, 7:3 and 7:2 MMRs. It is interesting
to see that a few runs were trapped in the 11:4 resonance. Even higher eccentricities
(e0

1 , e
0
2 ∼ 0.20) generally leads the system to catastrophic planetary scattering.

(4) The eccentricity damping affects the resonance capture too. Without the eccen-
tricity damping (K = 0), higher initial eccentricities would likely lead to high order
commensurabilities, while low initial eccentricities would cause eccentricities to grow too
much after the planets are locked into a low-order resonance. On the other hand, a high
K value restrains the eccentricity increasing and therefore causes the system to evolve
preferably to a 2:1 MMR rather than the 3:1 MMR. For example, when K = 100 all the
test systems starting from circular orbits (e0

1 = e0
2 = 0.001) are driven into the 2:1 MMR

if τ � 2×105 yrs. Even in a very slow migration (τ = 5×105 yrs), the 2:1 MMR captures
41 out of the 100 runs. So we need a suitable damping rate for the formation of 3:1 MMR.
In all our simulations, the most probable modes for the formation of the 3:1 MMR were
a slow migration (τ � 1 × 105 yrs), moderate initial eccentricities (e0

1,2 = 0.01 ∼ 0.05)
and moderate eccentricity damping (K ∼ 10).

3. Evolution of orbital configuration in resonance
After being captured into the 3:1 MMR, the system will continue to evolve if the

migration does not halt. In this section we will discuss the evolution of the system in the
resonance.

Figure 1. Periodic solutions in the 3:1 MMR. (a) Periodic solution families on the (e1 , e2 ) plane.
The stable symmetrical apsidal corotation resonance (ACR) solutions are thick solid curves, the
unstable symmetrical ACR solutions are short-dashed curves, and the thin solid curves indicate
the asymmetrical solutions. The value of (θ1 , ∆�) of the symmetrical solutions appear as labels
along the curves. We also label different solution families with A, B, C and D. The eccentricities
(e1 , e2 ) = (0.0197, 0.44) in Table 1 are indicated by a cross. (b) The variation of the angles θ1
(dotted), θ2 (dashed) and ∆� (solid) along the solution family A. Note ∆� begins from 180◦

(symmetrical ACR). (c) The same as (b) but for solution family C, where ∆� reaches the
symmetrical value 0◦ at the end.

3.1. Periodic solutions in 3:1 MMR
Fig. 1 shows the periodic solutions, both stable and unstable, symmetrical and asym-
metrical, computed using the mass ratio of the planets 55 Cnc b and 55 Cnc c and
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assuming coplanar orbits. (For other mass ratios and for details of the method used see
Michtchenko et al. (2006)).

In the real system, if we assume that it evolved from nearly circular orbits through an
adiabatical migration, as suggested in many references, the configuration of two planets
captured into a 3:1 resonance should be located on or near the family A of periodic
solutions shown in Fig. 1(a). In such a migration, the angles (θ1 ,∆�) evolve from the
symmetrical (π, π) values to asymmetrical values. Since each solution family is not con-
nected by stable periodic solutions to other families (A and B are not connected because
they have different θ1 ,∆� values at the two crossings in Fig. 1(a)), there is no reason to
expect a system in resonance with orbital configuration far away from the family A. In
fact, the eccentricities (e1 , e2) in Table 1 are not on the family A. However, we have found
that this configuration could be obtained by a resonance capture from initial eccentric
orbits. An example of such kind of resonance trapping is shown in Fig. 2(a). Perhaps a
perturbation happening to a system in the equilibrium periodic solution may also lead
to this observed configuration. We just show here another possibility of the resonance
formation.

3.2. Jump between solution families
If the disc does not disappear just after the resonance capture happens, the outer planet
will continue to migrate inward accompanied by the inner planet locked in the resonance.
During such after-capture migration stage, the system will evolve along the solution
family A as shown in Fig. 1, provided the migration is “adiabatic”. But if the migration
is faster (not adiabatic), as some of our numerical simulations, the solution may jump
from a family to another. An example of jump from family A to C is illustrated in
Fig. 2(b). Comparing the variations of angles in Fig. 2(c) and Fig. 1(b), (c), it is clear
that the jump happens around t = 1.9 × 104 yrs. At this moment, if the system goes
along family A, the angles θ1 and ∆� will go up and cross the value 180◦ one after
another with the increasing eccentricity e2 . But they fail and turn around following
another evolving route, that is, family C. This turnaround is due to some perturbation
(in our case it’s the migration itself), and it happens around the critical point where the
apsidal difference ∆� crosses the symmetrical value 180◦ in an asymmetrical ACR. In
fact, the stable region of motion around this critical turning point (on family A with
(e1 , e2) = (0.0423, 0.623) in Fig. 1(a) ), is very small. Therefore a slight disturbance could
drive the system out of the family A.

The jump from family A to family B has also been observed in our simulations. The
angles θ1 = θ2 = 0◦ in family B, that is to say, both �1 and �2 have to adjust to
new values in a jump from A to B. On the other hand, as we see from Fig. 1(b),(c) and
Fig. 2(c), we need only an adjustment of �1 but not �2 for a jump from family A to
C, since this jump does not affect the θ2 . When the jump happens, the inner planet is
on a near circular orbit (e1 = 0.0423) while the outer one is on a highly eccentric orbit
(e2 = 0.623). As a result, it is much easier to adjust �1 than �2 . This analysis tells why
we observe much more A to C jumps than A to B jumps.

These jumps between different solution families make it possible for a resonant system
to occupy much larger potential volume in the orbital elements space, increasing the
diversity of resonant configuration in extra-solar planetary systems.

4. Conclusions
The 3:1 mean-motion resonance in the 55 Cancri planetary system is far from a neces-

sary result of the differential planetary migration. Our numerical simulations showed that
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Figure 2. The evolution of orbital configuration in the 3:1 MMR. (a) An example of evolution
starting from eccentric initial orbits. The eccentricities in Table 1 can be reached by the solution
in this case. Solution families are shown in the same way as in Fig. 1, and the dots indicate the
evolution of one run in our numerical simulations. (b) An example of orbital configuration jump
from solution family A to family C. (c) The time variations of angles θ1 (small dots), θ2 (open
circles) and ∆� (solid thick curve) for the numerical simulation shown in (b).

the favourable scenario for the formation of the 3:1 resonance is moderate initial eccen-
tricities (0.01 ∼ 0.05), relatively slower migration (τ ∼ 105 yrs) and suitable eccentricity
damping rate (K ∼ 10). After being captured in the resonance, the system may exhibit
some evolutions different from the behaviours in an adiabatic migration, and evolve to
some unexpected orbital configurations. All these put some constraints on the planetary
migration and early dynamical evolution in the extra-solar planetary systems.
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