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Abstract

We present the analysis of global sympagic primary production (PP) from 300 years of pre-indus-
trial and historical simulations of the E3SMv1.1-BGC model. The model includes a novel, eight-
element sea ice biogeochemical component, MPAS-Seaice zbgc, which is resolved in three spatial
dimensions and uses a vertical transport scheme based on internal brine dynamics. Modeled ice
algal chlorophyll-a concentrations and column-integrated values are broadly consistent with
observations, though chl-a profile fractions indicate that upper ice communities of the
Southern Ocean are underestimated. Simulations of polar integrated sea ice PP support the
lower bound in published estimates for both polar regions with mean Arctic values of 7.5 and
15.5 TgC/a in the Southern Ocean. However, comparisons of the polar climate state with obser-
vations, using a maximal bound for ice algal growth rates, suggest that the Arctic lower bound is a
significant underestimation driven by biases in ocean surface nitrate, and that correction of these
biases supports as much as 60.7 TgC/a of net Arctic PP. Simulated Southern Ocean sympagic PP
is predominantly light-limited, and regional patterns, particularly in the coastal high production
band, are found to be negatively correlated with snow thickness.

1. Introduction

Sea ice algae are a fundamental source of primary production (PP) for polar zooplankton, par-
ticularly during the winter and early spring. In addition, there is growing evidence that sym-
pagic production is likely critical for the health and survival of many polar fish, marine
mammals and seabirds (Post and others, 2013). Brown and others (2018), for example,
found in an analysis of the derived carbon in polar bear tissue that 72–100% was of sympagic
origin, and in a Southern hemisphere study, Kohlbach and others (2017) estimate that young
and larval krill, a keystone species of the Southern Ocean trophic web, obtain up to 88% of
their carbon budget from ice algae. Understanding the changing role of sea ice algal produc-
tion through experimentation, observation and modeling will provide key insights into the
ecological integrity and stability of polar regions. All these approaches have their challenges,
and modeling is no exception. Yet incorporating sea ice algal dynamics in a global modeling
context offers a promising tool for identifying and quantifying ocean, sea ice, land and atmos-
phere coupled constraints on sympagic PP.

This paper describes the polar biogeochemistry (BGC) of the Energy Exascale Earth System
Model (E3SM) model version E3SMv1.1-BGC (Burrows and others, 2020). The model is
designed for global climate applications and includes an active sea ice biogeochemical compo-
nent (zbgc) with the goal of enhancing our understanding of the polar PP system. Here we
contrast Arctic and Southern Ocean sea ice PP and biomass and identify the environmental
conditions which contribute to these differences. We focus on the behavior of sea ice algae
in fully-coupled Earth system simulations with active biogeochemical components in land,
ocean and sea ice environments.

Sea ice forms seasonally from polar waters and as such, contains the bio-chemical signature
of the ocean surface from which it forms. As ice crystals are unable to incorporate most alien
molecules, salt retained during initial formation is concentrated in fluid pockets and channels
creating a multiphase and protected habitat for microscopic organisms and algae (Krembs and
others, 2000). Ice algae can be found throughout the sea ice interior, though observations indi-
cate regional patterns in vertical distribution. Arctic sea ice algae favor the bottom 3–5 cm of
the ice (Lee and others, 2008; Cota and others, 1991; Gradinger and others, 2012; Michel and
others, 2002), while Southern Ocean ice algae also thrive in freeboard and internal ice com-
munities (Ackley and Sullivan, 1994; Meiners, 2013). These polar and regional differences
are believed to derive from the sea ice physical micro- and macro-scale seasonal dynamics
(Fritsen and others, 1994). For example, the gradual expulsion of salt through gravity drainage
– convective overturning of unstably stratified brine – serves as a resupply mechanism for
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nutrients, exchanging internal, depleted brine concentrations with
the underlying ocean reservoir (Cox and Weeks, 1975; Weeks and
Ackley, 1986). Conversely, very cold temperatures and low sali-
nities reduce sea ice permeability, constricting brine passages
and isolating organisms from interior layers (Ackley and
Sullivan, 1994; Vancoppenolle and others, 2007, 2005). At still
other times for warmer ice, pressure forces from snow and melt
water induce internal brine flow which may flood the snow
with nutrient-rich brine, or flush the interior ice with low salinity
melt water (Ackley and Sullivan, 1994; Eicken and others, 2002).
The former process, snow loading and flooding, is believed to be
key to the development of the freeboard algal communities of the
Southern Ocean (Ackley and others, 2008) while the latter pro-
cess, melt water flushing, plays a role in the timing of sea ice
chlorophyll-a (chl-a) decline and release to ocean waters.

The eight-component sea ice biogeochemical model (zbgc) pre-
sented in this work is designed to capture some of the above phys-
ical processes that control the vertical distribution of ice algae. The
model is resolved in three spatial dimensions with resolution on
the order of centimeters. The simulations presented here use
eight vertical grid layers to minimize computational cost. We
found a three fold increase in compute time for stand-alone sea
ice simulations when using the eight grid layer version described
here over a skeletal layer sea ice biogeochemical model. Vertical
transport of biogeochemical tracers is controlled by internal
brine dynamics which evolve according to a mushy layer halody-
namics algorithm (Turner and Hunke, 2015). This algorithm
includes flushing and gravity drainage parameterizations. The
zbgc module includes adsorption and desorption at the ice crys-
tal/brine interfaces for algae and various chemical species, such
as dissolved iron and ammonium. In addition, a simple param-
eterization of ice diatom motility is included which allows diatoms
to maintain their relative vertical position in the ice for low melt
rates.

In this study, we analyze results from 157 years of historical
simulation and a parallel run with constant 1850 atmospheric for-
cing, using the fully coupled E3SMv1.1 model. Our analysis
focuses on sea ice and upper ocean properties that exert import-
ant controls on sea ice algal chl-a and PP. Here we find some sig-
nificant biases in both simulations that directly impact sea ice PP:
specifically, regional biases in sea ice volume and extent, as well as
biases in upper ocean physical and biogeochemical properties.

This paper is organized as follows. In the first sections, we pro-
vide a general description of the E3SMv1.1-BGC configuration,
MPAS-O BGC (Model for Prediction Across Scales – Ocean
Biogeochemistry) and simulations used in the analysis. Further
details on the E3SMv1.0 model and the E3SMv1.1 biogeochemical
configuration can be found in Golaz and others (2019) and
Burrows and others (2020), respectively. We continue with a
detailed description of MPAS-Seaice physical and biogeochemical
routines and tuning approach. Analysis of simulated results
begins with a comparison of pre-industrial and historical simula-
tions. We compare simulated sea ice chl-a with observations. We
then focus on the 157-year constant-forcing simulation, analyze
the ocean and sea ice state and suggest controls on net sea ice
PP in the Arctic and Southern Ocean. For this analysis we define
and map bounds for maximal sea ice algal growth from both
observations and model output to better understand the con-
straints on ice algal production. We then consider temporal
variability in the sea ice algal production and chl-a biomass.
Discussion and conclusions follow.

2. E3SM v1 coupled BGC configuration

Results analyzed in this work are primarily from a 157-year con-
trol simulation (CNST-forcing) of the fully coupled E3SMv1.1

model with active BGC in the ocean, sea ice and land models
(Burrows and others, 2020). In this simulation, atmospheric con-
centrations of greenhouse gases and aerosols are fixed at 1850
conditions. We also compare results with the last 20 years
(1990–2009) of an historically forced simulation (HIST-forcing).
In this run, atmospheric greenhouse gases and aerosols follow
prescribed historical pathways (described in Golaz and others.
(2019, Appendix B) following the input4MIPS datasets).
E3SMv1.1 uses the base resolution of 110-km grid spacing for
the atmosphere and land components; 60-km grid spacing in
the midlatitudes to 30-km spacing in the equatorial and polar
regions in the ocean and sea ice; and 55-km grid spacing in the
river transport model.

E3SMv1.1 ocean and sea ice BGC are responsive to climate
conditions but do not feed back on the physical system. Both
models are newly implemented in the MPAS unstructured grid
framework which uses non-uniform polygon meshes. These
simulations represent the first investigation of global sea ice PP
in the E3SM model with sea ice–ocean biogeochemical coupling.

The ocean biogeochemical component is adapted from the
Biogeochemical Elemental Cycling (BEC) model (Moore and
others, 2001; Moore and others, 2004) with modifications to
allow implementation in the MPAS-O (Ringler and others, 2013)
unstructured grid framework and two-way coupling with sea ice
biogeochemical tracers. A description of the ecosystem components
and behavior is given in Moore and others (2004). The E3SMv1.1
version also includes explicit representation of the Prymnesiophyte,
Phaeocystis sp. developed by Wang and others (2015).

2.1. MPAS-Seaice zbgc

The MPAS-Seaice model evolves a set of physical ice variables
(including enthalpy, salinity, ice concentration, ice and snow vol-
ume, and melt pond volume and area) which characterize the sea
ice state and enable assessment of coupled interactions with other
Earth system components. Version 1.0 is adapted from CICE (the
Los Alamos sea ice model; Hunke and other (2013) and Hunke
and Dukowicz (2002)) for non-regular polygons (Golaz and
others, 2019) and implemented on a B-grid with state scalars
(sea ice concentration, temperature, salinity and biogeochemical
tracers) on cell centers and velocity components defined on cell
vertices. MPAS-Seaice uses the Icepack library, version 1.0.2
(Hunke and others, 2018) for its column physics and BGC.

The sea ice physics package and dynamical core is comprised of
several submodules representing the following key sea ice
processes: (1) mushy layer thermodynamics (with temperature
and salinity evolution from Turner and others (2013)), which
defines sea ice and snow growth and melt due to conductive, radia-
tive, salinity and turbulent fluxes; (2) shortwave radiative transfer
using the delta-Eddington multiple-scattering scheme of Briegleb
and Light (2007); (3) sea ice momentum which evolves the ice vel-
ocity field assuming an elastic-viscous-plastic rheology (Hunke
and Dukowicz, 1997); (4) incremental remapping transport
which describes advection of ice concentration, volume, physical
and biogeochemical tracers, and other state variables (Lipscomb
and Hunke, 2004); and (5) a ridging parameterization which trans-
fers sea ice concentration between each of the five sub-grid thick-
ness categories (Lipscomb and others, 2007).

The zbgc (vertically resolved, biogeochemical) submodule uses
information about the sea ice state, particularly the vertical distri-
bution of temperature, salinity and internal shortwave radiation,
and changes to the ice and snow thicknesses, to determine vertical
boundary flux velocities and internal changes in brine tracer con-
centrations from sea ice physics processes. Biogeochemical
exchanges are modeled as coupled non-linear reaction terms
(Appendix: Biogeochemical Reaction Terms).
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The zbgc submodule procedure is as follows. At each time step
and in each of five thickness categories within a given horizontal
grid cell, solve mushy layer thermodynamics to update vertical pro-
files of ice/snow enthalpy and salinity and compute thermo-
dynamic changes in the ice/snow thicknesses. Next, compute
microstructural characteristics (porosity, permeability, gravity
drainage diffusivity, Darcy flow velocities) from the ice temperature
and salinity profiles and ice boundary growth and melt rates after
(Jeffery and others, 2011). Use this information to solve for the
change in brine level (Appendix: Brine Evolution) relative to the
sea ice surface. Then determine the mobile and attached fractions
for each biogeochemical tracer (section: Mobile and attached tra-
cers) and solve the vertical transport equation for the mobile tra-
cers (section: zbgc tracer equation) and melt losses of attached
tracers. Finally, compute the coupled set of non-linear biogeo-
chemical reaction terms for each brine tracer concentration
(Appendix: Biogeochemical Reaction Terms). The remaining sea
ice redistribution and horizontal transport processes are then per-
formed while conserving the total brine volume of each biogeo-
chemical tracer. The five sets of biogeochemical variables, one for
each subgrid thickness category, are retained at each time step
and saved as output data. All the results presented in this work
are from the net horizontal grid cell tracer field computed as a cat-
egory sum weighted by sea ice area concentration.

2.2. The sea ice algal ecosystem

The zbgc model configuration used in this analysis has eight com-
ponents (see Table 1 for symbols used in this text): three algal
groups measured in units of nitrogen (diatoms, small plankton
and Phaeocystis sp.), three macro-nutrients (nitrate + nitrite, sili-
cate and ammonium), one micro-nutrient (dissolved iron) and
dissolved organic nitrogen. We assume that phosphorus is gener-
ally not a limiting macro-nutrient in the sea ice (Deal and others,
2011. This is consistent with the findings of Saenz and Arrigo
(2012) for Southern Ocean sea ice. However, we acknowledge
observational evidence which suggests potential phosphorus limi-
tation of sea ice algae in the Baltic Sea (Piiparinen and others,
2010). Conversions to carbon, silica and iron are based on fixed
prescribed ratios. All components are two-way coupled with
MPAS-O BGC. A schematic of zbgc and biogeochemical interac-
tions with the ocean are depicted in Figure 1. Our choice of eco-
system components is based on Deal and others (2011), which
includes only the dominant biogeochemical controls on total
sea ice algal chl-a: sea ice diatoms, nitrate, ammonium and sili-
cate. In this study, we expand to eight fields to allow for poten-
tially interesting interactions with the polar marine PP system.
For example, though ice diatoms tend to dominate sea ice chl-a
observations, we also include the prymnesiophyte, Phaeocystis
sp. and small flagellates which can be present in abundance
(Lizotte, 2015), contribute significant fractions to the polar
oceanic system and are important producers of dimethyl sulfide.
In addition, though sea ice algae are generally not observed to
be iron-limited (Lannuzel and others, 2016), we include dissolved
iron in our component fields because sea ice melt is thought to be
an important source of the micro-nutrient for Southern Ocean
phytoplankton (Lannuzel and others, 2013). Finally, dissolved
organic nitrogen is included in sea ice to track production and
exchange with the ocean. This feature is essentially diagnostic
with respect to sea ice production, though in future versions we
plan to add sympagic remineralization.

2.3. Mobile and attached tracers

One basic assumption of our ice biogeochemical model is that
BGC tracers are only present in the sea ice brine. Consequently,

the vertical domain for the zbgc model consists of only brine satu-
rated sea ice. We do not, however, require that all sea ice have
non-zero brine volume or that the brine surface level within the
ice crystal matrix equal the ice surface. For Arctic sea ice under
light snow conditions, the ice surface typically rises above the
ocean surface, draining the upper ice of brine. The resulting equi-
librium brine level then lies below the upper � 10% of the ice. By
contrast, in many regions of the Southern Ocean, relatively heavy
snow depresses the ice below the ocean surface, driving brine
intrusions into the snow layer. In this case, the brine level lies
above the ice surface, and so does the vertical extent of the zbgc
model. Motion of the brine level (hb) is fundamentally a result
of gravitational forces and depends on the permeability of the
ice, changes in the ice bottom and surface boundaries, and surface
sources of water: snow and ice meltwater, sea water flooding and
liquid precipitation. A full description of the brine level dynamics
equation is given in the Appendix: Brine Evolution.

The extent to which bio-chemical tracers are advected by the
brine depends upon whether the tracer is dissolved or particulate
and whether it has some affinity for the ice crystal/fluid boundary.
Ice algal diatoms are well known for their ability to attach to ice
crystals by means of frustules. In addition, sea ice algae produce
ice-active proteins in exopolysaccharids that potentially increase
ice affinity (Boetius and others, 2015; Juhl and others, 2011).
Indeed, ice diatoms not only resist brine motion through attach-
ment, but actively migrate within the ice domain. Early estimates
suggest diatoms move at speeds of 1.5 cm/d (Welch and
Bergmann, 1989), while more recent lab studies found speeds of
14.4 cm/d (Aumack and others, 2014; Krembs and others, 2000).

Table 1. Sea ice biogeochemical tracers

Tracer Description units

N(1) diatoms mmol N/m3

N(2) small phytoplankton mmol N/m3

N(3) Phaeocystis sp. mmol N/m3

dfe dissolved iron μmol Fe/m3

NO3 nitrate + nitrite mmol N/m3

NH4 ammonium mmol N/m3

SiO4 silicate mmol Si/m3

DON dissolved organic nitrogen mmol N/m3

Fig. 1. Schematic of coupled components in the E3SMv1.1 sea ice–ocean eco-
dynamics. Boxes represent biogeochemical fields. Thin arrows are fluxes between
components. Thick arrows between ice algal/phytoplankton groups indicate fluxes
involving the entire group while the thin arrow represents a flux between silicate
and diatoms. The thick open arrow indicates respective fluxes: ice diatoms exchange
with ocean diatoms, small flagellates with small phytoplankton, and Phaeocystis sp.
with its ocean counterpart. Only shown are ocean biogeochemical components
involved in direct fluxes with the sea ice. MPAS-O BGC also includes inorganic carbon-
ate chemistry, phosphate, zooplankton, sinking detrital pools, diazotrophs and coc-
colithophores assigned as implicit members of the small plankton group.
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In contrast, the dissolved salts, nitrate and silicate, are treated
as purely mobile (Fripiat and others, 2014) and their transport
strongly governed by brine motion. This may be an oversimplifi-
cation, however, as there is some evidence of enhanced nitrate
levels in sea ice in the Norwegian Young sea ICE cruise
(N-ICE2015; (Duarte and others, 2017; Fripiat and others,
2015)). Still, there is more definitive evidence that ammonium
and organic matter produced by phytoplankton have an affinity
for the ice matrix (Fripiat and others, 2014; Müller and others,
2013; Verdugo and others, 2004). This is likely due to the preva-
lence of colloidal matter including nano- and microgels which
adhere to the ice crystals. Similarly, Lannuzel and others (2016)
report that dissolved iron is actively extracted from ocean water
during sea ice growth and incorporated into the sea ice matrix
through adsorption onto particles such as organic ligands.

In general, we assume that the brine concentration of bio-
chemical tracers may be present in both a purely mobile phase,
cm, which advects with the brine, and an attached (or stationary)
phase, cs, which adheres to the ice crystals or adsorbing particles.
Algal diatom locomotion is treated separately and discussed
below. The mobility of small flagellates is assumed to be ineffect-
ive against ice melt losses. Transfer between phases is governed by
prescribed adsorption/desorption timescales and the assumption
that ice growth enables adsorption while ice melt facilitates
desorption.

Our treatment is based on the linear adsorption model of
Harmand and others (1996). Sea ice biogeochemical tracers
adhere to ice crystals with a time constant of τret, and release
with a time constant τrel, i.e.

∂cm
∂t

= − cm
tret

+ cs
trel

∂cs
∂t

= cm
tret

− cs
trel

(1)

where cm is the mobile phase tracer concentration and cs is the
attached phase concentration. The time constants are modeled
as crude functions of the ice growth and melt rates defined as
changes in the ice thickness (dh/dt). All tracers except algal dia-
toms follow the simple rule: when dh/dt≥ 0, then τrel→∞ and
τret is finite. For dh/dt < 0, then τret→∞ and τrel is finite. In
this way, ice growth promotes adsorption while ice melt enables
transitions to the mobile phase. Currently, there is a lack of obser-
vational and experimental data to motivate a more sophisticated
parameterization. Even with this approach, there are potentially
2N additional unknown parameters representing the adsorp-
tion/desorption time constants for an N component biochemical
ecosystem. To alleviate the proliferation of unconstrained model
parameters, we assume all multi-phase tracers adsorb/desorb in
the same manner and specify only two time constants.

The adsorption of tracers is also bound by a saturation concen-
tration which is determined from geometric properties of the ice
crystals and adsorbing particles (assumed to be spheres). Johnson
and others (1995) define the maximum number of adsorbate that
can attach to a given collector during porous transport, Sd:

Sd = Sc
Pd

= 4pr2c
pr2d

(2)

where Sc is the surface area of the collector crystal and Pd is the
projected area of the adsorbate (e.g. diatom). For sea ice diatom
attachment to ice crystals, we use a diatom radius of rd = 4.7 μm
corresponding to a cell volume of 435 μm3, which is appropriate
for Nitzschia frigida (Olenina and others, 2006), and an ice crystal
radius of rc = 3000 μm (Weeks, 2010). This is then multiplied by

the ice crystal number density times the fraction of diatom surface
area available for attachment (Johnson and others, 1995). We cal-
culate the ice crystal number density for each vertical layer as
(1− f)dhpr2c/Vc, where Vc is the ice crystal volume assumed
to be spherical, δh is the ice thickness in a vertical grid layer,
and dhpr2c is the volume of an ice layer column of radius rc.
When the stationary concentration reaches the saturation concen-
tration, adsorption stops and the additional material remains in
the mobile phase.

Diatoms are distinct from other tracers in that they can move
independently. Although we do not model motility as an advec-
tive mechanism, we assume that diatoms actively maintain their
relative position within the ice, i.e. bottom (interior, upper)
algae remain in the bottom (interior, upper) ice, unless melt
rates exceed a threshold, valgae. See Table 2 for parameter values.

2.4. zbgc tracer equation

Purely mobile biogeochemical tracers are tracers which move with
the brine and thus, in the absence of biochemical reactions, are
transported like salinity. The flux-conserved quantity for purely
mobile tracers is the column integrated bulk tracer concentration
in the ice column, i.e. C = hbϕ[c], where hb is the brine level, ϕ is
the porosity and [c] is the in situ brine tracer concentration.

The continuity equation is (Jeffery and others, 2011 Eq. (A3)):

∂C
∂t

= hb
∂

∂Z
w+ D

∂

∂Z

( )
[c]

{ }
+ hbfR (3)

where w is the Darcy velocity (A3), D =DMLD + ϕDm is a combin-
ation of the effective molecular diffusivity (Dm) scaled by the por-
osity and the mixing length diffusivity (DMLD of Jeffery and others
(2011)), and R([c]1, [c]2, …[c]N) are biogeochemical reaction
terms described in detail in Appendix: Biogeochemical Reaction

Table 2. MPAS-Seaice zbgc reaction parameters

Parameter Description Model value Units

fgraze fraction of growth grazed (0.0, 0.7, 0.7)a 1
fres fraction of growth respired 0.05 1
lmax maximum tracer loss fraction 0.9 1
mpre maximum mortality rate (0.007, 0.007,

0.007)a
1/d

mT mortality temperature decay (0.03, 0.03, 0.03)a °C
Tmax maximum brine temperature 0.0 °C
fng fraction of grazing excreted 0.5 1
fnm fraction of mortality to NH4 0.9 1
fgs fraction of grazing spilled 0.5 1
Rc:n algal carbon to nitrogen ratio (7.0, 7.0, 7.0)a mol/mol
Rchla:n algal chl-a to nitrogen ratio (2.1, 1.1, 0.84)a g/mol
Rfe:n algal iron to nitrogen ratio (0.023, 0.023, 0.7)a mmol/mol
Rsi:n algal silica to nitrogen ratio (1.8, 0.0, 0.0)a mol/mol
KNO3

NO3 half saturation constant (1.0, 1.0, 1.0)a mmol/m3

KNH4
NH4 half saturation constant (0.3, 0.3, 0.3)a mmol/m3

KSiO4
silicate half saturation constant (4.0, 0.0, 0.0)a mmol/m3

ffa fraction of remin. N to dFe 1.0 1
KdFe iron half saturation constant (1.0, 0.2, 0.1)a μmol/m3

opmin boundary for light attenuation 0.1 1
chlabs light absorption length per chla

conc.
(0.03, 0.01, 0.05)a m2/mg

chla
α light limitation factor (0.8, 0.67, 0.67)a m2/W
β light inhibition factor (0.002, 0.001, 0.04) m2/W
μmax maximum algal growth rate (1.44, 0.41, 0.63)a 1/d
μT temperature growth factor (0.06, 0.06, 0.06)a 1/d
valgae algal maximum motility (0.86, 0, 0)a cm/d
τd desorption timescale 1.0 hour
τa adsorption timescale 90.0 day

aParameters for 1) diatoms, 2) small flagellates and 3) Phaeocystis sp., respectively
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Terms. In general, the biogeochemical reaction terms are non-
linear functions of the N ecosystem tracer brine concentrations.

The vertical coordinate, Z∈ [Zbot(t), Ztop(t)], defines a domain
bounded by the ice bottom and brine level surface, and so (3)
represents a moving boundary problem. The biogeochemical
module solves this equation on a fixed domain z∈ [0, 1] through
the coordinate transformation z = (Ztop− Z)/(Ztop− Zbot). The
resulting equation (Jeffery and others, 2011 eqn (C16)):

∂C
∂t

= ∂

∂z
vf+ wd + D

hb

∂

∂z

( )
[c]

{ }
+ hbfR([c]) (4)

includes an additional advection term v:

v = (z − 1)
dztop
dt

− z
dzbot
dt

(5)

which explicitly accounts for changes in the sea ice thickness from
melt and ice growth.

Solutions to (4) are found using a flux-corrected and positive
definite finite element Gelerkin discretization (Brenner and
Scott, 2005; Jeffery and others, 2016).

2.5. Tuning and model parameters

MPAS-Seaice zbgc is part of ICEPACK, the CICE/Consortium col-
umn package (Hunke and others, 2018). Parameter values were first
tuned in 1-D sea ice only configurations of the Arctic (N-ICE2015
forcing data set; Duarte and others, 2017), and initial tuning of the
tracer transport physics was conducted using the Southern Ocean
ISPOL forcing data set (Jeffery and Hunke, 2014). Parameters
were adjusted using the fully coupled simulations in the
HiLAT-E3SM.v0 configuration (Hecht and others, 2019) and tested
over 10-year periods during ∼200 years of ocean–sea ice spin-up of
E3SMv1.1. In all 3-D model configurations, the primary tuning cri-
terion was agreement between observations and simulated
ice-integrated chl-a using field measurements from six locations:
three in the Arctic (N-ICE2015 (Duarte and others, 2017); Point
Barrow (Lee and others, 2008); and BEST (Gradinger and others,
2012)) and three in the Southern Ocean (ISPOL (Lannuzel and
others, 2013); Marguerite Bay (Massom and others, 2006); Prydz
Bay (Laybourn-Parry, 2012)).

For simplicity and to reduce the number of tunable para-
meters, this version of the model assumes that new sources of
nitrogen to the sea ice (primarily nitrate, though there is a
small ammonium flux from the ocean) dominate sea ice PP. In
other words, in situ remineralized nitrogen is restricted to ammo-
nium sources from the grazing of algae and their natural mortal-
ity, and not remineralization of the dissolved organic nitrogen
pool, which is difficult to validate. As a further simplification,
nitrification rates are set to zero.

As previously discussed, nitrate and silicate are treated as
purely mobile tracers. All other tracers attach with an hour time-
scale and release on a 90-day timescale. Long release timescales
allow for high retention of biomass throughout the spring, resist-
ing melt-water flushing of biogeochemical material. Short adsorp-
tion timescales allow for maximal seeding of the initial population
during sea ice formation and minimize loss of newly produced
algal biomass from brine exchange with the ocean. Given that
the time-step for MPAS-Seaice is 30 min, 1 h represents a near
lower bound for the attachment timescale. Loss of ice mass, how-
ever, removes both attached and mobile tracers. The exceptions
are the diatoms, the primary algal group, which actively migrate
in the sea ice to retain their relative position with respect to the
ice bottom. We use a moderate rate of 0.86 cm/d, which is half

the rate assumed by Lavoie and others (2005) and well within
the observed migration rates (Welch and Bergmann, 1989;
Aumack and others, 2014; Krembs and others, 2000).

The three algal groups are distinguished in the following ways.
Ice diatoms are the only group with a demand for silica. We use a
silicate uptake half-saturation constant of 4 mmol/m3 (Lavoie and
others, 2005). The algal growth parameters follow Jin and others
(2006) for diatoms: maximum specific algal growth rates of 1.44
1/d, light limitation factor of 0.8 m2/d and light inhibition factor
of 0.002 m2/d. For estimates of prymnesiophyte growth para-
meters, Arrigo and others (2010) report maximum specific
growth rates of 0.35–0.71 1/d for P. antarctica, which grows
well in Southern Ocean sea ice and open ocean. We use the inter-
mediate value of 0.63 1/d and a light inhibition factor of 0.04 m2/
W. There are insufficient observations to constrain growth para-
meters for the small flagellate group. However, we assume a dis-
tinct niche from the other algal groups by specifying the lowest
maximum specific growth rate (0.41 1/d) but relatively weak
light inhibition (0.001 m2/W). We also assume that small plank-
ton and Phaeocystis sp. experience higher grazing pressure as
observed in pelagic phytoplankton communities (Yang and
others, 2015) in addition to mortality, while ice diatoms losses
occur through mortality alone. This assumption produces ice
algal assemblages dominated by diatoms in both poles (Lizotte,
2015; Arrigo and others, 1997; Arrigo, 2003).

The most important tuning parameters are predation rate
(fgraze), modeled as a fraction of production; mortality rate (mpre);
the mixing length parameter (lsk) which governs the strength of
gravity drainage fluxes for biogeochemical tracers; and adsorp-
tion/retention timescales. Table 2 lists biogeochemical reaction
parameters and chosen values. During the tuning process, we
found that modeled sea ice algal chl-a tended to be biased low,
particularly in the Arctic. As a result, our chosen parameter values
skew toward (1) maximizing algal access to ocean nutrients (i.e.
high gravity drainage fluxes; lsk = 20 m), (2) enhancing chl-a
retention in the sea ice (short adsorption and long retention time-
scales) and (3) reducing predation and mortality of algal groups.
We understand now that biases in the climate state (discussed fur-
ther in Simulation results and Discussion) contribute significantly
to these underestimations.

3. Simulation results

Burrows and others (2020) present a detailed overview of the
E3SMv1.1-BGC pre-industrial control (CNST-forcing) and his-
torical (HIST-forcing; or BDRD-hist in Burrows and others
(2020)) simulations with an emphasis on interactions between
land nitrogen and phosphorous nutrient cycles and the global
carbon-climate feedbacks. Here we confine our analysis to the
Arctic and Southern Oceans and consider how spatial and tem-
poral variability in the polar climate state influence sea ice algal
chl-a biomass and PP. We restrict our analysis to total chl-a
and net PP fields, that is, the summed contribution of all three
algal groups. In addition, all simulation analysis is derived from
monthly mean fields. For sea ice variables, presented results are
averages over the five sub-grid thickness categories.

3.1. HIST-forcing and CNST-forcing

For the majority of our analysis, we use the CNST-forcing simu-
lation because it represents a relatively stable 157-year time-series
of natural system variability. The HIST-forcing simulation,
though more representative of the atmospheric forcing conditions
on Earth in the last 40 years of the simulation, has a too strong
aerosol-cloud effect in response to industrial aerosol emissions
which produces enhanced initial cooling of the Arctic (also
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observed in the E3SMv1.0-DECK simulations of Golaz and others
(2019)). The result is sharp increases in Arctic sea ice volume and
extent relative to CNST-forcing beginning in the early 1970s.
Figure 2 shows five-year running means of integrated sea ice
area and volume for both simulations. Decreasing trends in
Arctic ice area and volume in HIST-forcing begin in the mid to
late 1970s with values returning to pre-industrial levels over the
final 20 years of simulation. Simulated Arctic sea ice area exceeds
mean observations (Cavalieri and others, 1996) by ∼1 million km2

for CNST-forcing, and between 0.5 and 3 million km2 for
HIST-forcing. The additional sea ice is primarily an artificial
extension in the Labrador Sea likely due to insufficient resolution
in ocean circulation around the southern tip of Greenland
(Burrows and others, 2020). Southern Ocean sea ice area is
more consistent with SSMI observations (Cavalieri and others,
1996) particularly for HIST-forcing over the final 30 years.
Unlike the Arctic, industrial aerosol concentrations do not play
a significant role in Southern Ocean ice extent or volume.
Extent and volume trends in HIST-forcing are weaker but notably
decreasing from the early 1980s. Over the final 30 years,
Southern Ocean CNST-forcing extent exceeds HIST-forcing by
∼1.2 million km2.

Mean annual sea ice PP in the Arctic is on the low side of pre-
vious estimates even with too extensive mean sea ice. This sug-
gests that both HIST-forcing and CNST-forcing likely
underestimate per area PP rates. HIST-forcing mean values fluc-
tuate between ∼5.8 and 9 TgC/a while CNST-forcing has gener-
ally lower values ranging between 5 and 7 TgC/a. Previous field
estimates vary by an order of magnitude with 6 TgC/a (Subba-
Rau and Platt, 1984) and from 9 to 73 TgC/a (Legendre and
others, 1992). Modeling studies estimate 10.1 TgC/a (Deal and
others, 2011) to 36 TgC/a (Dupont, 2012). Increases in primary
production in HIST-forcing relative to CNST-forcing occur dur-
ing the years of high Arctic sea ice area in the 1970s and 1980s.
However, we also see slightly higher net sea ice PP per ice area
in the last 30 years of HIST-forcing (570–650 mgC/m2/a) relative
to CNST-forcing (500–610 mgC/m2/a). This suggests that the
regions in HIST-forcing of more extensive sea ice are also regions
of greater sea ice primary production density.

Five-year running mean values of Southern Ocean sea ice pri-
mary production range between 11 and 20 TgC/a. These values
are again low compared to previous estimates from field

observations 63–70 TgC/a (Legendre and others, 1992) though
more consistent with the range in model estimates: 23.7 (Saenz
and Arrigo, 2014) to 35.7 TgC/a (Arrigo and others, 1997).
CNST-forcing and HIST-forcing estimates are similar, and differ-
ences generally reflect variability in sea ice area. Average PP per
ice area is similar in both simulations, ranging from 1400 to
1700 mgC/m2/a.

Sea ice PP observations are relatively scarce and not sufficient
for ice algal model validation on a global scale. Rather, sea ice core
measurements of algal chl-a offer the most extensive
comparison. Figures 3 and 4 show seasonal cycles of column inte-
grated sea ice algal chl-a from HIST-forcing and CNST-forcing
simulations at several locations in the Arctic and Southern
Ocean, respectively, contrasted with core measurements. The
shaded regions in the Arctic figure indicate the range in simulated
monthly mean over the 157-year CNST-forcing time-series and
the final 20 years of HIST-forcing. Individual cores are indicated
as well as observational monthly means and standard deviations.
For the Arctic, core observations are from (a) the Bering Sea
(Gradinger and others, 2012), (b) Baffin Bay (Michel and others,
2002), (c) the Norwegian Sea (Duarte and others, 2017), (d) Point
Barrow (Lee and others, 2008 and C. Deal, pers. comm.), (e) the
Lincoln Sea (Lange and others, 2015), (f) the Canadian Arctic
(Melnikov and others, 2002) and (g,h) the Beaufort Sea
(Horner and Schrader, 1982; Alou-Font and others, 2013, respect-
ively). Simulated chl-a is most consistent with observations in the
Bering Sea and Point Barrow, which is perhaps not surprising
given that both these locations were used in model tuning.
Modeled chl-a is within the range of observations in the Baffin
Bay and Beaufort Seas, though with some discrepancies in the sea-
sonal cycle. In the Norwegian Sea, model results suggest values as
high as 10 mg/m2, nearly an order of magnitude larger than
observations. However, the reported measurements were taken
from a newly formed lead and perhaps do not generally represent
sea ice in this region (Duarte and others, 2017). In the Lincoln Sea
and Canadian Arctic, the model overpredicts chl-a concentra-
tions, though by only 1–3 mg/m2. This is because observations
in these locations indicate very low chl-a (< 3 mg/m2). In fact,
the peak in observations is more consistent with the modeled
minima. Notably, for the Canadian Arctic, the change in chl-a
over the seasonal cycle is similar to observations. This may indi-
cate that modeled losses of algae in the spring and summer are

Fig. 2. Five-year running means of hemispheric integrated (a,b) sea ice area (million km2), (c,d) sea ice volume (1000 km3) and (e,f) net sea ice algal primary pro-
duction (PP, TgC/a) for CNST-forcing (blue) and HIST-forcing (red) simulations. Northern hemisphere averages are shown in the left column while Southern hemi-
sphere are on the right. Only grid cells with at least 15% sea ice concentration are included in the averaging. Also shown is the 1979–present mean sea ice area
(black dashed line, (Cavalieri and others, 1996)) and PIOMAS estimate of Arctic sea ice volume (black solid line, (Schweiger and others, 2011)).
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too weak. We note here that low simulated primary production is
potentially incongruous with reasonably well simulated chl-a. We
discuss the implications of this result in detail in the Discussion
section.

The Southern Ocean observations (Fig. 4) are from the
ASPECT data set (Meiners, 2013) and represent a compilation
of field campaigns. The red (HIST-forcing) and blue

(CNST-forcing) curves and shaded regions are averages over all
grid cells in six regions defined as sectors south of 50°S and
bounded by the following latitudinal lines (Meiners and others,
2012): (a) the Western Weddell (300 to 315°E), (b) Eastern
Weddell (− 45 to 20°E), (c) Indian Sector (20 to90°E), (d)
Pacific Sector (90 to 160°E), (e) Ross Sea (160 to 230°E) and (f)
Bellingshausen/Amundsen Seas (230 to 300°E). The shaded

Fig. 3. Monthly simulated sea ice algal chlorophyll-a concentrations (mg/m2) in CNST-forcing (blue; averaged over 157 years) and HIST-forcing (red; averaged over
the last 20 years) plotted against year day for eight locations (a–h) in the Arctic. Shaded regions indicate the range in monthly means. Also shown are core observa-
tions: both individual measurements (open circles) and monthly means (solid diamonds with ±1 std). Data references are in text.

Fig. 4. Monthly simulated sea ice algal chlorophyll-a concentrations (mg/m2) in CNST-forcing (blue line; averaged over 157 years) and HIST-forcing (red line; aver-
aged over the last 20 years) plotted against day of year for all grid points in six regions (a–f) (as defined in Meiners and others (2012)). Shaded regions represent the
range in the monthly mean. Also shown are time-series averages of the CNST-forcing monthly mean chlorophyll-a computed at grid cells corresponding to
observed core locations for each region (light blue squares with 1 std error bars). Core observations are depicted as black symbols; both individual core measure-
ments (open circles) and monthly means (solid diamonds with ± 1 std) are shown. Data references are in text.
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regions are the range in monthly means over the time-series. Also
shown in light blue symbols with 1 std error bars is the monthly
mean CNST-forcing climatology, using only grid cells corre-
sponding to core measurement locations for each region. In gen-
eral, the two simulations are quite similar. In addition, simulated
mean climatology generated from grid cells at core locations is
consistent with that using all grid points except perhaps in the
Indian Sector, where temporal coverage of observations is sparse.
Agreement between model and observations is better in the
Southern Ocean than the Arctic, though admittedly averaging
over a wider spatial region smooths over heterogeneity in the
data. Notably, simulated climatology from grid cells at core loca-
tions (light blue squares) is not more consistent with observations
than the regional average except for perhaps during a couple
months of the year in the Pacific Sector and Western/
Eastern Weddell. Overall, modeled monthly mean Southern
Ocean chl-a is somewhat overestimated except perhaps in the
Bellingshausen/Amundsen sector.

With respect to the modeled pre-industrial and historical time
periods, differences in sea ice chl-a at observed locations and
sectors are smaller than differences between simulations and obser-
vations. Several locations show possible increases in peak biomass
over the last 20 years of HIST-forcing compared to pre-industrial:
the Norwegian and Lincoln Seas, Baffin Bay, the Beaufort and per-
haps the Pacific Sector, Ross Sea and Bellingshausen/Amundsen
sectors. However, all increases are well within the range of
CNST-forcing monthly means (Figs. 3 and 4). For this reason,
we focus the remainder of our analysis on the CNST-forcing simu-
lation with the understanding that the primary discrepancies
between model and observations are likely not due to the transient
forcing conditions of the industrial historical period.

3.2. Ocean and sea ice state

Based on the results from the previous section, the E3SMv1.1
model simulates low values of net annual sea ice PP in both
polar regions. In order to understand the processes behind
these values, it is critical to first assess the quality of the modeled
polar climate state as it pertains to the sea ice algal

ecosystem. Figures 5 and 6 show contours of the mean surface
ocean nutrients, nitrate and silicate, respectively, in the Arctic
and Southern Oceans. The upper row depicts seasonal means in
Arctic winter/austral summer (JFM, January–March) and sum-
mer/austral winter (JAS, July–September). Figure 5a is notable
for the low values in surface nitrate during winter and early
spring, particularly in the Chukchi and Canadian Arctic waters.
The second row are differences between World Ocean Atlas
observations (Garcia and others, 2009) and modeled values.
The large regions of red shading in winter and summer in both
figures and in both poles indicate systemic underestimations in
modeled surface ocean macro-nutrients.

Biases in mixed layer depth (MLD) suggest that insufficient
mixing may be partly to blame. Figure 7a indicates underestima-
tions of up to 80 m in MLD in winter North Atlantic waters and,
to a lesser degree, in the North Pacific. Both regions are important
for transporting nutrient-rich waters into the Arctic, particularly
through the Barents Sea Opening and the Bering Strait
(Torres-Valdés and others, 2013). Insufficient winter mixing
may contribute to a reduced resupply of upper ocean nutrients
to Arctic waters.

Figures 8 and 9 contrast the winter and summer sea ice con-
centration and thickness in CNST-forcing and observations
(Comiso, 2012; Yi and Zwally, 2009, respectively). Figure 8a
shows clearly the additional sea ice tongue of the winter simula-
tion extending into the Labrador Sea. This feature is responsible
for the overestimation in total Arctic sea ice area discussed in
the previous section. Figures 9a and b are perhaps more revealing.
Underestimations in simulated ice thickness along the Alaskan
shelf, Canadian Archipelago and in the Barents sea are compen-
sated by excessive ice in the central Arctic and Siberian shelf.
Together these features indicate a displaced Beaufort High and
insufficient transport of the Bering Sea inflow to the Canadian
Arctic.

There are also biases in Southern Ocean sea ice concentration
(Figs 8c and d) and thickness (Figs 9c and d) that impact sea ice
algal distributions. In general, modeled winter sea ice is thicker
close to the Antarctic continent and less extensive, except in the
Bellingshausen/Amundsen and Ross sectors. Summer sea ice,

Fig. 5. Upper row are mean surface ocean nitrate concentrations (mmol/m3) in CNST-forcing. Columns (a,c) are January–March averages while (b,d) are averages
over July–September. The second row shows differences between observations (Garcia and others, 2009) and model results.
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particularly along the western Penninsula and Bellingshausen/
Amundsen sector, is far less extensive and much thinner. The
exception is in the Weddell and Ross seas where simulated sum-
mer sea ice is generally thicker along the coast.

3.3. Net sea ice primary production

Sea ice algal production is controlled by light and nutrient avail-
ability and mediated by temperature and salinity. After the polar
night, variable snow cover may reduce internal shortwave pene-
tration, limiting production particularly in the bottom ice layers.
Restricted access to upper ocean nutrients also places limitations

on ice algal production. This might be a result of ice physical pro-
cesses or simply low nitrate and/or silicate concentrations in the
upper ocean.

In order to assess the impact of the upper ocean nutrient biases
on simulated ice algal production, it is useful to define upper
bounds for sea ice algal growth rates based on observational vari-
ables of the polar climate state. We then contrast with bounds
defined equivalently but using CNST-forcing observables.
Observations–estimates of a maximum bound for annual mean
algal growth can be derived using monthly climatology of (1)
gridded observations of downwelling shortwave radiation
(CORE 2; Large and Yeager, 2009), (2) upper ocean nitrate and

Fig. 6. Upper row are mean surface ocean silicate concentrations (mmol/m3) in CNST-forcing. Columns (a,c) are in January–March averages while (b,d) are averages
over July–September. The second row are differences between observations (Garcia and others, 2009) and model results.

Fig. 7. Upper row is ocean mixed layer depths (m) in CNST-forcing for the Arctic (a,b) and Southern Ocean (c,d). Averages are (a) January–March, (b) annual, (c)
June–August and (d) annual. The second row are differences between observations (Holte and others, 2017) and model output.

Annals of Glaciology 59

https://doi.org/10.1017/aog.2020.7 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.7


silicate concentrations (World Ocean Atlas; Garcia and others,
2009) and (3) sea ice extent (SSMI; Comiso and others, 1997).
We assume that the maximum nitrate/silicate concentration avail-
able for ice algal growth is given by the surface ocean concentra-
tion. Similarly, the maximum photosynthetically available
radiation (PAR) is the mean monthly incident PAR at the ice sur-
face. We then compute monthly mean ice algal growth rates for
gridded Arctic and Southern Ocean locations within the 15%
sea ice extent contour using the limitation functions defined in
Appendix: Algal Growth and Nutrient Uptake.

The resulting maximal bound for annual average algal growth
rate in the Arctic is plotted in Figure 10 for (a) model based

(CNST-forcing) and (b) observation based. It is apparent that
from the perspective of sea ice algae, our mean modeled polar
environment allows for at most 35% of the maximum specific
algal growth rate (μmax) in a very narrow region of the Sea of
Okhotsk and generally far less than 20%. Notably, the Beaufort,
Canadian Archipelago and central Arctic see mean values less
than 5% of μmax. In contrast, observations suggest that mean
annual growth rates as high as 60% of μmax are possible in the
Sea of Okhotsk, and typical values in the Bering, Chukchi and
Canadian Archipelago range from 20 to 50% of μmax.

Also shown in Figure 10 (second row) are contour plots of the
frequency (fraction of months per year) with which the maximal

Fig. 8. Upper row is sea ice concentration for the Arctic (a,b) and the Southern Ocean (c,d) in CNST-forcing simulations. Averages are (a,c) January–March and (b,d)
July–September. The second row plots are differences between observations (Comiso and others, 1997) and model output.

Fig. 9. Upper row is sea ice thickness (m) in CNST-forcing for the Arctic (a,b) and Southern Ocean (c,d). Averages are (a,d) February–March and (b,d) October–
November. The second row figures are differences between observations (Yi and Zwally, 2009) and model output.
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bound is determined by ocean nitrate concentrations. Given that
light necessarily limits growth during the polar night, values of
0.5, which indicate that ocean surface nitrate limits the growth
bound for 50% of the year, are extreme. The contours of nitrate
limitation frequency based on model output indicate extreme
nitrate limitation of the maximal bound throughout the algal
growing season. This is reflected in depressed maximal growth
rates. The observationally based metric also indicates significant
nitrate limitation though not as strong. However, this does not
necessarily imply that the computed growth rates from observa-
tions are severely depressed. Indeed, nitrate may limit the
maximum growth rate in the observational metric, but concentra-
tions are still sufficient to allow moderate (20% of μmax) to high
(55% of μmax) algal growth rates.

We acknowledge that the maximal growth rate bound as
defined above, though useful for contrasting modeled and
observed polar states, is a crude measure of sea ice algal growth.
Certainly, variability in snow and ice thickness, melt-pond area
and in situ nutrient concentrations play significant roles in deter-
mining sympagic algal growth rates. Similarly, nitrate limitation of
the maximal growth bound does not mean that nitrate is neces-
sarily limiting to the actual algal growth rate. However in the
Arctic at least, we do find a significant correlation between the
mean net annual ice algal PP of the fully coupled simulation
and the maximal growth bound. Conversely, no such pattern cor-
relation is found between mean annual snow thickness and Arctic
sea ice primary production. Figure 11a is the total annual sea ice
PP averaged over 157 years of CNST-forcing. There are notable

Fig. 10. Upper row is the bound for mean algal growth rate (in units of maximum growth rate, μmax) which depends on ocean surface nutrients, sea ice extent and
incoming shortwave radiation for (a) CNST-forcing and (b) observations (references in text). The second row indicates the frequency (fraction of months per year)
that the growth bound is determined by surface ocean nitrate concentrations. Light blue line indicates the mean 15% sea ice concentration.
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similarities with Figure 10a, and indeed the pattern correlation
coefficient with the maximal growth rate bound is remarkably
high, 0.73 with a t-value of 175. We now use this relationship
to improve our estimate of net Arctic PP given the observation-
based maximal growth bound. The regressed estimate is shown
in Figure 11b. Peak values are similar to the modeled result, but
there is far more production along the Canadian shelf and
Archipelago, Central Arctic and Bering Sea. Total Arctic PP for

the regressed estimate is 60.7 TgC/a, about an order of magnitude
larger than the simulated result (Fig. 2) and consistent with the
higher estimates of Legendre and others (1992). The regressed
value may be viewed as a model derived estimate of global
Arctic sea ice PP that adjusts for ocean nutrient biases in the
simulated state. However, it assumes that the pattern correlation
between the maximal growth rate bound and PP continues to
hold under a state of reduced nitrate limitation.

Fig. 11. Mean total annual Arctic primary production (gC/m2/a) in CNST-forcing (a) is significantly correlated with the maximal growth bound of Figure 10.
Figure (b) is an estimate of Arctic primary production using the regression coefficient from (a) (r = 0.73) and the observations based on maximal growth
bound. Total integrated Arctic ice algal PP from (b) is 60.7 TgC/a. Light blue line indicates the mean 15% sea ice concentration.

Fig. 12. Contours of the upper bound for algal growth rate (in units of maximum growth rate, μmax) based on mean annual ocean surface nitrate, silicate and
incident PAR from (a) CNST-forcing and (b) observations (references in text). Light blue line indicates the mean 15% sea ice concentration.
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A similar analysis for the Southern Ocean is not nearly so use-
ful. Figure 12 shows (a) model-based and (b) observation-based
maximal ice algal growth rate bounds for the Southern Ocean.
The model-based bound is generally lower than that of observa-
tions, ranging between 20 and 80% of μmax, while observations
suggest values exceed 50% μmax within the 15% sea ice concentra-
tion contour. Certainly, the Southern Ocean modeled polar state
appears to be more conducive to ice algal growth than in the
Arctic. However, unlike the Arctic, there is no pattern correlation
between the maximal growth bound as defined here and net
Southern Ocean annual ice PP (r = 0.05). This is because ocean
macro-nutrients do not limit the maximal growth bound in the
Southern Ocean for either modeled or observed states for any sig-
nificant fraction of the year (not shown). Rather, incident PAR is
always limiting. We find that contrasting algal growth rates based

on surface PAR between model and observations, without infor-
mation about snow and sea ice thickness, is simply too crude a
measure. However, the extreme light limitation of the growth
bound suggests that snow thickness patterns may provide some
clues to regional variability in Southern Ocean ice PP.

Figure 13a shows the CNST-forcing mean total annual sea ice
PP in the Southern Ocean. High production zones generally follow
a thin band along the coastline. Figure 13b shows the simulated
mean annual snow thickness. There appear to be two regimes:
(1) a negatively correlated coastal zone where decreases in snow
thickness coincide with increased PP and (2) the pack ice, where
snow thickness and net PP in a grid cell (weighted by sea ice
area fraction) both correlate positively with sea ice concentration.

The scatter plots of Figure 14 support these relationships.
Figure 14a contains only Southern Ocean sea ice grid points in

Fig. 13. (a) Mean total annual primary production in CNST-forcing for the Southern Ocean is uncorrelated with the maximal algal growth bound of Figure 12.
However, there are regions, particularly in the coastal zones, where (b) mean snow thickness (m) is negatively correlated with PP. Light blue line indicates the
mean 15% sea ice concentration.

Fig. 14. Net annual ice algal primary production per sea ice concentration in a grid cell is plotted against mean sea ice snow thickness and color coded to indicate
the mean sea ice concentration. Figure (a) includes only grid cells with ocean depths exceeding 1200 m and (b) includes near coastal grid points with ocean depths
< 1200 m. Black lines of equivalent slope (− 12.8 gC/m2/a/m of snow) are shown for reference. Figure inserts are scatter plots of sea ice area concentration versus
snow thickness for (a) the sea ice pack and (b) near coastal grid cells. Also shown are correlation coefficients significant at the 99% confidence level.
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the deep ocean (ocean depths > 1200 m) which we refer to as the
pack ice region. Net annual ice algal PP per sea ice area fraction
(note, this is now unweighted by sea ice area fraction) is plotted
against mean sea ice thickness and color coded to indicate the
mean sea ice concentration of each grid point. For most of the
pack ice, snow thickness is positively correlated with sea ice con-
centration and weakly positive or uncorrelated with primary pro-
duction. The exception is perennial pack ice where mean annual
sea ice concentrations exceed 70–80%. In contrast, for the near
coastal sea ice (ocean depths < 1200 m) in Figure 14b, negative
correlations between PP and snow thickness are clearly evident
when mean sea ice concentrations exceed ∼60%. For seasonal
ice of the coastal regions, snow thickness again becomes positively

correlated with sea ice concentration, and correlations with PP are
much weaker. We see similar but notably weaker correlations
between sea ice thickness and ice PP (not shown), though this
is likely a result of the positive correlation between snow and
sea ice thicknesses.

3.4. Temporal variability in sea ice primary production and
chlorophyll-a

In this section, we compare modeled seasonal cycles of sea ice pri-
mary production and ice algal chl-a in CNST-forcing with
observations. Figures 15 and 16 contrast monthly average PP.
For the Arctic, we use the compiled results from Leu and others

Fig. 15. Comparison of monthly average Arctic sea ice primary production in CNST-forcing and observations (Leu and others, 2015). Gray shaded regions denote the
range of observed values. Colored shaded regions are the range in monthly averaged simulated sea ice primary production for grid cells matching observed loca-
tions (blue) and for all grid cells (red). Symbols indicate the mean value over the time-series while error bars denote 1 std. The black square and horizontal bar
indicate one reported observation spanning March.

Fig. 16. Comparison of monthly average Southern Ocean sea ice primary production in CNST-forcing (blue and red) and observations (gray; Arrigo, 2003). Gray
shaded regions denote the range of observed values. Colored shaded regions are the range in monthly averaged simulated sea ice primary production for grid
cells matching observed locations (blue) and for all grid cells (red). Symbols indicate the mean value over the time-series while error bars denote 1 std.
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(2015) plotted as gray shaded bars to denote the time-span and
range of observed values. Southern Ocean sea ice PP measure-
ments (Arrigo and others, 2010) are very sparse, spanning only
three months of the year. Again we use gray shaded bars to indi-
cate the span of observed values. For model results, we compare
seasonal cycles of PP using output from the data locations only
(blue lines and shading) and for the entire polar region with at
least a 15% sea ice concentration (pink lines and shading).
Shaded regions indicate the range in monthly mean simulated
PP. Also shown is the mean and standard deviation for each
month over the CNST-forcing time-series.

The underestimations in Arctic PP are now clearly evident and
are reflected in a reduced and shifted production peak.
Observations indicate a June peak, while modeled peak produc-
tion is in April. This is consistent with severe nutrient limitation
in the modeled ocean. The Southern Ocean results, on the other
hand, are fairly consistent with observations particularly in the
late spring and summer. However, the winter comparison points
to possible underestimations in primary production in some
regions of the Southern Ocean.

In addition to sea ice column integrated production and chl-a
biomass, our model was designed with what we hoped were the
important physical processes needed to resolve the vertical ice
algal communities: the upper/freeboard communities abundant
in the Southern Ocean, interior ice communities, and the bottom
or skeletal layer algae common in both the Arctic and Southern
Ocean. Figures 17 and 18 show model comparisons with observa-
tions of mean sea ice chl-a in each of three vertical regions. For
this comparison, we conservatively interpolated vertically resolved
observational data and our eight-grid cell vertical output to a
120-layer common vertical grid of normalized depth before aver-
aging into three vertical sections: upper, interior and bottom.
Southern Ocean observations are from the ASPeCT data set
(Meiners, 2013). Measurements of sectioned core data in the
Arctic are less common, in part because PP is found, or assumed
to be, primarily in the bottom 3–5 cm. However, measurements
from all three vertical sections were obtained from the Bering
Sea Ecosystem Study (Gradinger, 2009), N-ICE2015 (Duarte
and others, 2017), Point Barrow (C. Deal pers. comm.) and the
Canadian Archipelago (Lange and others, 2015).

Fig. 17. Mean monthly algal chl-a concentrations averaged in the upper (top), interior (middle) and bottom (bottom) thirds of the sea ice column. Measurements
and modeled output were first interpolated conservatively to a common 120-layer vertical grid. Symbols and error bars indicate the observed monthly mean con-
centrations and ± 1 standard for each vertical section. Modeled means and standard deviations are from grid cells corresponding to observed locations (black lines
and shading) and all grid cells with sea ice . 15% for a given polar region (blue lines and shading). References for observations are given in the text.
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Modeled chl-a concentration averages for vertical sections
compare well with observations in both the Arctic and Southern
Ocean. This is especially true in the bottom and interior ice,
but less so in the upper ice. In particular, Southern Ocean
upper ice concentrations are underestimated, though by less
than 1 mg chl-a/m3, during the winter months. The March peak
in Arctic chl-a in observations is due to the Bering sea region
which is disproportionately represented in the profile data set.
Our model indicates an April peak in Arctic mean chl-a.
However, this later peak is also evident in mean simulated chl-a
computed from the grid locations of corresponding core observa-
tions. This suggests model biases in the Bering Sea, possibly in the
timing of sea ice retreat.

Figure 18 is more revealing. Here the fraction of chl-a in a
given vertical section is computed before averaging. Upper ice
communities in the Southern Ocean comprise, on average,
between 12 and 35% of the ice core during an annual cycle.
Our model means are between 10 and 19%, underestimating
upper ice communities in the Southern Ocean. Modeled chl-a,
rather, favors the bottom ice layer, attributing 50–70% of total
chl-a biomass. Observations indicate a lower range (40–60%)
for 11 months of the year. Observations of Arctic chl-a profile
fractions exhibit greater variability in seasonality than in the

simulated climatology. This is in part expected given the paucity
of data. Simulated mean profiles do not well represent observed
profiles with very high bottom ice concentrations (e.g. February
and April). The model tends to spread out this biomass among
the layers. This is not surprising given that the model uses only
eight grid levels and numerical diffusion is high. Simulated
monthly mean bottom ice fractions range between 60 and 70%
between February and March while observations suggest values
> 90% in March to ∼55% in June. Note that we have likely under-
estimated the contribution of observed ice cores with very high
bottom chl-a, given that we did not use data if upper and interior
ice measurements were not made or not reported.

Given the observed relationships between modeled ocean sur-
face nitrate (via the maximal growth rate bound) and PP in the
Arctic, and between snow thickness and PP in the Southern
Ocean, it is perhaps not surprising that we also see correlations
in the CNST-forcing time-series anomalies (annual value minus
its time-series mean) of these observables. Figures 19a and b
show contours of the Pearson correlation coefficient between
anomalies of ice algal annual net PP and annual mean surface
nitrate in the Arctic and Southern Ocean, respectively. Only sig-
nificant correlations at the 95% confidence level are shown.
Strong positive correlations are evident in much of the western

Fig. 18. Observations and model comparison of the mean fraction of chl-a in a given vertical section of sea ice. See Figure 17 for description of symbols and
shading. References for observations are given in the text.
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and central Arctic. Not surprisingly, Southern Ocean PP anomal-
ies are poorly correlated with surface nitrate anomalies except just
beyond the mean 15% concentration ice edge. Here, positive
anomalies in algal PP result in additional draw-down of nitrate
and hence significant negative correlations with ocean surface
concentrations.

In both the Arctic and Southern Ocean, snow thickness anom-
alies are negatively correlated with anomalies in annual net algal
primary production (Figs 19c and d). This is particularly true in
regions of modeled higher production such as the Eastern
Siberian Sea and Sea of Okhotsk and in the near coastal band
of the Southern Ocean.

4. Discussion

Global time-series of E3SMv1.1-BGC pre-industrial and historical
simulations support the lower bound in previous estimates of net
sea ice PP in both polar regions, with an Arctic mean value of 7.5
TgC/a and a Southern Ocean mean of 15.5 TgC/a. However, clo-
ser analysis of simulated polar climate and comparisons with in
situ primary production measurements suggest, rather, that the
Arctic lower bound estimate is a significant underestimation dri-
ven in large part by biases in surface ocean nitrate. In addition,

our analysis indicates that improved surface nitrate representation
would augment the simulated net Arctic ice algal PP with a cap-
acity corresponding to 60.7 TgC/a, which is more consistent with
the upper bound suggested by Legendre and others (1992).

In contrast, model simulations of chl-a biomass (concentra-
tions and column integrated values) are broadly consistent with
observations in both poles. This provides some support for our
algal vertical transport parameterizations, particularly algal motil-
ity which alters chl-a concentrations while preserving column
integrated values. With respect to vertical algal communities, we
see moderate agreement in mean chl-a concentrations for interior
and bottom ice though with greater uniformity in the simulated
profiles. This is in part due to poor vertical resolution and exces-
sive numerical diffusion.

The biases in chl-a profile fractions, however, indicate that we
have difficulty representing cores with high algal biomass in the
bottom layer, and that we continue to underestimate the upper
and freeboard communities of the Southern Ocean. The latter is
notable because upper ice algal production is supported by pro-
cesses somewhat distinct from bottom communities, which
depend heavily on gravity drainage exchange with the ocean.
That is, we expect surface flooding, snow loading and remineral-
ization to play larger roles. Our model treats these processes

Fig. 19. Contours of the Pearson correlation coefficient (r) between the anomalies of (a,b) ice algal annual net primary production (PP) and annual mean ocean
surface nitrate (NO3) and the anomalies of (c,d) ice algal annual net primary production and annual mean snow thickness (hs). Only significant values at the 95%
confidence level are shown. The red line is the mean sea ice 15% contour.
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rather simply. First, we neglect all surface flooding from lateral
flow and macro-scale porosity features in the ice, though this is
an observed phenomenon (Eicken and others, 1994), because
developments to include macro-porosity in MPAS-Seaice are
ongoing. We do, however, expect that this additional surface
flooding enhances upper ice nitrate and correspondingly chl-a
concentrations relative to the bottom and interior values.

Snow loading, which is modeled as pressure-driven flow
through a porous medium using Darcy’s law, has only one tunable
parameter: the snow porosity. Measured values range significantly
from less than 0.3 for very wet snow to 0.95 for newly fallen snow
(Singh and others, 2007), and it may be that a dynamic value
based on snow aging is appropriate. Indeed, (Jeffery and Hunke,
2014) found that brine salinity accumulated in upper ice/snow
layers during simulated snow loading events was highly sensitive
to this parameter. Currently, developments are underway to add
snow aging to MPAS-Seaice for E3SMv2.

The question remains, are significant underestimations in
Arctic sea ice algal PP consistent with reasonable representations
of chl-a? If not, what do these inconsistencies imply about our ice
biogeochemical model? In our simulations, Arctic ice PP is under-
estimated because of constraints to specific growth rate and not
algal biomass. Certainly, low PP is not by definition inconsistent
with accurate chl-a estimates. Sea ice column integrated chl-a, on
the other hand, is a result of a balance of fluxes: (1) primary pro-
duction, which is an inorganic carbon (nitrogen) to algal carbon
(nitrogen) flux; (2) ocean to ice algal chl-a fluxes, which though
small compared with (1), are responsible for seeding of the sea
ice algal community; (3) ice to ocean melt fluxes; and (4) grazing
and mortality losses. Given that PP is the dominant positive flux,
accurate chl-a can only be achieved with compensatory negative
fluxes, i.e. underestimations of grazing and mortality and/or ice
to ocean melt losses. Indeed, as we indicated in section: Tuning
and model parameters, both the grazing fraction (zero for diatoms
though 0.7 for small plankton and Phaeocystis sp.) and the algal
mortality rate (0.007 1/d for all algal groups) were reduced during
the tuning process. Further, the tuned values for attachment and
desorption time-scales served to maximize ocean to ice chl-a
accumulation and reduce ice to ocean losses during melt. We
expect that in reality the Arctic ice algal system experiences up
to an order of magnitude higher turnover rates.

Validity of our Southern Ocean net PP estimate is more diffi-
cult to assess, because there are too few ice algal production mea-
surements available. Comparisons are favorable, but they do
suggest that the model may underestimate production in winter.
With respect to the modeled polar climate, we again see ocean
surface macro-nutrient (nitrate and silicate) biases, though these
do not exert a limiting control on Southern Ocean ice PP.
Rather incident PAR and snow thicknesses play important
roles. Unfortunately, it is difficult to validate modeled snow thick-
ness, particularly in the coastal band of high PP, because current
methods of snow depth retrieval are poor in regions of high ice
compaction and ridging (Kern and Ozsoy-Çiçek, 2016). Still, we
know that upper and freeboard ice algal chl-a fractions are under-
estimated and this implies, at the very least, insufficient sea ice PP
in the upper layers relative to the bottom ice. In addition, our
model does not include platelet ice layers which are known to
support some of the highest rates of sea ice PP in the Southern
Ocean (Arrigo and others, 2010).

Certainly, the modeling of ice algal systems would benefit
greatly from additional measurements of ice algal PP rates, par-
ticularly those which enhance the regional and temporal coverage
of both polar regions. There is also a need for measurements
which constrain losses such as grazing rates and ice–ocean
exchanges of organic material throughout the seasonal cycle.
Additional remineralized sources of nitrogen may play a

particularly important role in supporting ice algal communities,
especially during periods of the year when sea ice physics places
constraints on ocean–ice fluxes. We acknowledge that our simpli-
fied treatment of remineralization and nitrogen cycling in sea ice
likely contributes to underestimations in PP in both polar regions.
Specifically, we do not include remineralization of dissolved
organic nitrogen (DON), although the work of Fripiat and others
(2014) and Fripiat and others (2015) indicates that DON incorp-
oration into sea ice during winter and subsequent sympagic
remineralization provides an important supplemental source of
nitrogen to ice algae. In future work, we plan to improve sympagic
nitrogen cycling with explicit remineralization of DON and nitri-
fication, with the caveat that adequate measurements of ice–ocean
DON fluxes in addition to remineralization rates will be essential
for model validation.

5. Conclusion

Coupling of the 3D sea ice algal model, MPAS-Seaice zbgc, into
the E3SMv1.1 global climate system enables comparative investi-
gation of Arctic and Southern Ocean sea ice PP. We have assumed
that ice algal dynamics in both poles is described by a common set
of biogeochemical exchanges and that differences in ice chl-a and
primary production can be explained by variations in environ-
mental conditions. For our analysis, we consider 180 years of
simulated pre-industrial and historical environmental variability.
Interpreting the results of climate model output is challenging,
and conclusions often reflect the peculiarities of a particular
model rather than the natural system we are trying to understand.
Our approach is to first define a simple metric, a maximal bound
for algal growth rate, that assesses the quality of both the modeled
and observed polar states as it pertains to sea ice algae. In this way,
light and surface nutrient biases are only relevant if and when
they limit the algal growth bound. Our approach is not unique.
Horvat and others (2017) use a more sophisticated metric for
light limitation that includes albedo changes from melt-pond for-
mation. However, we choose a metric that can be evaluated from
readily available observations as well as generic model output.

We find that biases in simulated surface ocean nitrate lead to
large differences in the regional patterns of the maximal algal
growth bound between mean simulated and observed Arctic
environments. In effect, we see potential suppression of simulated
ice algal growth rates to < 5% of μmax in the central and Canadian
Arctic, whereas observations suggest moderate suppression to
∼30% of μmax and coastal values as high as 55% of μmax. The met-
ric does not contain information about sea ice biogeochemical or
physical processes, aside from the mean monthly 15% ice concen-
tration contour and a common set of algal growth limitation func-
tions, but we observe a positive pattern correlation coefficient of
0.73 between the bound and net sea ice algal primary production
from the fully coupled model. Although we expect the correlation
to grow weaker with reduced surface nitrate biases, we estimate
using the observation-based maximal algal growth bound that
net Arctic PP may be as high as 60.7 TgC/a.

In contrast, the maximal algal growth bound in the Southern
Ocean is not correlated to sea ice algal PP. Rather, the metric con-
firms what is well known, that ocean surface macro-nutrients are
abundant, and that functions of incident PAR are not sufficient
proxies for ice algal growth. However, strong light limitation of
the bound in both observations and simulations indicates that
variations in snow thickness play a likely role in regional patterns
of PP. Indeed, we observe strong negative pattern correlations in
the model between snow thickness and Southern Ocean PP, par-
ticularly in the high-production perennial ice of coastal
Antarctica. In contrast, pack ice is generally uncorrelated or
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weakly positively correlated with PP, except for regions of high
mean annual ice concentrations (> 70%).

Finally, we investigate two potential sources of inter-annual
variability in pre-industrial sea ice PP: ocean surface nitrate anom-
alies and sea ice thickness anomalies. Not surprisingly, we see sig-
nificant positive correlations in Arctic surface nitrate and primary
production anomalies for much of the central and Canadian
Arctic where the maximal growth bound is strongly suppressed
from nitrate limitation. Conversely, Southern Ocean PP variability
is generally not driven by nitrate concentrations. Rather, anomal-
ous increases in ice PP beyond the mean 15% ice extent contour
are correlated with decreases in surface ocean nitrate, which is
responding to the additional nitrogen demand. Snow thickness
anomalies, however, are negatively correlated with algal PP for
both poles, indicating that light limitation is also an important
control on Arctic PP. Significant negative correlations are particu-
larly evident in the higher ice PP zones for both regions. The
exception is a band in the Southern Ocean, southward of the
sea ice edge, where net ice PP is low because of low mean sea
ice concentrations. However, ice algal growth rates are high, light-
limited and sensitive to snow thickness variability.
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APPENDIX A. Brine evolution

Motion of the brine level (hb) is fundamentally a result of gravitational forces
and depends on the permeability of the ice, changes in the ice bottom and sur-
face boundaries, and surface sources of water: snow and ice meltwater, sea
water flooding and liquid precipitation. Computation of hb at t + Δt is a two-
step process. First, hb is updated from changes in ice (hi) and snow thickness
(hs), i.e.

h′b = hb(t)+ Dhb|hi ,hs . (A1)

The contribution Dhb|hi ,hs arises from snow and ice melt and bottom ice
growth. Since the ice and brine bottom boundaries coincide, changes in the
ice bottom from growth or melt, (Δhi|bot), equal the bottom brine boundary
changes. The surface contributions from ice (Δhi|top) and snow melt
(Δhs|melt), however, are opposite in sign since an ice/snow to liquid conversion
above the brine level adds to the total fluid volume. As an initial simplification,
we do not assume any direct runoff into the ocean although this is certainly
possible particularly in areas of low ice concentration.

The brine level change from snow melt and ice thickness changes is

h′b(t + Dt)− hb(t) = Dhi|bot−
ri
rb

Dhi|top−
rs
rb

Dhs|melt. (A2)

The symbol ρ is density and the subscripts i, s and b correspond to ice, snow
and brine, respectively. In the second step, we apply pressure-driven

adjustments arising from meltwater flushing and snow loading to h′b. Brine
flow due to pressure forces are governed by Darcy’s equation for the boundary
velocity, w (Fetter, 2001):

w = −P∗�rg
m

hp
hi

. (A3)

where μ is the viscosity, g is the gravitational acceleration and �r is the average
sea ice density. The ice thickness, hi, the hydraulic head, hp, and the vertical
component of the net permeability, P∗, depend on the ice state and are com-
puted at each time step. The hydraulic head is hp = h′b− hsl with hsl equal to
the sea level relative to the ice bottom (see Jeffery and others (2011) for further
details).

If we assume that changes in hi and hs are negligible while Darcy flow
adjusts the bulk brine level, then the rate of change of hb from pressure forces
(indicated by |pr) is

∂(ftophb)

∂t

∣∣∣∣
pr
= −P∗�rg

m

hp
hi

∂hb
∂t

∣∣∣∣
pr
≈ −wohp

(A4)

with wo = P∗�rg/(himftop) and ϕtop the surface porosity. When Darcy flow is
downward into the ice (wo < 0), ϕtop equals the sea ice porosity in the upper-
most layer. When the flow is upwards into the snow, then ϕtop equals the snow
porosity (ϕtop = 1− ρs/ρw).

Since hsl remains relatively unchanged during Darcy flow, (A4) has the
approximate solution

hb(t + Dt)|p ≈ hsl(t + Dt)+ [h′b(t + Dt)− hsl(t + Dt)] exp −wDt{ }. (A5)

Together equations A2 and A5 define the vertical domain of the zbgc model at
each time step relative to the ice state grid and provide essential information to
compute the impact of brine flushing on biogeochemical tracers.

APPENDIX B. Biogeochemical reaction terms

The biochemical reaction terms, R([c]) (or more concisely Rc) in (4), are gen-
erally non-linear, vertically resolved functions of ice temperature, salinity,
photosynthetically active radiation (PAR) and tracer brine concentrations.
For each algal species (represented by N to indicate units of algal nitrogen con-
centration), RN has the form:

RN = m(1− fgraze − fres)−Mort (B6)

where the algal growth rate μ is in general a function of PAR, temperature and
the limiting nutrient. fgraze is the fraction of algal growth that is lost to preda-
tory grazing, and fres is the fraction of algal growth lost to respiration. Algal
mortality, Mort, is temperature dependent and modeled after (Arrhenius,
1889), but also limited by a maximum loss rate fraction (lmax):

Mort = min (lmax[N], mpre exp {mT (T − Tmax)}[N]) (B7)

where [ · · · ] denotes brine concentration. The parameters mpre and mT are the
maximum mortality rate and mortality temperature decay, respectively.

Nitrate and ammonium reaction terms are given by

RNO3 = [NH4]knitr − U tot
NO3

RNH4 = −[NH4]knitr − U tot
NH4

+ (fngfgraze(1− fgs)+ fres)m
tot + fnmMort

= −[NH4]knitr − U tot
NH4

+ Nremin

(B8)

where the uptake Utot and algal growth μtot are accumulated totals for all algal
species. knitr is the nitrification rate, fng and fnm are the fractions of grazing and
algal mortality that are remineralized to ammonium, and fgs is the fraction of
grazing spilled or lost. Algal uptake and growth rates are described in detail in
the next section.

Silicate, an essential nutrient for diatom growth but not required by small
plankton or Phaeocystis sp., has no biochemical source terms within the ice
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and is lost only through algal uptake:

RSiO3 = −U tot
SiO3

(B9)

Dissolved iron, on the other hand, has both algal uptake and remineraliza-
tion pathways. The current model configuration does not include conversions
between particulate and dissolved iron species. This is in part because the
ocean model does not carry an explicit particulate iron pool nor are there
sources of sedimentary iron near shelf and coastal regions, and neither
model prognoses or derives ligand concentration. Despite this shortcoming,
even a simplified dissolved iron dependency in sea ice provides a means to
begin assessing the role of physical ice–ocean mechanisms in the observed
accumulation of biologically available iron in polar regions.

The full equation for dFe including uptake and remineralization is

RdFe = −U tot
dFe + ffaRfe:nNremin (B10)

where Rfe:n is the ratio of iron to nitrogen in the remineralized pool and ffa is
the fraction retained as dissolved iron.

See Table II for a more complete list and description of biogeochemical
parameters.

APPENDIX C. Algal growth and nutrient uptake

Algal growth rates depend upon available PAR and follow Liebig’s Law of the
minimum, which states that growth is controlled by the scarcest resource.
Limitation factors are first computed for light (Llim) and each of the potentially
limiting nutrients, NO3, NH4, SiO3 and dFe, to determine the greatest impedi-
ment to growth. The maximum growth rate at a given temperature is then
reduced by the limiting factor to compute the true growth rate μ. Nutrient
uptake rates are then calculated based on the true growth rate. Care must be
taken with multiple algal species to insure that total uptake in a given time
step does not deplete brine concentrations below a minimum threshold
fraction.

Nutrient limitation terms obey the Michaelis–Menten equations:

NO3lim = [NO3]
[NO3] + KNO3

(C11)

NH4lim = [NH4]
[NH4] + KNH4

Ntot
lim = min (1, NO3lim +NH4lim)

(C12)

SiO3lim = [SiO3]
[SiO3] + KSiO3

dFelim = [dFe]
[dFe] + KdFe

(C13)

with specified half-saturation coefficients Kx for a given nutrient X.
Light limitation Llim is defined in the following way: Isw(z) (inW/m2) is the

shortwave radiation at the ice depth z. The optical depth is proportional to the
chl-a concentration, opdep = chlabs[Chla]. If (opdep > opmin) then, after
(Sakshaug and others, 1989),

Iavg = Isw(1− exp {− opdep})/opdep

otherwise Iavg = Isw.

Llim = (1− exp {− a · Iavg}) exp {− b · Iavg} (C14)

with exponential light limitation after (Martinez and others, 1997) parameter-
ized by α, and limitation modeled as first-order decay kinetics with factor β
(Kok, 1956).

The maximal algal growth rate before limitation is a function of tempera-
ture T (Ahlgren, 1987):

mo = mmax exp {mTDT}[N]

and

m′ = min (Llim, N
tot
lim, SiO3lim, dFelim)mo (C15)

is the initial estimate of algal growth rate for a given algal species. ΔT is the
difference between the local and the maximum temperatures (in this case
Tmax = 0°C).

The initial estimate of the uptake rate for silicate and dissolved iron
(denoted by tilde) is computed assuming an algal-type specific silica to nitro-
gen ratio (Rsi:n) and iron to nitrogen ratio (Rfe:n):

ŨSiO3 = Rsi:nm
′

ŨdFe = Rfe:nm
′ (C16)

For nitrogen uptake, we assume that ammonium is preferentially acquired by
algae. For each algal growth rate, μ, first determine the maximum potential
uptake rate of ammonium based on its limitation factor:

U ′
NH4

= NH4limmo (C17)

Then determine the uptake based on the initial estimate μ′ (C15)

ŨNH4 = min (m′ , U ′
NH4

)

and satisfy the remaining nitrogen demand by nitrate acquisition.

ŨNO3 = m′ − ŨNH4 . (C18)

We require that each rate not exceed a maximum loss rate lmax/dt.This is
particularly important when multiple species are present. In this case, the
accumulated uptake rate for each nutrient is found and the fraction (fUi) of
uptake due to algal species i is saved and maintained in what follows. The
total uptake rate is compared with the maximum loss condition and the
lower value chosen. For example, the net uptake of nitrate when there are
three algal species is

Ũ
tot
NO3

=
∑3
i=1

Ũ
i
NO3

.

Then the uptake fraction for species i and the adjusted total uptake is

fUi
NO3

= Ũ
i
NO3

Ũ
tot
NO3

U tot
NO3

= min (Ũ
tot
NO3

, lmax[NO3]/dt)
(C19)

Now, for each algal species the nitrate uptake is

Ui
NO3

= fUi
NO3

U tot
NO3

. (C20)

Similar expressions are found for all potentially limiting nutrients. Then the
true growth rate for each algal species i is

mi = min (Ui
SiO3

/Rsi:n, U
i
NO3

+ Ui
NH4

, Ui
dFe/Rfe:n) (C21)

Preferential ammonium uptake is assumed once again and the remaining
nitrogen is taken from the nitrate pool.
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