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ABSTRACT

In this paper we use Fourier/Laplace transforms to evaluate numerically rele-
vant probabilities in ruin theory as an application to insurance. The trans-
form of a function is split in two: the real and the imaginary parts. We use an
inversion formula based on the real part only, to get the original function.

By using an appropriate algorithm to compute integrals and making use
of the properties of these transforms we are able to compute numerically
important quantities either in classical or non-classical ruin theory. As far
as the classical model is concerned the problems considered have been widely
studied. In what concerns the non-classical model, in particular models based
on more general renewal risk processes, there is still a long way to go. In either
case the approach presented is an easy method giving good approximations
for reasonable values of the initial surplus.

To show this we compute numerically ruin probabilities in the classical
model and in a renewal risk process in which claim inter-arrival times have an
Erlang(2) distribution and compare to exact figures where available. We also
consider the computation of the probability and severity of ruin in the classical
model.
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INTRODUCTION

In this work we consider a continuous time risk process, where claims occur
as a renewal process. Times between claims (and the time until the first claim)
form a sequence of independent and identically distributed random variables,
denoted {7}} °°=1, with density function k(*) and distribution function K('), with
K(0) = 0. We denote the claim number occurrence process as {N(t), t > 0}, which
we will consider as a renewal process. N(t) represents the number of claims in
the interval (0, i\.

Let {Xj} °°=1 be a sequence of independent and identically distributed ran-
dom variables, where A} denotes the amount of the>th claim. {A}} and {7^}
are independent. Let />(•) and^(«) be the distribution and density function of
Xj, respectively, with P(0) = 0. We assume that the means of A} and Tk exist
and denotepx = E[Xj]. Let c denote the insurer's premium income per unit time.
We will assume that

Let {(7(0, t > 0} be the surplus or risk process such that

N(t)

where u is the initial surplus and define the time until ruin, denoted T, by

finf {/: U(t)< 0}

[oo if U(t)>0Vt'

The surplus at the time of «-th claim is,

The probability of ultimate ruin from initial surplus u for this risk process is
defined as

y/ (u) = Pr\u + f^(cTj- Xj) < 0 for some n, n = 1,2,... =Pr{7< oo|{/(0)= «},
I Jy - 1

and let S(u) = 1 - y/(u) denote the survival probability. Note that if the event
ruin is to happen this will occur at the time of a claim occurrence. If the
moment generating function of Xj exists, in an appropriate open interval,
then the adjustment coefficient for this risk process is the unique positive
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number R such that [see for instance Sparre Andersen (1957) or Dickson and
Hipp (1998) as a recent reference]

Finally, we consider the aggregate loss up to time t, L(i)='£N®Xj -ct and the
random variable L = max{L(t), t>0} as the maximal aggregate loss, so that
8(u) = Pr {L < u). L has a compound geometric distribution [see Dickson and
Hipp (1998)].

We limit our work to the cases when &(•) is an exponential distribution or
an Erlang(2, /?) distribution. The first case corresponds to the well known
classical model, whereas the second case was treated recently by Dickson
(1998) and Dickson and Hipp (1998). Our purpose in this paper is to find
numerical solutions for the ruin/survival probabilities using Fourier/Laplace
transforms and their properties, particularly with the use of an inversion for-
mula for these transforms. We will consider the accuracy of the approximations
by studying examples, although we don't have exact figures for one of them.
In this latter case we will compare and discuss with another approximating
method.

In the next section we present the Fourier/Laplace transform and its prop-
erties as well as the inversion formula for the transform, which we will use to
obtain the numerical values for the ruin probabilities. In Section 3 we deal
with the classical model and present some examples and compare the accu-
racy of the numerical figures obtained. In Section 4 we study the Erlang(2,2)
renewal process, together with some examples. Section 5 presents the compu-
tation of the probability and severity of ruin in the classical model. The last
section contains some concluding remarks about the method presented.

THE TRANSFORM AND ITS PROPERTIES

Let f(x) be a continuous function defined for x > 0 whose integral exists for
all x > 0. Its Fourier transform is

f(is)=f~eisxf(x)dx,

where i= /-I. We note that if /(•) is a density function then/(«) is the corre-
sponding characteristic function.

In this work we will need some properties dealing with these transforms.
We write them down in what follows. These properties are easy to show, and
we refer to Poularikas (1996), for instance.

Property 1 Letf(') and g(') be defined on 1^ as above and h{x) = af(x) + bg(x),
where a and b are two constants. Then

h (is) - af(is) + bg (is).
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Property 2 Let F{») be defined on fCQ as above, and let limx^xF{x) = 1, G{x)
1 -F(x),f(x) = F'(x) andg(x) = G'(x). Then

Property 3 Let if (•)}"_, be functions defined on %t as above, and let h{>) be
the n-th convoluted function, h(x) =fx *f2 * ... *fn(x), where fj*fk(x) - I f, (x-y)
fk(y)dy. Then

h(is)=tlfj(is).

The Fourier transform of/(•) can be split up into two parts considering the
real and complex parts:

/(is) = Re (/(«))+ilm (/(is)) =f °° cos(sx)f(x) dx + i fx>sin(sx)f(x)dx.

Consider now in the following the (Fourier) cosine transform and the inverse
transform:

roo

(p(s)= I cos(sx)f(x)dx
J 0

and

where f(x) is a continuous non-negative function defined on $C, whose inte-
gral exists for all x > 0. From the above we can write the following:

Result 1 Let f(x) be a continuous non-negative function defined on %^, whose
integral exists for all x > 0, andf(x) = F'(x). Then

(1)

This result is the key to our future developments. The cosine transform and
its inverse are well known. [See for instance Poularikas (1996); Garcia (2000)
contains a more general proof]. We have examples of the use of this kind of
inverse formula in the actuarial literature to compute ruin probabilities in the
classical model. For this purpose Seal (1977) considered the expression

f(x) = 2 j£ /o°°cos(^)Re (f(c + is)) ds, (2)

where c is an appropriate constant, in particular he put/(x) = y/{x) for the
classical model. He then considered the trapezoidal quadrature of the integral
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above and particular positive values for the constant c to compute numerical
values for the ruin probability in the classical model [see Seal (1977)]. If we
look at formula (1) we see that its derivative corresponds to (2) with c = 0.
Seal (1977) discarded the case c = 0 in (2) saying that this case may be not
applicable in his formula. Seal's (1977) expression for y/(x) has been recently
retrieved by Usabel (2001) who used the mid-point integration rule with step
h = nl2u and parameter c = A/2u to give

\JJ (w) = —— / cos(us:)Re (y/ (c + is)) ds

and considered particular values for A = 15 log 10; 20 log 10.
This latter author underlined the fact that it is not an easy task solving the

integral in (3) numerically because the integrand is a rapidly oscillating func-
tion. This is, of course, also the case for computing the integral in (1). How-
ever, the use of our calculation method in our examples revealed good results.
To compute numerically the integral in (1) we used the so called dicotomic
approach algorithm explained in Garcia (1999), which is presented in compari-
son to Simpson's Rule and is reproduced in the Appendix. In the numerical
computation we have used Visual Basic programming, as well the Mathematica
package for some cases. In our applications we have considered a maximum
error of 10~10 in the computation of the integral for each subdivision (see the
Appendix). As a truncation procedure in the calculation of the integral for
the next interval we have used the same value 10~10 as the maximum value to
consider. As we will show we get good approximations with our method even
for reasonably high values of the initial surplus.

We are mainly interested in calculating the probability of ultimate ruin in both
the classical and in a non-classic model, although we can extend this method
to other ruin problems. In the last section we consider the calculation of the
probability and severity of ruin in the classical model as an example of this.

RUIN PROBABILITY IN THE CLASSICAL MODEL

In this section we consider the classical compound Poisson model, i.e. K(t) =
1 -exp{~fo}, t > 0. From Gerber (1979) we know that

-x)dx-^[l-P(u)], u>0. (4)

From here we can calculate y/' (is) as follows, using Properties 1 and 3
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Now using Property 2 and rearranging we get

We then can write

— n = A+iB = AC-BD+i(CB+AD)
™ ' C-iD £

where

Expression (1) then becomes

(5)

Example 1 Exponential-Exponential model

We consider P(x) = 1 -exp{-[Sx}. For this case it is well known that y/{u) = -k
exp{-(fi-X/c)u}. We get easily that Re(p(w)) = P2101 + s2) and lm(p(is)) =
fls/(fi2 + s2). We set X = p - 1 and c = 1.1 in the calculations.

Table 1 shows values for y/{u). The key for the table is the following: col-
umn (1) gives the exact figures, column (2) the approximating values from the
application of formula (5), and the last column gives the ratio (1) / (2).

TABLE 1

y/(u) FOR EXPONENTIAL(1)-EXPONENTIAL(1) MODEL

u

0
1
2
3
4
5
10
20
30
40
50

(1)

0.90909
0.83009
0.75796
0.69209
0.63195
0.57703
0.36626
0.14756
0.05945
0.02395
0.00965

(2)

0.90909
0.83009
0.75796
0.69209
0.63195
0.57703
0.36626
0.14756
0.05945
0.02395
0.00965

(l)/(2)

1.00000
1.00000
1.00000
1.00000
0.99999
1.00000
1.00000
1.00000
1.00001
0.99991
1.00021
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Example 2 Exponential-Gamma model

We consider p (x) = j^r xa^ e'^x. We have

97

p (is) = irja

•ft = arccosty),

i.e. Re(p(is)) = nacos(a&) and
(1993) we know that with a = 2

From Egidio dos Reis

a n d

| - 2 / ? + (-!

We set X - 1, ft - 2 and c = 1.1. Table 2 shows values of
The key for the table is the same as in the previous case.

TABLE 2

i//(u) FOR EXPONENTIAL(1)-GAMMA(2,2) MODEL

u

0
1
2
3
4
5
10
20
30
40
50

(1)

0.90909
0.81269
0.71942
0.63649
0.56311
0.49819
0.27001
0.07932
0.02330
0.00684
0.00201

(2)

0.90909
0.81269
0.71942
0.63649
0.56311
0.49819
0.27001
0.07932
0.02330
0.00685
0.00201

(l)/(2)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99998
0.99992
0.99962
0.99833

for this example.

Example 3 Exponential-Pareto model

We consider P(x) - 1 -(a2/(a2+x))*1. We set ax - 2,'a2 = 1 and again X = 1,
c = 1.1. In this case we don't have a closed form for the characteristic function
of the Pareto density. This means that for the calculation of (5) we have to
compute a double integral. This results in an increase in computer time.
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Table 3 shows values of y/(u) for this example. The key for the table is the
following: (1) gives the approximations by Dickson et al (1995) and by Ramsay
and Usabel (1997) (u > 0), (2) shows our approximations and the last column
the ratio (l)/(2). The values in column (1) for u = 30,50, 500,1000 were not
available in Dickson et al (1995) so, we took them from Ramsay and Usabel
(1997). Where available, figures from both authors give the same values to five
decimal places. The approximations by Dickson et al (1995) are based on a
discrete time compound Poisson model and the figures by Ramsay and Usa-
bel (1997) have been produced via product integration. In this example we
extended our calculation to values of u greater than 50, so that we could com-
pare smaller values of y/(u), say, closer to 1%. So, we can deduce the quality
of approximations in all examples when we have smaller ruin probabilities.

TABLE 3

y/(u) FOR EXPONENTIAL(1)-PARETO(2,1) MODEL

u

0
2
4
10
20
30
40
50
100
500
1000

(1)

0.90909
0.81023
0.74976
0.62713
0.49814
0.41144
0.34789
0.29916
0.16486
0.02512
0.01134

(2)

0.90909
0.81023
0.74976
0.62713
0.49814
0.41144
0.34790
0.29916
0.16486
0.02512
0.01135

(l)/(2)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99999
1.00000
1.00012
0.99921

RUIN PROBABILITY IN THE ERLANG(2,/?) MODEL

In this section we consider the model in Dickson (1998) and Dickson and Hipp
(1998), i.e. k(t)=p2t exp{-yfr}, f>0. From Dickson and Hipp (1998) we have that

c2d\u) - 2j3c5' («) + fd(u) = ff"p(x)d(u - x)dx,

or equivalently

1 -PQ*)] +P2fp(x)y/(u-x)dx.

If we follow the method by Dickson and Hipp (1998, Section 2) for Laplace
transforms, applying the properties in Section 2 we get that
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On the other hand,_we have that for the aggregate loss distribution function
S(u), E[eisL] = S(0)-y/'(is) and knowing that lim^0 E[eisL] = 1 we get that c2y/'(0)i
= 2Pci -p2pxi-2pcS(0)i. Then

2Pcsi-c2s2S(0)-sp2
Pli

2Pcsi-c2s2 + P2[\ - Re(p(w))] - p2lra(-p{is))i

BC-AD.

where A = c2s23(0), B = sp2px - 2pcs, C = p2 [1 - Re(p(is))] - c2s2 and D = 2pcs -
P2 \m(p(is)). Hence, from (1) we have

(7)

where sgn(') is the sign or signum function.
In expression (7) we need to compute (5(0). Dickson and Hipp (1998) show that
for this process

c s0

where s0 is the unique positive root of the equation in real s, c2s2-2pcs + p2(\ -
/>(-*)) = 0.

Example 4 Erlang(2,2)^-Exponential model

Let/>(«) be an Exponential distribution with mean 6~l. For this case it can be
shown easily that y/(u) = ys(0)exp{-Ru}, y/(0) = (6-R)/6 and R = (9c-2p +
J¥c*+46Pc)/2c is the adjustment coefficient. We set p - 2, c = 1.1 and 9=1.

Table 4 shows values of y/(u) for this example. The key for the table is the
same as in Table 1.

Example 5 Erlang(2,2)-Erlang(2,2) model

We set /? = 2, c = 1.1 and let/»(•) be an Erlang(2,2) distribution. For this case
we have that v/(M) = 0.88407524e-018181818M-0.01085889e-Z78924038" [see Dick-
son (1998)]. Table 5 shows values of y/{u) for this example. The key for the
table is the same as above.

Example 6 Erlang(2,2)-Pareto(2,l) model

We consider a Pareto(2,l) claim amount. Again /? = 2, c = 1.1. In this case we
don't have exact results for the ruin probability y/(u), however we can compare
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TABLE 4

y/(u) FOR ERLANG(2,2)-EXPONENTIAL(1) MODEL

u

0
5
10
15
20
25
30

u

0
5
10
15

20
25
30

(1)

0.88006
0.48315
0.26524
0.14561
0.07994
0.04389
0.02409

(2)

0.88006
0.48315
0.26524

0.14561
0.07994
0.04389
0.02409

TABLE 5

d)/(2)

1.00000

1.00000

1.00000

1.00000

0.99998

1.00002

0.99993

y/(u) FOR ERLANG(2,2)-ERLANG(2,2) M O D E L

(1)

0.87322

0.35619
0.14350
0.05782
0.02329
0.00938
0.00378

(2)

0.87322

0.35619
0.14350
0.05782

0.02329
0.00938
0.00378

d)/(2)

1.00000

1.00000

1.00000

1.00000

0.99995

1.00000

0.99950

approximations obtained from different methods. We can take Dickson &
Hipp's (1998, Section 5) suggestion and consider upper and lower bounds
using "Method 1" of Dufresne & Gerber (1989) and average these like Dick-
son et al. (1995) do. Like in Example 3 we show figures for y/(u) for higher
values of the initial surplus.

Table 6 shows values of y/(u) for this example. The key for the table is the
following: (1) and (2) show the lower and upper bound, respectively, (3) shows
the average between (1) and (2), (4) shows our approximating values. We note
that for our approximation for u - 500,1000 does not look so accurate. Actu-
ally, they come slightly outside the interval delimited by the values in columns
(1) and (2). However, we must note that the bounds in this example require
some numerical integral calculation, which may have a greater negative effect
on the computations in columns (1) and (2) for very high w's. See Dickson and
Hipp (1998, Example 7).

THE PROBABILITY AND SEVERITY OF RUIN

The method for computing ultimate ruin probabilities presented in previous
sections can also be applied to other problems in ruin theory. Furthermore, it
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TABLE 6

i//(u) FOR ERLANG(2,2)-PARETO(2,1) MODEL

u

0
5
10
15
20
25
30
40
50
100
500
1000

(1)

0.88664
0.69884
0.60109
0.53007
0.47425
0.42858
0.39028
0.32935
0.28294
0.15635
0.02473
0.01127

(2)

0.88664
0.69941
0.60171
0.53070
0.47485
0.42915
0.39082
0.32983
0.28336
0.15657
0.02474
0.01128

(3)

0.88664
0.69912
0.60140
0.53039
0.47455
0.42886
0.39055
0.32959
0.28315
0.15646
0.02474
0.01128

(4)

0.88664
0.69912
0.60140
0.53038
0.47455
0.42886
0.39055
0.32961
0.28315
0.15645
0.02472
0.01124

can also be used in other areas of applied probability, e.g. queueing theory.
In this section we consider its application to the probability and severity of
ruin. We define the probability and severity of ruin (defective) distribution
function, G(u, x), as

G(w,x) = Pr{r<oo and U(T)>-x\U(0)=u}, x>0

and let g(u, x) be the associated density function. "
We consider in this section the classical model only, i.e k{t) = Aexp{-A?},

t > 0, however, extensions can be made. From Gerber et al (1987) we find the
transform

g(isr,x) =
?-isxfx°°eisu[l-P(u)]du

We write here g(is;x) to emphasize that the transform is obtained over the
argument u. We can rewrite the formula as

g(is;x) =
COS(SJC)C(x,s) + sin(s.x)>S'(jc,1s) - sin(sx)C(x,s)]

ca-C(0,s)-iS(0,s)
AC-BD
C2 + D2 C2 + D2

where C(x,s) = f™cos(su) [\-P(u)]du, S(x,s) = fx
xsin(su) [\-P(u)]du, A = cos

(sx)C(x, s) + sin(sx)S(x, s), B = cos(sx)S(x, s)-sin(sx)C(.x, s), C-clX- C(0,5)
and D = S(0, s).
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Knowing that g(o°, x) = 0 we get applying Property 2 that

-^ g (is; x)=-isg (is ;x)-g(0,x)

so that

From here we get G(u,x)- fQ
xg(u,t)dt.

In what follows we consider an example and compute figures for G(u,x),
when we have Gamma(2,2) claim amounts.

Example 7 Gamma (2,2) claim amounts

For a general Gamma(2,/0 we get for C(x, s) and S(x, s):

C(x,s) = -

x)sin(sx) + s(3B2 + s2 + B x + Bs2x)cos(sx)
S(x,s)= ^ — ^ V ^ J

Putting p = 2 we get using the methods of Gerber et al (1987) that g(u, x) =
4 e~2x(-djZ1" + d2e'2"), where r, = -0.1225022, r2 = -2.9684067 and #; = (-1)/ (4x
+ 4 + (2*+l)ry) /(r2-r ,) ,y=l,2.

Table 7 show figures for G(M, X) with x = 1,2. The key for this table is as in
the previous examples.

CONCLUDING REMARKS

The technique introduced in this paper provides an easy way to obtain figures
for ruin problems not only in the traditional model but also for other models,
shown here in the case of an Erlang(2) risk model. In all the examples where
exact figures are available, we get good approximation figures for the prob-
lems presented, up to reasonably high values of the initial surplus. Where
exact values are not available we compare figures with the ones from existing
methods which are believed to be producing good figures. With very high
values of u the numerical integration becomes unstable in contrast with the
method by Usabel (2001). Here, we were mostly concerned in showing a
simple method that could obtain relevant figures in many cases. Besides, we
extended this method to other models.
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TABLE 7

G(u, x) FOR EXPONENTIAL(1)-GAMMA(2,2)MODEL

«

0
1
2
3
4
5
10
20
30
40
50

(1)

0.66303
0.62874
0.55842
0.49414
0.43718
0.38677
0.20963
0.06158
0.01809
0.00531
0.00156

x=l

(2)

0.66303
0.62874
0.55842
0.49414
0.43718
0.38677
0.20963
0.06158
0.01809
0.00531
0.00156

d)/(2)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
1.00000

(1)

0.85914
0.77778
0.68902
0.60962
0.53934
0.47715
0.25861
0.07597
0.02232
0.00656
0.00193

x = 2

(2)

0.85914
0.77778
0.68902
0.60962
0.53934
0.47715
0.25861
0.07597
0.02232
0.00656
0.00193

(l)/(2)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999

Most of the work in ruin theory has been centred on the classical compound
Poisson model. In recent times concerns started to include other renewal
models, which allow contagion between the claims. We show in Section 4 that
our method can also compute figures for some kind of these models, namely
the Erlang(2,/7). It depends on having an expression for y/' (is) (for Section 5,

~-j—g(is;x), for other problems a corresponding formula). Dickson (1998) shows

that we can get these expressions for Erlang(w, (J), where n is a positive integer.
We have shown two of these cases, namely for n = 1,2. The procedures for
our problems, ultimate ruin probabilities or severity of ruin, will be similar
for other n.

Finally, an additional remark on our computational work. We have pro-
grammed all examples with Visual Basic. In a few cases we also produced
figures with Mathematica, in most of them for checking numbers only. Our
Visual Basic programs revealed to be quite fast and producing good figures.
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APPENDIX

1. Simpson's Rule

Let y =/(x) be a continuous function in a closed interval [a, b]. Once that
function is integrable in this interval, we can perform the numerical calcula-
tion of the corresponding integral using Simpson's Rule (SR):

fj(x)dx ~ ^-[M + 4f(m) + f{b)} - {-^f fv\c), (Al)

where m = (a + b)/2 is the midpoint of the interval and c is another point of [a, b].
The General Simpson's Rule (GSR) generalizes the above expression consid-
ering a subdivision of the integrand interval into 2« equal parts, giving

+ f(b)\ (A2)
J

We have considered fk =f(a + kh) and h = (b-a)l In. The absolute error com-
mitted using (A2) is not greater than a -'
of the interval [a, b].

2. Dicotomic Approach

/((v)(i/), where d is a certain point

Consider a subinterval [ak, bk] a [a, b] and its midpoint mk. Using GSR eval-
uate the following three integrals:

Ik=fbkf(x)dx, Lk=fmkf(x)dx and Rk= fk f(x)dx.
J ak •>ak •> mk

If | Ik - Lk - Rk | > ek, where sk is the maximum error admitted for a subdivision
of order k, we take a new subdivision of the left-hand half interval [ak, mk],
which will be the interval [ak+l, bk+l] for a new iteration. This procedure must
be repeated until the relation \ln-Ln-Rn\<sn holds for some order n>k.
At that point no more subdivisions of this interval are needed and /„ should
be considered as a parcel of the original integral. Once determined the value
of the left-hand side of any interval, it is necessary to evaluate the integral of
the right-hand side of the same interval.

The algorithm is simple but we must record that portion of the original
interval that we are considering per iteration. This can be done by a binary
tree where each node (an interval) has two sub-nodes: the left son correspond-
ing to the left-hand subinterval and the right son to the right-hand subinter-
val. The root of the tree is the original interval with which the algorithm must
start and the leaves are the sub-intervals that we must take into account to get
the final value of the integral.
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