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SUMMARY

Phenomenological and mechanistic models are widely used to assist resource planning for
pandemics and emerging infections. We conducted a systematic review, to compare methods and
outputs of published phenomenological and mechanistic modelling studies pertaining to the
2013–2016 Ebola virus disease (EVD) epidemics in four West African countries – Sierra Leone,
Liberia, Guinea and Nigeria. We searched Pubmed, Embase and Scopus databases for relevant
English language publications up to December 2015. Of the 874 articles identified, 41 met our
inclusion criteria. We evaluated these selected studies based on: the sources of the case data used,
and modelling approaches, compartments used, population mixing assumptions, model fitting
and calibration approaches, sensitivity analysis used and data bias considerations. We synthesised
results of the estimated epidemiological parameters: basic reproductive number (R0), serial
interval, latent period, infectious period and case fatality rate, and examined their relationships.
The median of the estimated mean R0 values were between 1·30 and 1·84 in Sierra Leone,
Liberia and Guinea. Much higher R0 value of 9·01 was described for Nigeria. We investigated
several issues with uncertainty around EVD modes of transmission, and unknown observation
biases from early reported case data. We found that epidemic models offered R0 mean estimates
which are country-specific, but these estimates are not associating with the use of several key
disease parameters within the plausible ranges. We find simple models generally yielded similar
estimates of R0 compared with more complex models. Models that accounted for data
uncertainty issues have offered a higher case forecast compared with actual case observation.
Simple model which offers transparency to public health policy makers could play a critical role
for advising rapid policy decisions under an epidemic emergency.
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INTRODUCTION

The largest Ebola virus disease (EVD) epidemic in his-
tory began in Guinea in December 2013. As of 30
March 2016, the EVD epidemic resulted in over
28 600 cases and 11 300 fatalities mainly in Guinea,
Liberia and Sierra Leone [1]. The most recent reported
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case was reported in Liberia in March 2016 and WHO
has warned that we may find new flare-ups in the
affected countries [2]. With over 17 000 survivors in
West Africa and chronic persistence of virus in some
survivors [3], such flare ups have already occurred
and may continue to be a risk. During an epidemic
emergency, it is important to provide scientific justifi-
cation for rapid policy decisions. Early epidemic
models can frame policy decisions by providing epi-
demiological characteristics to aid effective disease
control – they allow policy makers and scientists to
characterise disease epidemiology parameters (such
as basic reproduction number (R0), serial interval,
infectious period) based on limited/early disease sur-
veillance data, which can assist in understanding
how a disease spreads during the early phase of an
outbreak.

For previous EVD outbreaks in the Democratic
Republic ofCongo (1995) andUganda (2000),modelling
approaches consisted of both traditional Susceptible–
(Exposed)–Infected–Removedmodels andmore context-
specific compartment models (which account for the
hospital transmissions and post-death transmissions).
Modelling these hospital and post-death transmissions
can provide justification for intervention effects in
different transmission contexts [4]. Choice of these
modelling approaches may impact modelling outputs,
for example, a study [5] revealed that estimates of R0

tend to be underestimated if post-death transmission
dynamics are neglected. For the current EVD epidemic,
both traditional and context-specific approaches have
also been employed; however, the impact of compart-
ment model designs on epidemic parameters estimation
and trajectory projectionhave not yet been systematically
evaluated – this is one motivation for our review.

Another motivating factor of this research is to
compare outputs of models that do or do not account
for underreporting – which is an issue that is present
during most outbreaks, but was thought to be a con-
siderably significant issue during the EVD epidemic,
due to a number of reasons [6]. Firstly, EVD cases
can be asymptomatic [7, 8]. Secondly, West Africa is
one of the poorest regions of the world, their health
systems, let alone their surveillance capabilities are
severely limited – in a study from the Centers of
Disease Control and Prevention (CDC), timeliness
of reporting was found to be particularly lacking dur-
ing the early phases of the EVD outbreak [9]. Lastly, a
prevailing distrust of Western medicine, particularly in
more rural regions, has been thought to deter cases
from presenting to health facilities [10]. This review

systematically compares models, which have or have
not accounted for underreporting.

There aremany difficulties which are inherent in early
epidemic models, such as uncertainty regarding disease
epidemiology, modes of transmission and unknown
rates of underreporting. In this study, we build on the
work of a recently published EVD modelling review
[11] – we systematically evaluate different modelling
methods used to study the current EVD outbreak in
West Africa and their outputs on key disease para-
meters, focusing on investigating the impact of using
models with different compartmental structures and
which account for underreporting. Our objective is to
provide directions for futuremodelling efforts in settings
where early disease outbreak data may be limited.

METHODS

A systematic review was conducted in compliance
with the preferred reporting items for systematic
review and meta-analyses (PRISMA) checklist
(http://www.prisma-statement.org/) [12].

Search strategy

Three online databases (Pubmed, Embase and
Scopus) were searched for relevant literature pub-
lished between January 2014 and December 2015.
We only focused on Ebola modelling studies pub-
lished in about 2 years of the start of the outbreak
as early publications provided insight and direction
to global and national emerging diseases response
and control decisions. These databases cover index
international journals in the multi-disciplinary field
of: public health, biomedical and pharmaceutical
research, clinical and experimental research, health
policy and management, and scientific, technical and
social science research. For each database, we con-
ducted a search with the following search keys:
‘ebola’ AND ‘model*’. All searches included article
title, abstract and keywords. The search was limited
to studies in the English language. The detailed search
strategy was slightly adjusted according to the specific
database settings and was reported in Supplementary
Document 1. In order to minimise the chance of miss-
ing references, we carried out hand search of key
Ebola modelling papers from internet and all the
included studies were cross-checked with the papers
identified from our initial scoping review. The key lit-
erature search was carried out on 1 June 2016 and the
final search was carried out on 18 November 2016.
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Inclusion and exclusion criteria

Studies were included if they aimed: (1) to project the
trajectory of disease outbreak or (2) to provide early
epidemiological parameters estimation of Ebola
(including R0, serial interval, latent period, infectious
period and case fatality rate) using modelling meth-
ods. Only those studies using the current EVD out-
break data were included. Studies were excluded if
the models presented focused only on evaluating inter-
vention strategies without offering parameter esti-
mates or trajectory projection – evaluating such
models was determined to be outside the scope of
this review. Studies pertaining to EVD outbreaks
prior to 2014 were also excluded. Narrative studies,
response policy studies, process model studies, phylo-
genetic and biological or genetic modelling studies
were also excluded. We included all relevant model-
ling studies based on the above criteria and systemat-
ically registered key features and attributes associated
with modelling techniques, design and major assump-
tions taken for epidemic estimation and projection.

Selection of studies

We conducted a two-step screening process. In the first
screening, titles and abstracts were independently
screened by two reviewers – any discrepancies were
resolved by discussion and/or referring to the full-text.
In the second screening, remaining studies were included
or excluded based on contents within the full-text.

Once all studies were identified, we collected quan-
titative and qualitative information pertaining to the
model presented in each study. We focused on synthe-
sising study outcomes that: (1) account for data uncer-
tainty and (2) used hospitalisation and/or funeral
compartments. We also summarised and tabulated
qualitative descriptions of what questions the model
aims to answer, the country of interest, type of
model presented, source and date of the case data
and model fitting. We quantitatively analysed esti-
mates of key epidemiological parameters, including
the R0, serial interval, latency period, infectious period
and case fatality rate. We then synthesised the esti-
mated R0 by country, use of compartment, consider-
ation of underreporting; and then investigated the
relationship between the R0 estimation with other
parameters. Summary statistics, boxplots, scatterplots,
non-parametric significance tests (including Mood’s
median test, Kruskal–Wallis test and Spearman test)
were used, where appropriate. All of the analysis

was performed using an R version 3.3·1 64 bit plat-
form with the packages ‘plotrix’ and ‘zoo’.

RESULTS

Definition of modelling terms used in this study is
listed in Table 1. Phenomenological models are recog-
nised methods (such as summary statistics, regression
models and predictive models), which offer computa-
tional solutions to determine values of key disease epi-
demiological characteristics. Mechanistic models
describe the transmission of infectious diseases by
categorising host populations into various stages of
infection. The R0 is an important parameter which
allows epidemiologists and modellers to quantify
how easily a disease can spread, and how effective
interventions need to be in order to achieve disease
control. R0 is defined as the expected number of sec-
ondary cases generated by one infected individual
over the course of their infection in a fully susceptible
population [13] (i.e. before interventions are put in
place or immunity develops).

Of the 874 studies identified through the online
database search, 496 duplicates were removed. After
preliminary title and abstract screening, 351 studies
were excluded. Seventeen were excluded through a
second screening of the full-text of articles, based on
the exclusion criteria. Four additional studies were
identified through hand-searching. Finally, 41 studies
met the inclusion criteria and were included in the
review (see Figure 1).

From the 41 studies we selected for our review, 16
studies were published in 2014 and 25 were published
in 2015. Thirty-five studies aimed for EVD parameter
estimation, 27 offered trajectory projection and 21 stud-
ies provided both parameter estimation and trajectory
projection. There are 11 phenomenological modelling
studies, 29 mechanistic modelling studies and one study
employed both modelling methods. Among these 41
studies, 14 accounted for data uncertainty or data bias
issues. There are five homogeneous models and 25 of
the reviewed studies incorporated heterogeneous mixing
assumption.Among those heterogeneousmixing studies,
17 considered a hospitalised compartment, 16 considered
a funeral compartment and 12 incorporated both hospi-
talised and funeral compartments.

Overview of EVD modelling studies

Tables 2–4 summarised our descriptive results by
research aim. Thirty-one out of the 41 included studies
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have specified referencing case data from World
Health Organization (WHO) [1]. The WHO source
provided cumulative numbers of reported confirmed,
probable and suspected cases and deaths. Other com-
monly used data include: National Ministry of Health
data from the affected countries (such as [17]), CDC
Morbidity and Mortality Weekly Reports [18] and/
or synthesised data from public data repositories
(such as Caitlin Rivers of Virginia Polytechnic
Institute [19] and Virology Down Under blog [20]).
Demographic and population data were taken from
sources such as the Central Intelligence Agency
(CIA) factbook [21], United Nation (UN) reports
[22] and national census. In many studies, model para-
meters were derived from models of past Ebola
outbreaks [23, 24] and/or early published models of
the current Ebola epidemic [9, 25]. For instance,

Althaus’ study in 2014 [26] adopted estimates of incu-
bation and infectious periods from the 1995 EVD out-
break in Congo, and the team published a study for
Nigeria in 2015 [27] that incorporated the estimated
incubation period from a 1976 EVD outbreak in
Zaire.

When developing an epidemic model with more
in-depth detailed compartment structures, many
state parameters (i.e. parameters defining the transi-
tion between infection stages) will be required and
calibrated. For example, Barbarossa et al. [28] created
a model with seven compartments (including hospita-
lised and buried) and estimated state parameters based
on the outcomes of a range of earlier EVD modelling
studies [24, 29–31]. It is noted that model parameters
should be estimated with caution as they are prone to
biases, and the intended prediction outcomes can be

Table 1. Modelling terms definitions

Term Definition

Phenomenological
models

Mathematical/statistical expressions that relate different epidemic observations to each other, where
the relationship seeks to best describe the data. Descriptive statistics or regression-based models are
some of the examples

Mechanistic models The nature of disease spread relationship is compartmentalised by observed biological processes that
are thought to have given rise to the data. The biological possesses could be parameterised and that
could be inferred independently from observational outbreak data. These models can be
implemented by system-level perspective, such as ordinary differential equations (ODEs), or
stochastic models or agent-based models

Homogenous mixing Homogeneous model assumes that all hosts have identical rate of disease-causing contacts. The
simple susceptible-(exposed)-infected-removed model without consideration of additional
population heterogeneity are considered as homogeneous mixing in this study

Heterogeneous mixing Heterogeneous model sub-divides population into different groups, depending upon characteristics
that may influence the risk of receiving and transmitting an infection [14]. Models considering any
host heterogeneities or included additional compartments (such as hospital and/or funeral) are
considered as heterogeneous mixing here

Basic reproduction
number

Basic reproduction number is the expected number of secondary cases generated by one infected
individual over the course of their infection in a fully susceptible population [13] (i.e. before
interventions are put in place or immunity develops)

Serial interval Serial interval is defined as the time between illness onset in the primary case to illness onset in the
secondary case [15]. Understanding serial interval and their moment generating function would
help shaping the relationship between epidemic growth rates and reproductive numbers [16]

Latency period Latency period is the time between infected individual to become infectious. This metric can be
converted to the rate at which an exposed becomes infective as a modelling parameter for those
models considering exposed stage

Infectious period Infectious period is defined as the period that an infected person transmits disease to a susceptible
person. The reciprocal of infectious period determines the removal/recovery rate for epidemic
modelling

Case fatality rate Case fatality rate is the proportion of deaths of cases over the course of the disease
Underreporting Underreporting is interpreted as surveillance systems that fail to reflect all infection cases in a given

population. Most of the modern surveillance systems are affected by a degree of underestimation of
the true incidence of disease [6] due to asymptomatic cases, inability of disease recognition and
detection

Compartment model Compartment model is a type of modelling methods used for mimicking the way how a disease is
transmitted among stages of a population system
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highly sensitive to small changes in some parameters.
Twenty-eight of the review studies have carried out
sensitivity analysis (so-called stress tests) to examine
the robustness of modelling outcomes.

Synthesised results: estimates of epidemiological
parameters

Thirty-five studies offer epidemiological parameter esti-
mation and 29 of them estimated the R0. We evaluated
the estimated mean of R0 by country, compartment con-
siderationandaccounting forunderreporting, as shown in
Figure 2 and reported the details values in Supplementary
Document 2 Tables S1–S3. The median of the R0 mean
estimate for the ongoing epidemic (overall) is 1·78 (inter-
quartile range: 1·44, 1·80), 1·30 (interquartile range: 1·24,
1·51) for Guinea, 1·84 (interquartile range: 1·69, 2·10) for
Liberia, 1·70 (interquartile range: 1·34, 2·05) for Sierra
Leone and 9·01 for Nigeria. Kruskal–Wallis non-
parametric test result showed that the estimated R0 do
not have identical data distributions across the included
countries (P value40·05) when we considered Nigerian
estimates – which had much higher R0 estimate compar-
ing with other countries. We performed additional
Kruskal–Wallis test (without considering Nigeria esti-
mate) and showed that there is an identical data distribu-
tions across other included countries (We cannot reject
null hypothesis).Whenwe performed additional pairwise
Mood’s median tests between each pair of countries

(without Nigeria), we found the median values of esti-
mated R0 are generally not significantly different (apart
from the pair between Guinea and Liberia). The results
of additional Kruskal–Wallis test and pairwise tests
between each pair of countries were reported in
Supplementary Document 1 Figure S3. A trend line indi-
cates the potential temporal patterns of the reported R0

estimation from the bottom-right panel of Figure 2 and
there is a slight increasing trend of R0 when more recent
data were used in each study.

The median of R0 values of 1·90 (interquartile
range: 1·90, 2·10) is found for those models account-
ing for underreporting and 1·71 (interquartile range:
1·40, 1·96) for those not accounting for underreport-
ing. The median of the estimated mean R0 values is
reported as 1·49, 1·80, 1·78 and 1·73 for those models,
which considered compartments with hospital,
funeral, hospital and funeral, and without hospital
and funeral stages, respectively. The Kruskal–Wallis
and Mood’s median test results revealed that we can-
not reject the null hypotheses – i.e. the estimated mean
of R0 remains insignificantly different, regardless of
the model’s consideration of compartments (with hos-
pital and/or funeral) or accounting for underreporting.
The above results yield the same when we do not con-
sider the Nigerian study data. The results were
reported in Supplementary Document 1 Figure S3.

We also synthesised the values of other key model-
ling parameters, including serial interval, latency

Fig. 1. PRISMA flow diagram of the selection process for including studies in review.
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Table 2. An overview of modelling studies of Ebola and study designs (Research aim: Parameter estimation)

References Dataset/factors

Description of
modelling
approaches

Compartments, if
applicable

Assumption of
population
mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis,
if applicable

Description of
account for data
bias, if applicable

Agusto et al.
[32]

Case data form WHO
reports [1].
Population data
from Guinea census

Compartmental
mathematical
model which
stratifies
population into
those in the
community and
those in healthcare
facilities and
incorporates
disease
transmission
features in such
units

Susceptible–exposed–
symptomatic–
recovered–
deceased–cremated
(SEIRDC)

Model divided
population into
individuals from
the community
and individuals
who work in
healthcare
settings and
subdivided
individuals from
the community
into those who
visit healthcare
settings and the
rest of the public

Some model parameters
were fitted using data
from other study.
Threshold quantity R0 is
estimated using the
Ebola data for Guinea
and the demographic
parameter

R0 was the response
function of
sensitivity analysis
of other model
parameters.
partial-rank
correlation
coefficients
(PRCCs) was used

NA

Ajelli
et al. [33]

Data consisted of
routine health data
and medical records
of the outbreak in the
Pukehun District.
Also analysed
registers of two
Ebola holding
centres, contact
tracing forms and
interviewed
healthcare workers

Reported summary
statistics of key
epidemiological
parameters,
generate time series
plots and
developed
transmission chain
for the outbreak
using outbreak
data

NA NA Fitted distribution
number of secondary
cases using negative
binomial model

NA NA

Althaus [26] Case data from WHO
reports [1].
Parameters from
previous Ebola
outbreaks

Transmission model
with a set of ODEs
and used
maximum-
likelihood
estimates to
determine R0

Susceptible–exposed–
infectious–recovered
(SEIR)

Assumed
homogeneous
mixing

Fitted the model to the
reported data of infected
cases and deaths in
Guinea, Sierra Leone
and Liberia and
provided the
maximum-likelihood
estimates of R0

NA NA
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Table 2 (cont.)

References Dataset/factors

Description of
modelling
approaches

Compartments, if
applicable

Assumption of
population
mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis,
if applicable

Description of
account for data
bias, if applicable

Browne
et al. [34]

Case data from WHO
reports [1]

Deterministic model
that traces back to
transmissions, and
incorporate disease
traits and control
together

Susceptible–exposed–
infectious
(hospitalised/
reported)– infectious
(not hospitalised
and unreported)–
cumulative
hospitalised/
reported

Modelled key
features of
contact tracing
and
hospitalisation

NA Studied the effects
of model
parameters on the
effective
reproduction
number using LHS
and PRCC

NA

Gomes et al.
[29]

Case data from WHO
reports [1].
Population data
from ‘Gridded
Population of the
World’. Air travel
data from the
International Air
Transport
Association and
Official Airline
Guide. Mobility data
from administrative
regions

Used the Global
Epidemic and
Mobility Model to
generate stochastic,
individual based
simulations of
EVD spread
worldwide

Susceptible–exposed–
infectious–
hospitalised–death
but not yet buried–
removed (SEIHFR)

Model included
hospitalised and
funeral
compartment
and accounted
for different
population sizes
around the
world, including
different traffic
flows

Multi-model inference
approach was used to
calibrate on data from
official WHO data. Also
performed Latin
hypercube sampling
(LHS) of the parameter
space

Performed
sensitivity analysis
assuming 80%
airline traffic
reduction from
and to West
African countries
affected by EVD
and 50%
underreporting

Tested on 50%
underreporting
assumption

Hsieh [35] Case data from
WHO [1]

Developed
mathematical
model, the
Richards model, to
predict the
cumulative number
of reported cases of
infections using
variables, such as
final case number,
per capita growth
rate, the exponent
of deviation of the
cumulative case
curve and turning
point of the
epidemic

NA NA Fitted the model to the
Ebola data during
various time intervals

NA NA
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Table 2 (cont.)

References Dataset/factors

Description of
modelling
approaches

Compartments, if
applicable

Assumption of
population
mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis,
if applicable

Description of
account for data
bias, if applicable

Khan et al.
[36]

WHO situation
reports [1], corrected
case data from CDC,
parameters taken
from other studies

Used a deterministic
ODE transmission
model which
differentiates
high-risk (e.g.
health-workers)
and low-risk
populations.
Estimated the
effective contact
rate using an
ordinary
least-squares
estimation

Susceptible–exposed–
infected–
hospitalised–
recovered (SEIHR)

Model
differentiated
high-risk and
low-risk
populations

Ordinary least-squares
(OLS) estimation was
used to obtain optimal
value of transmission
rate and then estimate R0

NA Both raw reported
data and corrected
data (using
corrected CDC
data) were checked

Kiskowski
[37]

Case data from
Wikipedia, WHO
reports [1].
Incubation and
infectious periods
based on previous
modelling studies

Used a stochastic
network model
with three levels of
community
structure
(households and
communities of
households within
a country
population) to
model SEIR
transmission
dynamics for the
EVD spread

Susceptible–exposed–
infectious–recovered
(SEIR)

Used three levels
of community
structure in the
stochastic model,
including
(households and
communities of
households
within a country
population)

A comparison of general
R-square coefficients was
used to identify
parameter values
providing a good fit to
the empirical data. R was
verified by changing each
parameter one-at-a-time

Local sensitivity
analysis was
carried out to
conclude that R
values were locally
optimised for the
given choice of
other parameter
values

NA

Kucharski
et al. [38]

Case data from WHO
[1] and Sierra Leone
Ministry of Health
[17]

Developed ODE
model with the
consideration of
hospitalisation in
various healthcare
units and those
who are not
ascertained to
infection

Susceptible–exposed–
infectious
(ascertained)–
infectious (not
ascertained)–
healthcare in Ebola
Holding Centers
(EHC)/Community
Care Center (CCC)–
Ebola Treatment
Unit (ETU)–
removed
(SEIIHHR)

Assumed
individuals who
are ascertained
initially seek
healthcare in
EHCs/CCCs. If
no beds are
available,
individuals will
be sent to ETUs

Fitted the model to case
data reported in each
district of Sierra Leone
using Bayesian approach

Sensitivity analysis
were performed to
examine the effect
of varying
percentage of case
ascertainment on
infection cases

Incorporated a
compartment that
consider a
proportion of
infection cases are
not ascertained
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Table 2 (cont.)

References Dataset/factors

Description of
modelling
approaches

Compartments, if
applicable

Assumption of
population
mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis,
if applicable

Description of
account for data
bias, if applicable

Li et al. [39] Case data from WHO
reports [1].
Population data
from WHO website.
Birth data from CIA
factbook [21] and
Wikipedia. Death
rate from Wikipedia

Developed
differential
equations model,
using least-squares
method for
parameters
estimation. Used
partial rank
correlation
coefficients for
uncertainty and
sensitivity analysis
of R0

Susceptible–exposed–
infectious–treated/
recovered (SEIR)

Assumed
homogeneous
mixing

Fitted the observed
variables with onset and
death data of EVD by
least-squares method

Sensitivity analysis
of R0 were
performed by
examining seven
parameters with
PRCCs

NA

Merler et al.
[40]

Demographic Health
Survey data, Case
data from Liberian
Ministry of Health &
Social Welfare
Situation Reports
and WHO situation
reports [1],
Household size data
from Demographic
Health Survey data.
Population density
Population of the
World. Locations of
hospitals and clinics
from
OpenStreetMap.
Parameters from
other studies

A spatial
agent-based model
that matched
population density
estimates id
developed.Markov
chain Monte Carlo
is used to calibrate
the model

Susceptible–exposed–
infectious–funeral–
recovered (SEIFR)

Model accounts
for differences in
transmission in
households,
general
community,
hospitals and
funerals

Matching an early report
from WHO, Markov
chain Monte Carlo
approach is used to
explore the likelihood of
the recorded number of
deaths in healthcare
workers and in the
general population based
on official reports.
Random-walk
Metropolis-Hastings
sampling was used to
explore the parameter
space

Sensitivity analyses
were carried out
with respect to
main
epidemiological
parameters, on the
transmission in the
general
community and on
transmission in
hospitals

Considered a
under-reporting
scenario in which
the study still
assumed 100%
reporting in
healthcare workers
but a 50%
reporting in the
general population
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Table 2 (cont.)

References Dataset/factors

Description of
modelling
approaches

Compartments, if
applicable

Assumption of
population
mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis,
if applicable

Description of
account for data
bias, if applicable

Valdez et al.
[41]

Case data from
WHO [1]

Developed
stochastic model
with 10
compartmental
states to consider
various
hospitalisation and
dead groups using
Gillespie algorithm

Susceptible–exposed–
infected but not
infectious–infected–
hospitalised–
recovered-dead
(SEIHRF)

Considered
infected and
hospitalised
individuals
according to
their fate. For
instance, those
who are infected,
will be
hospitalised, and
will die as one
class and those
who are infected,
won’t be
hospitalised, and
will die as class
another

Calibrated the model with
the data by the
maximum-likelihood
method. Computed the
least-square values of the
model outcomes based
on a set of parameters
generated using LHS
from plausible parameter
space

Sensitivity analyses
were performed to
examine the
robustness of the
estimated values of
the transmission
coefficients when
parameters change

NA

Weitz and
Dushoff [5]

Case data from the
Caitlin Rivers github
website [19]

Transmission model
using ensemble
adjustment
Kalman filter
(EAKF) to model
a population of
deceased infectious
individuals

Susceptible–exposed–
infected–
contaminated
deceased–isolated
infectious–removed
(SEICIIR)

Modelling
containment and
isolation
compartments

Parameters estimated
using a least-squares
curve fitting algorithm to
obtain a choice of
parameters with
relatively accurate fit

NA NA

Yamin et al.
[42]

Model parameters
from other studies,
Liberia Institute of
Statistics and
Geo-Information
Services. Incidence
and case fatality
reports, contact
tracing data obtained
from Ministry of
Health and Social
Welfare, Republic of
Liberia

Transmission model
that considers three
sequential phases
including
incubation, early
symptomatic, and
late symptomatic
and accounts for
viral load
differences in
survivors and
non-survivors

Incubation-early
symptomatic-late
symptomatic

Accounted for
viral load
differences in
survivors and
non-survivors

Sampling possible ranges
of epidemiological
parameters to generate
contact distribution for
contact data. The
number of secondary
cases arose was
calculated

NA NA
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Table 3. An overview of modelling studies of Ebola and study designs (Research aim: Trajectory prediction)

References Dataset/Factors

Description of
Modelling
Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration
approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data
bias, if applicable

Area et al. [43] Case data from
WHO [1]

Developed classical
differential
equations and
fractional SEIR
model to predict the
outbreak trajectory

Susceptible–exposed–
infectious–removed
(SEIR)

Assumed
homogeneous
mixing

Fitted models with
the real data and
obtained
parameters values
using l^2 norm

NA NA

Bellan et al. [44] Unspecified Compared the
projections of two
simple models (with
and without
asymptomatic
infection) based on
the Ebola epidemic
in Liberia

NA NA NA NA Modelled
scenarios that
does not account
for asymptomatic
infections and
account for the
presence of
asymoptomic
infection

Dong et al. [45] Case data from
WHO [1]

Ebola case prediction
was obtained by a
SEIIRF model with
the consideration of
post-death and
hospitalisation
compartments

Susceptible–exposed–
infected–recovered–
hospitalised–buried
(SEIIRHF)

Considered those who
have died and are in
the process of being
buried and number
of people in hospital
who develop to first
stage or second stage
of infection

Fitted case
prediction curve
with real data
both in total cases
and death cases

NA NA

Drake et al. [46] Case data from
WHO [1], Liberia
Ministry of
Health or United
Nations Office
for the
Coordination of
Humanitarian
Affairs
(UN-OCHA)

Developed a
multi-type branching
process model that
incorporates key
heterogeneities and
time-varying
parameters to mimic
changing human
behaviour and
controls in Liberia.
Focused on the
numbers of new
infections caused by
each case
considering offspring
distributions

Two generations of
infection in a
multi-type branching
process model

Accounted for
subpopulation
differences,
including hospital
treatment vs.
community care,
transmission at
funerals, and
scenario-dependent
transmission risk
differences during
care-giving

Fitted ensemble
model from
plausible
parameters with
the case data in
Liberia and also
fitted outcome to
infection
generations in
HCWs and in the
community

Investigated the
sensitivity of the
model to parameters
using LHS over a
much wider range of
the least-squares fit
for each parameter

Assumed
under-reporting
by a factor of 2·5
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Table 3 (cont.)

References Dataset/Factors

Description of
Modelling
Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration
approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data
bias, if applicable

Fast et al. [47] Case data from the
Liberian Ministry
of Health and
Social welfare ad
local county
health offices.
ETU admissions
data from
Github. Social
mobilisation data
from WHO and
UNICEF reports.
Parameters from
UNICEF reports,
WHO reports [1].
Population data
from Liberian
Institute of
Statistics and
Geo-information
Services

Transmission model
based on contact
network. Accounts
for change in
attitudes that
underlie behaviour
change by simulating
the progress of the
EVD epidemic with
and without
population
behaviour change,
then comparing
scenarios with
observed data

Susceptible-exposed-
infected-
hospitalised-buried-
unburied fatality-
recovered
(SEIHFCFBR)

Contact network
model considered
individuals as nodes
and disease-
spreading contacts as
edges.
Hospitalisation and
fatality components
were included

Model was fitted to
weekly cases in
Lofa County by
considering the
fitting metric of
mean absolute
error

NA The model
considered only
cases that sought
treatment or were
safely buried, but
modelled all cases

White et al. [48] Case data from
WHO [1] and
daily counts from
the public press
releases from the
Sierra Leonean
Ministry of
Health [17]

Developed
compartmental
model with six
compartments to
describe the
outbreaks in Sierra
Leone

Susceptible–exposed–
infectious (not yet
reported)–treated
(reported)–dead
(unreported)–
recovered
(reported)–dead
(reported)
(SEOTRDTRTD)

Considered infected
and hospitalised
individuals
according to their
reported status

Implemented an
ensemble
trajectory model
and generated a
matrix of
plausible
parameter values
to fit the model
for the first 56
days

NA Used 2·5
correction factor
estimated by the
CDC to correct
for
underreporting
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Table 4. An overview of modelling studies of Ebola and study designs (Research aims: Parameter estimation and Trajectory prediction)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Althaus et al. [27] Case data from
published reports.
Parameters from
previous EVD
outbreaks

Transmission model with
a set of ODEs and used
Maximum likelihood
estimates to determine
model parameters
(baseline transmission
rate, rate at which
control measures
reduce transmission,
case fatality rate)

SEIR Assumed homogeneous
mixing

Fitted a dynamic
transmission model to
data about reported
cases and deaths of
EVD during a small
urban outbreak in
Nigeria using
Maximum likelihood
methods

NA NA

Barbarossa et al.
[28]

Case data from WHO
reports [1]. Parameters
estimated from various
studies

Compartmental
population model
based on Legrand’s
study [24] that
distinguishes between
community and
hospitalised patients,
and recognises
importance of deceased
individuals who can
still transmit the virus
at burials

Susceptible–latent–
infectious–
hospitalised–dead–
buried–removed
(SEIHBDR)

Model divided infectious
population into those
who exist in the
community and those
who exist in hospitals,
and considered
post-death transmission

Fitted model outcomes
to the WHO reports for
weekly case incidence.
The data were fit with
piecewise exponential
curves

Studied the effects of
model parameters on
the basic reproduction
number and on the final
epidemic size. LHS is
used to generate a
representative sample
set of test parameters
from the ranges.
Focused mostly on the
sensitivity of the time of
intervention. PRCCs
analysis was reported

NA

Camacho et al.
[49]

Case data from Sierra
Leone Ministry of
Health and Sanitation
and WHO reports [1].
Data on ETCs, EHCs,
CCCs from The
Humanitarian Data
Exchange. Proportion
of symptomatic cases
from the UN for Ebola
Emergency Response
and the National
Emergency Response
Centre

Transmission model with
time-dependent
transmission rate,
accounting for
hospitalisation and
delay in case reporting

Susceptible–exposed1–
exposed2–infectious–
infectious
(hospitalisation)–
removed

Modelling individuals
progressed through
stages, including
hospitalisation
compartment

Fitted model to the time
series of weekly
reported cases using
Bayesian approach

Sensitivity analysis was
performed by taking
averaged posterior
distribution of R over a
period of Jan 2015

Assumed proportion
of symptomatic
cases reported at
60%, accounted for
the potential
variability in
accuracy of
reporting over time
and accounted for
over-dispersed
delay between onset
of symptoms and
notification of
reported cases

Chowell et al. [50] Case data from WHO
reports [1]

Logistic growth models
fitted with the minimal
amount of case data

NA NA Fitted logistic growth
models to the
cumulative number of
cases using
least-squares

NA NA
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Table 4 (cont.)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Evans and
Mammadov [51]

Case data fromWHO [1] Estimated the
reproduction numbers
for the total period of
epidemic and for
different consequent
time intervals using
simple linear model and
considered the average
infectious period as a
time-dependent
parameter

NA NA Fitted model outcome
with the cumulative
numbers of infected
cases and deaths using
global optimisation
algorithm DSO

NA NA

Fasina et al. [52] Case data from WHO
reports [1] and public
source

Simplified version of
Legrand’s model [24]
accounting for
contribution of
community and
healthcare settings by
adjusting baseline
transmission rates,
diagnostic rates, and
enhancement of
infection control
measures

Susceptible–exposed–
infectious–
hospitalised–removed
from isolation after
recovery or death
(SEIHP)

Model divided infectious
individuals into groups
in the community and
isolation in a hospital

Assessed the timing of
control interventions
on the size of the EVD
outbreak in Nigeria by
extensive simulation
runs

NA NA

Fisman and Tuite
[53]

Case data from WHO
reports [1], Caitlin
Rivers github website
[19]

Incidence Decay with
Exponential
Adjustment (IDEA)
model using maximum-
likelihood methods to
identify best-fit model
parameters

NA NA Used maximum-
likelihood methods to
identify the optimal,
best and worst case
model parameters for
the IDEA model

Sensitivity analysis were
performed by varying
vaccine efficacy

NA

Fisman et al. [54] Case data from Caitlin
Rivers github website
[19], Virologically-
confirmed case counts
by date from the
Virology Down Under
blog [20]

IDEA model, a two
parameter
mathematical model
describes exponential
growth simultaneous
decay, was used to
project epidemic curve
accounting for
incidence decay

NA NA Model was fitted to time
series data iteratively,
using a progressively
increasing number of
outbreak generations.
Best fit parameter
values are estimated by
fitting; – objective
function: minimise the
root mean-squared
distance between model
estimates and empirical
data

Checked separate models
to epidemic curves
derived from reported
deaths, curves based
only on virologically
confirmed cases, as well
as curves based on
varying assumptions
about case-
underreporting

Fitted separate
models using
assumptions about
case underreporting
(50% and 100%).
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Table 4 (cont.)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Lewnard et al.
[55]

Montserrado case data,
Number of Beds in
Ebola Treatment
Centres from Ministry
of Health and Social
Welfare, Liberia Ebola
situation reports. Total
population of
Montserrado from
Republic of Liberia
2008 Population and
Housing Census. Time
to burial, relative
transmission rate from
previous study.
International SOS
Hospital response and
isolation/treatment
centres also used to
determine Number of
Beds in ETCs

Developed a differential
equation model which
includes a latent
population (L), two
types of recovery
populations (R),
differentiation of
ascertained (A) cases
(which do not
contribute to
community
transmission)

SEIR Assumed homogeneous
mixing

Modelled cumulative
cases and mortality as a
Poisson-distributed
random variable.
Model calibrated by
sampling via Markov
Chain Monte Carlo
using a Metropolis–
Hastings acceptance
rule

NA Addressed
underreporting or
delays in reporting
by fitting model to
estimate the delay
between the
beginning of the
infectious period
and time of
ascertainment

Liu et al. [56] Case data fromWHO [1] Logistic, Gompertz,
Rosenzweg and
Richards models were
developed and
compared

NA NA Fitted the model using
precise estimates by
Bayes factors and
obtained model
parameters

NA NA

Meltzer et al. [9] Infectious period from
The World Bank
website, CDC website.
Likelihood of a patient
going to an ETU and
the number of days that
a patient in each patient
category would spend
in the hospital. Actual
number of beds in use –
from expert opinion

EbolaResponse, a
Markov chain model,
categorises patient
setting (i) hospitalised
facility, (ii) home/
community where there
is reduced disease
transmission, (iii) home
with no effective
isolation. Model also
accounts for under-
reporting of cases, and
allows for imported
cases or cases with no
known contacts

Susceptible–infected–
incubation–infectious–
infectious (burial)–
recovered

Considered those who
die but whose burial
provides risk for
onward transmission.
Patients were
categorised into
hospitalised in an Ebola
treatment unit (ETU)
or medical care facility,
home or in a
community setting and
home with no effective
isolation

Model parameters were
altered to produce a
matched outcome with
the reported cases to
date using goodness-of-
fit test

NA A underreporting
correction factor of
2·5 was used to
estimate future total
cases
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Table 4 (cont.)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Nishiura and
Chowell [57]

Case data form WHO
reports [1]

Mathematical modelling
considering time- and
country-specific
incidence data to
estimate reproductive
numbers, using
likelihood-based
method for real-time
parameter estimation.
Estimated daily
incidence curves by
fitting smoothing spline
to county-specific
cumulative curves of
cases

NA NA Fitted a smoothing
spline to cumulative
reported cases by
country and adjusted
the spline function
based on the daily
incidence time series

Sensitivity analyses of
reproduction number
were carried out by
varying the mean
generation time

NA

Pandey et al. [30] Demographic data from
the 2008 National,
Housing Census of
Liberia. Case data from
Liberian Ministry of
Health and Social
Welfare

Transmission model
takes into account
transmission within and
between the
community, hospitals
and funerals

Susceptible–latent–
infected–deceased–
recovered–buried
(SEIFRD)

Stratified
epidemiological class
into compartments that
correspond to the
general community,
hospitals and funerals

Used weighted least-
squares to fit the model
to case data. Converted
event-based stochastic
model to a discrete-time
difference equation
model. Then evaluated
the difference equation
model, fitted the output
to the data, and
calculated the best-fit
estimates of certain
parameters by
minimising the
weighted least-squares
difference between the
model output and the
data with the Quasi-
Newton algorithm

Done extensive
sensitivity analysis and
elasticity analysis on
intervention
effectiveness to
variation in
epidemiological
parameters. PRCCs
was used

Refitted model to
account for a range
of plausible
underreporting.
Varied the levels of
under-reporting of
Ebola cases in both
community and
hospitals, as well as
only communities

Rivers et al. [58] Case data from WHO
reports [1] and
Ministry of Health of
Liberia and Sierra
Leone (available online
from the Caitlin Rivers
github website) [19]

Compartmental model
adapted from
Legrand’s study [24];
stochastic model was
implemented using
Gillespie’s algorithm

Susceptible–exposed–
infectious–
hospitalised–funeral–
removed (SEIHFR)

Model accounted for
those who are
hospitalised and
deceased individuals
who can still transmit
virus

A deterministic version
of the model was fit and
validated to the current
outbreak data using
least-squares
optimisation. The last
15 days of reported
cases were given one
-quarter of the weight in
the model to
preferentially fit the
most recent data

NA NA
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Table 4 (cont.)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Shaman et al. [59] Case data from WHO
reports [1]

An ensemble
Susceptible–exposed–
infectious–recovered-X
(SEIRX)–EAKF
framework using
observations, dynamic
modelling and Bayesian
inference to generate
simulations

SEIRX Additional X
compartments were
introduced to describe
assimilation of
mortality and case
fatality rate

Fitted the model
variables and
parameters with weekly
observations and
allowed for time
varying of variables
and Rt parameters

Sensitivity analysis were
performed by changing
model structure, and
varying population size
and initial parameter
ranges

NA

Shen et al. [60] Case data fromWHO [1] Developed mathematical
ODE model to study
Ebola infection with
isolation, media
impact, post-death
transmission and
vaccination

Susceptible–vaccinated–
latent (undetectable)–
latent (detectable)–
infectious with
symptoms–isolated
individuals–dead but
have not been buried–
recovered

Considered those who
have died and are in the
process of being buried

Fitted the model to
epidemiological data of
reported cumulative
numbers of infected
cases and deaths

Examined the most
sensitive parameters to
the R0 and the final
epidemic size.
LHS and PRCC
methods were used

NA

Siettos et al. [61] Time series count data,
including cumulative
incidence, from WHO
reports. Cumulative
deaths data from
Wikipedia and WHO
case reports [1].
Demographic data
from United Nations
[22]

Agent-based model
using a small-world
network constructed
using the Watts &
Strogatz algorithm

Susceptible–exposed–
infected–dead (but not
yet buried)–dead (safely
buried)–removed

Agent-based model
considered individuals
interact through a
small-world network

Fitted two network
characteristics and four
epidemic rates with
reported outbreak data

NA NA

Towers et al. [62] Case data from
HealthMap, WHO
reports [1]

Fitted piecewise
exponential curves
along the data time
series to estimate the
evolving rate of
exponential rise (or
decline) in cases. SEIR
model developed to
estimate the temporal
patterns of the effective
reproduction number
for the outbreak in each
country

SEIR Assumed homogeneous
mixing

Fitted piecewise
exponential function to
estimate rates of
exponential rise from
the average daily EVD
incidence data

Sensitivity analyses were
performed using
LHS and PRCC
methods to test the
robustness of result
with respect to the exact
number of contiguous
points used for the fits

NA
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Table 4 (cont.)

Reference Dataset/Factors
Description of
Modelling Approaches

Compartments, if
applicable

Assumption of
population mixing, if
applicable

Model fitting and
calibration approach, if
applicable

Sensitivity analysis, if
applicable

Description of
account for data bias,
if applicable

Webb et al. [63] Case data from WHO
reports [1]. Parameters
from various studies

Differential equations
with compartments of
the epidemic
population that
simulated forward
projection of epidemic
using Continuous Time
Markov Chain. Model
incorporates contact
tracing of infectious
cases. Both
deterministic and
stochastic models were
run

SEICIIR Modelling containment
and isolation
compartments

Parameters estimated
using a least-squares
curve fitting algorithm
to obtain a choice of
parameters with
relatively accurate fit

Sensitivity analyses were
performed in two
contact tracing
parameters. The
contact tracing
parameters were tested
in sensitivity analysis

A ratio of unreported
case of 1·78 is used
for estimation

WHO [25] Case data from
investigation forms
from confirmed,
probable and suspected
EVD cases identified in
Guinea, Liberia,
Nigeria, and Sierra
Leone; also from
informal case reports;
data from diagnostic
laboratories; data from
burials

Projected case numbers
using two methods: (i)
regression method and
(ii) stochastic branching
process model

NA NA Epidemiological
parameters were fitted
with gamma
probability
distributions

Sensitivity analyses were
performed by assuming
different mean serial
intervals of 11 and 13
and including suspected
as well as confirmed
and probable cases in
the analysis

NA

WHO [64] Case data from viral
haemorrhagic fever
data collection forms,
treatment facilities,
contact tracing forms

Reported summary
statistics and prediction
outcomes through
simple model fitted to
data. Used weighted
average to estimate the
duration reported of the
observed means of the
distributions of
durations from
hospitalisation to
discharge and
hospitalisation to death

NA NA Gamma distributions
were fitted to confirmed
and probable cases

NA NA
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period, infectious period and case fatality rate, as
shown in Figure 3 (and Supplementary Document 1
Figure S4). The median of the mean serial interval is
14·35 days (interquartile range: 12·28, 16·35), latency
period is 9·70 days (interquartile range: 8·80, 10·38),
the infectious period is 7 days (interquartile range:
4·00, 10·00) and case fatality rate is 0·68 (interquartile
range: 0·48, 0·71) (the distributions by country are
shown in Figure 3).

We also studied the relationship between estimated
R0 and the used or estimated epidemiology para-
meters. Different studies may estimate/fine tune these
parameters or use previously published values when
producing R0 estimates. Figure 4 demonstrates the
relationship between the estimated R0 with different
serial interval, latency period, infectious period and
fatality rates (We also reported the same figure with-
out considering the Nigerian data in Supplementary
Document 1 Figure S4). Based on the results, we do
not observe any obvious trend of R0 estimates from
studies using/estimating various mean values of serial
interval, incubation period and infectious period. We
carried out correlation tests between these values
(for pairwise complete observations) and the
Spearman test results were insignificant (on overall
and per-country basis). The synthesised values of
reported epidemiological parameters in terms of R0,
serial interval, latency period, infectious period and
case fatality can be found in the Supplementary
Document 2 Table S2.

Synthesised results and figures stratified by model-
ling types, approaches, mixing assumptions and sensi-
tivity analyses are provided in Supplementary
Documents 1 Figures S5–S12 and Supplementary
Documents 2. We do not observe significant difference
in the distributions of R0 mean estimate from those
included studies did or did not carry out sensitivity ana-
lysis – as most sensitivity analyses are typically con-
ducted in orthogonal manner to estimate related
parameters. Furthermore, R0 is also sometime being
used as a response function of sensitivity analysis of
other model parameters. Additionally, 27 studies
offered epidemic trajectory projection and provided
estimated number of cases (without additional inter-
vention). Figure 5 shows the relationship between
model prediction to WHO case observation ratio
(matched with forecast target date) and account for
underreporting and consideration of compartment.
The median values of ratio between prediction and
observation are significantly different (P value 4 0·1)
in the pair between do and do not account for

underreporting [median ratio of those do account for
underreporting is 4·35 (interquartile range: 1·52,
15·03) and do not account for underreporting is 1·19
(interquartile range: 0·98, 1·53)]. However, we do not
observe a significant relationship in the pairs of differ-
ent compartments used. We also paired up models that
offered model prediction with and without considering
underreporting and carried out the same set of analysis.
The matched models analysis results are provided in
Supplementary Document 1 Figure S12. The synthe-
sised results of epidemic projection with indication of
accounting for data uncertainty and used of hospital-
isation and/or funeral compartments are also provided
in the Supplementary Document 2 Table S3.

DISCUSSION

We systematically reviewed 2014–2015 Ebola model-
ling studies, which provided epidemiological insights
to the current Ebola and future outbreaks. We evalu-
ated the selected studies based on the sources of the
case data used, and modelling approaches by model-
ling aim and we further synthesised the reported R0

results and the distributions of key epidemiological
parameters based on compartment designs, and con-
sideration of underreporting. We found that epidemic
models offered R0 mean estimates for this EVD are
country-specific, but these are not associating with
several key disease parameters, compartment designs
and accounting for underreporting.

In this EVD outbreak, we noticed a significantly dif-
ferent relationship between the contexts (i.e. the coun-
try of interest) with estimations in R0 (particularly
with regards to Nigeria, which had a much higher R0

estimate). We only observed differences in the values
of estimated/used serial interval, latency period, infec-
tious period and case fatality rates by country but the
median differences are not statistically significant.

We generally did not observe any apparent system-
atic pattern in the distribution of estimated R0 when
specifying different compartments. This may be due
to one fundamental issue that models are generally
fitted based on observed epidemiology data from the
same original sources and other associated model para-
meters within the model could be calibrated altogether
to achieve model fitting. This also coincides with our
finding –models that utilised different mean serial
intervals, incubation periods and infectious periods
within plausible ranges yielded similar estimates of R0.

R0 can be expressed as the product of transmission
probability per contact, number of contacts per time
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unit and duration of infectious period; however, these
quantities are usually difficult to parameterise directly
from observing a outbreak [14]. In a simplified epi-
demic model assumption, the lengths (and distribu-
tions) of serial interval [16] and infectious period
[65] are influential to R0 estimation. Furthermore,
inclusion of a latency period into a model would result
in a slower epidemic growth rate after pathogen inva-
sion due to individuals needing to pass through the
exposed class before they can contribute to the trans-
mission process [14].

Although serial interval, latency period and infec-
tious period are computationally related to the esti-
mate of R0 (differences account for compartmental
contact heterogeneity and epidemic model

assumptions), we observed that the use of different
mean serial intervals, incubation periods and infec-
tious periods yield similar estimates of R0. However,
we only compared the relationship by median dura-
tions of these epidemiological parameters – using dif-
ferent mean distributions may produce a different
effect with the same values.

Due to changes in reporting systems and/or public
awareness of disease over time, there may have been
unknown observation biases and errors over time
(i.e. there may be higher rates of disease reporting
due to greater public awareness of the disease). The
included studies that considered underreporting issues
generally offered similar R0 estimates to those without
incorporated underreporting and offered a larger case

Fig. 2. Summary of estimated basic reproduction numbers (topleft) by West African countries (G, Guinea; L, Liberia; N,
Nigeria; O, Overall; and SL, Sierra Leone), (topright) by account for underreporting, (bottomleft) consideration of
compartment (F, funeral; H, hospitalisation; H+F, both hospitalisation and funeral; N, not considered), (bottomright) last
updated data used (with trend line of R0 estimation). Kruskal–Wallis non-parametric test result showed that the
differences between the medians of the estimated R0 mean by country (excluding Nigeria) are statistically insignificant
(P value > 0·05). Furthermore, we cannot find any significant relationship to reject the null hypotheses for those
accounting for underreporting and different compartments used (by both Kruskal–Wallis and Mood’s median tests).
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forecast compared with actual case observation at the
forecast target date. Without high-quality and reliable
data, it is challenging to accurately estimate the
impact of time-dependent changing factors and
incorporate them into a model. We recommend health
authorities endeavour to share detailed epidemiologic
attributes related to reported cases, including geo-
graphical locations of cases, information on contact
networks and date of symptom onset. The availability
of ongoing case data can help to recognise hidden
changes of disease patterns over time. Health author-
ities could consider providing time-dependent asso-
ciated correction factors according to the practical
underreporting situations and force of intervention
strategies. Furthermore, incorporating surveillance

outcomes from phylogenetic [66] and serological [67]
studies would potentially useful for advising the
underlying emerging disease transmission characteris-
tics and identify undetected cases. These would be
useful to modellers for accurately calibrating epi-
demiological models based on actual outbreak situa-
tions, which can then feedback meaningfully into
decision support during the outbreak.

Furthermore, we observed that many included mod-
els in this review have inferred data about disease
behaviour using disease parameters calculated from
previous EVD outbreaks. It is noted that this Ebola
outbreak has similar parameters estimates with the pre-
viously EVD outbreak parameters given by Drake
et al. [4]. Furthermore, it will be useful to develop a

Fig. 3. Summary of estimated epidemiology parameters by country (G, Guinea; L, Liberia; N, Nigeria; O, Overall; SL,
Sierra Leone) for (topleft) serial interval, (topright) incubation period, (bottomleft) infectious period, (bottomright) fatality
rate. Kruskal–Wallis non-parametric test results showed that we cannot reject the null hypotheses – i.e. the mean values of
these epidemiology parameters have identical data distributions from the included countries.
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centralised reference data platform, which allows for
sharing of epidemiological parameters. This would
enable modellers to use/calibrate disease parameters
based on comparable metrics. Together with other
EVD modelling review outcomes [4, 11], this study out-
come laid groundwork for such reference.

During the later stage of the EVD epidemic, new
evidence emerged that EVD can survive in various
body fluids during convalescence [68, 69] and may
result in transmission of infection [70–75]. WHO has
recently highlighted the potential of the occurrence
of EVD flare-ups and disease re-introduction [2]. At
the post-EVD outbreak stage, accounting for risk of
transmission from ‘recovered’ EVD patients [76, 77]
should be a priority for future EVD modelling.

Accuracy, transparency and flexibility are the major
considerations when formulating models for infectious
diseases [14]. The EbolaRepsonse tool created by the
CDC [9], which allows users to project the number
of Ebola cases in Liberia and Sierra Leone using a
simple model implemented on a Microsoft Excel
Worksheet. The WHO Response Team [31] study
was one of the first studies providing a detailed epi-
demiological description of the EVD epidemic using
primary data collected from hospitals and patients –
the study also provided short-term projections of the
epidemic for Guinea, Liberia and Sierra Leone.
These early modelling studies are some of those suc-
cessful examples that demonstrate how timely and
effectively use of phenomenological and mechanistic

Fig. 4. Relationship between estimated R0 and epidemiology parameters. (topleft) serial interval, (topright) incubation
period, (bottomleft) infectious period, (bottomright) fatality rate. (G, Guinea; L, Liberia; N, Nigeria; O, Overall; SL,
Sierra Leone) (Spearman tests among these pairs (for pairwise complete observations) are all insignificant). Only complete
pairs between R0 and epidemiology parameters are shown in this figure.
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modelling methods support emerging disease under-
standing and public health responses.

Modelling outcomes can be different depending on
the epidemiological characteristics of the emerging
diseases and the interplay among pathogen, host and
environment. For this EVD outbreak, simpler models
generally yielded similar estimates of R0 regardless of
the consideration of additional hospitalisation and/or
funeral compartments and underreporting. However,
context-specific models, which mimic the way a dis-
ease is transmitted among stages realistically and
meaningfully, allow for justification for intervention

effects under different transmission contexts. Under
an epidemic emergency, a “simple enough but not
simpler” model, which allows for understanding of
key epidemic dynamics (i.e. offer transparency to pub-
lic health policy makers), may play a critical role for
advising rapid policy decisions and predicting out-
break progression at the early phase of an outbreak.

CONCLUSION

Newly emerging infectious diseases are the most challen-
ging to manage due to the uncertainties in clinical

Fig. 5. Summary of ratio between predicted cases and WHO reported cases (matched with forecast target date). (topleft)
forecast target date, (topright) by West African countries (G, Guinea; L, Liberia; N, Nigeria; O, Overall; and SL, Sierra
Leone), (bottomleft) by account for underreporting, (bottomright) consideration of compartment (F, funeral; H,
hospitalisation; H + F, both hospitalisation and funeral; N, not considered). The Mood’s two sample median test from the
pair between do and do not account for underreporting shows that the median values of ratio between prediction and
observation are significantly different (P value 4 0·1). We cannot reject the null hypotheses of the pairs of different
compartments used (by both Kruskal–Wallis and Mood’s tests).
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impact and transmissibility. Epidemiological parameters
are usually difficult to observe directly from an emerging
infectious disease outbreak and would require modelling
methods to accurately estimate at the early phase of a
disease outbreak. Epidemic modelling is a quantitative
approach to understanding disease transmission within
a specific population and provides indications of future
trends. Such models are well-recognised tools to aid pol-
icy formulation in the early phase of epidemics.

Despite varied complexity and methods, the esti-
mates of R0 yielded from numerous studies were rea-
sonably consistent in this EVD outbreak regardless of
concurrent use of other associated epidemiology para-
meters. Different model design decision did not appear
to meaningfully impact the resulting R0 estimates but
models that accounted for data uncertainty offered a
larger case forecast compared with actual case observa-
tion at the forecast target date. Simple early models
remain informative to reference, and provide a founda-
tion for more complex transmission modelling to
understand the progression of a disease outbreak.

SUPPLEMENTARY MATERIAL
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