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Abstract
We adopt two- and three-body nuclear forces derived at the next-to-next-to-leading-order in the framework of effective chiral perturbation
theory to calculate the equation of state of β-stable neutron star matter using the Brueckner–Hartree–Fock many-body approach. We
use the recent optimized chiral two-body nuclear interaction at next-to-next-to-leading-order derived by Ekström et al. and two different
parametrizations of the three-body next-to-next-to-leading-order interaction: the first one is fixed to reproduce the saturation point of
symmetric nuclear matter while the second one is fixed to reproduce the binding energies of light atomic nuclei. We show that in the second
case the properties of nuclear matter are not well determined whereas in the first case various empirical nuclear matter properties around
the saturation density are well reproduced. We finally calculate various neutron star properties and in particular the mass-radius and mass-
central density relations. We find that the adopted interactions based on a fully microscopic framework, are able to provide an equation of
state which is consistent with the present data of measured neutron star masses.
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1. Introduction

The physics of neutron stars represents a great challenge to test
our understanding of matter under extreme conditions. The huge
variation of the density from the star surface (ρ ∼ 10 g/cm3) to
its centre (ρ ∼ 1015 g/cm3) requires the modelling of systems in
very different physical conditions like heavy neutron-rich nuclei
arranged to form a lattice structure as in the outer crust of the star,
or a system of strong interacting hadrons (nucleons, and possibly
hyperons or a phase with deconfined quarks) to form a quantum
fluid as in the stellar core (Prakash et al. 1997). The description
of such a variety of nuclear systems needs a considerable theoret-
ical effort and a knowledge as much as possible accurate of the
interactions between the constituents present inside the star. The
bulk properties of neutron stars (e.g. mass, radius, mass-shed fre-
quency) chiefly depend on the equation of state (EOS) describing
the macroscopic properties of stellar matter. The EOS of dense
matter is also a basic ingredient for modelling various astrophys-
ical phenomena related to neutron stars, as core-collapse super-
novae (SNe) (Oertel et al. 2017) and binary neutron star (BNS)
mergers (Bauswein & Janka 2012; Bernuzzi, Dietrich, & Nagar
2015; Sekiguchi et al. 2016; Rezzolla & Takami 2016). We note,
however, that in order to perform realistic numerical simulations
for the latter two cases, the inclusion of thermal contributions is
very important. The very recent detection of gravitational waves
from a binary neutron star merger (GW170817) by the LIGO–
Virgo collaboration (Abbott et al. 2017) has strongly increased the
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interest to these astrophysical phenomena and more in general to
dense matter physics.

In the present work, we model the core of neutron stars as a
uniform charge neutral fluid made of neutrons, protons, electrons,
and muons in equilibrium with respect to the weak interaction.
Such system is well known in literature as β-stable nuclear matter.
In addition, we also consider the possible formation of hyperons in
the inner core of neutron stars. Accordingly, we calculate various
neutron star properties making use of an EOS for the stellar core
obtained within a microscopic non-relativistic approach based
on the Brueckner–Bethe–Goldstone (BBG) many-body theory
and adopting the Brueckner–Hartree–Fock (BHF) approximation
(Day 1967; Baldo & Burgio 2012). In such amicroscopic approach,
the only inputs required are the bare two- and three-body
nuclear interactions derived in vacuum using nucleon–nucleon
(NN) scattering data and information (binding energies and
scattering observables) on light (atomic mass number A= 3, 4)
nuclei.

It is well known that three-nucleon forces (TNFs) play a
very important role in nuclear physics. For example, TNFs are
required to reproduce the experimental binding energy of few-
nucleon (A= 3, 4) systems (Kalantar-Nayestanaki et al. 2012).
TNFs are also essential to reproduce the empirical saturation point
(n0 = 0.16± 0.01 fm−3, E/A|n0 = −16.0± 1.0 MeV) of symmetric
nuclear matter (SNM) and to give an adequately stiff EOS which is
consistent with present measured neutron star masses and in par-
ticular with the massM = 2.01± 0.04M� (Antoniadis et al. 2013)
of the neutron star in PSR J0348+0432.

A modern and very powerful approach (Weinberg 1979) to
derive two- as well as many-body nuclear interactions is the one
provided by chiral effective field theory (see Epelbaum, Hammer,
& Meißner (2009) and Machleidt & Entem (2011) for a detailed
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review). In this method two-, three-, as well as many-body nuclear
interactions can be calculated order by order according to a
well-defined procedure based on a low-energy effective quantum
chromodynamics (QCD) Lagrangian. This Lagrangian is built
in such a way to keep the main symmetries of QCD and in
particular the approximate chiral symmetry. The starting point
of this chiral perturbation theory (ChPT) is the definition of a
power counting in the ratio Q/�χ , where Q denotes a low-energy
scale which can be identified with the momentum of the external
nucleons or with the pion mass mπ . �χ ∼ 1 GeV is the so-called
chiral symmetry breaking scale which sets up the energy range
of validity of the theory. In this effective field theory, the details
of the QCD dynamics are enclosed in the so-called low-energy
constants (LECs), which are parameters fitted using experimental
data such as scattering data and binding energies of light nuclei.
This well-defined scheme is very advantageous in the case of
nucleonic systems where it has been shown that TNFs play a very
important role (Kalantar-Nayestanaki et al. 2012).

In this work, we present some microscopic calculations of the
EOS of β-stable neutron star matter using the chiral potentials
derived by Ekström et al. (2014) at the next-to-next-to-leading
order (N2LO) of ChPT. Interactions derived in ChPT have been
calculated even at higher order like N3LO and N4LO (Entem et al.
2015; Epelbaum, Krebs, & Meißner 2015). One of the problems
to perform nuclear structure and nuclear matter calculations at a
fixed order higher than N2LO is that the number of many-body
contributions proliferates very quickly increasing the order of the
expansion. Therefore, it turns out prohibitive to take into account
all the contributions arising at a given arbitrary order of ChPT.
Conversely at the order N2LO, it has been shown by Ekström
et al. (2014) that it is possible to derive an NN potential with
a χ 2/datum∼ 1, as well as to take into account leading-order
TNFs. Previous versions of NN potentials at N2LO based on
traditional fit techniques of the experimental data provided a
χ 2/datum∼ 10, and therefore, they were not enough accurate
to be used in practical calculations. Alternatively Ekström et al.
(2014) used a new optimisation technique based on the algorithm
POUNDerS (Practical Optimization Using NoDerivatives for sum
of Squares) (Kortelainen et al. 2010) which drastically improved
the quality of the data fit. Thus at N2LO all the contributions
emerging fromChPT can be consistently included in amany-body
calculation.

2. Chiral nuclear interactions

As we have already discussed previously, in the present work we
employ two different interactions derived in ChPT both for two-
and the three-body sectors. We adopt indeed an NN potential
calculated at N2LO supplemented by a TNF calculated at the
same order. More specifically as a two-body nuclear interac-
tion, we have used the optimised chiral potentials proposed by
Ekström et al. (2014). We have already pointed out that all the
possible operators contributing to the NN potential as well as
leading-order TNFs arise at N2LO of ChPT. Thus, it is possible to
understand several properties of nuclear structure at this order of
the perturbative expansion. The optimised parameters of the NN
potential fitted at N2LO are the constants c1, c3, and c4 coming
from the pion-nucleon (πN) Lagrangian, plus 11 partial waves
from contact terms.

The chiral NN interaction by Ekström et al. (2014) has
been optimised to the proton–proton and the proton–neutron

scattering data for laboratory scattering energies below 125 MeV,
and to deuteron observables. The N2LO TNF has been then fixed
requiring to reproduce the 3H half-life and the binding energies
of 3H and 3He nuclei. The total (i.e. two-body plus three-body)
interaction has been then used to predict the Gamow–Teller
transition matrix elements in 14C and 22,24O nuclei using con-
sistent two-body currents. In their paper Ekström et al. (2014)
provided three different versions of this interaction according
to three different values of the cut-off � = 450, 500, 550 MeV
used to regularise the short-range part of the potentials. The
χ 2/datum of the NN interaction varied from 1.33 to 1.18 pass-
ing from � = 450 to � = 550 MeV. In the present work we have
adopted the model with � = 550 MeV hereafter referred to as the
N2LOopt NN potential. We have checked, however, that similar
results could be obtained also using the other models reported in
Ekström et al. (2014).

Concerning the form of the TNF, we have used the non-local
N2LO version given by Epelbaum et al. (2002). The non-locality of
the N2LO TNF depends only on the particular form of the cut-off
used to regularise short-range part of the potential. It reads:

V (2π)
3N =

∑
i�=j�=k

g2A
8f 4π

σi · qi σj · qj
(qi2 +m2

π )(qi2 +m2
π )

f αβ

ijk τα
i τ

β
j , (1)

V (1π)
3N = −

∑
i�=j�=k

gAcD
8f 4π�χ

σj · qj
q2j +m2

π

σi · qj τi · τj, (2)

V (ct)
3N =

∑
i�=j�=k

cE
2f 4π�χ

τi · τj, (3)

where qi = p′
i − pi is the difference between the final and initial

momentum of nucleon i and

f αβ

ijk = δαβ
( − 4c1m2

π + 2c3qi · qj
) + c4εαβγ τ

γ

k σk · (qi × qj
)
. (4)

In equations (1)–(4) σi and τi are the Pauli matrices which act
on the spin and isospin spaces, while gA = 1.29 is the axial-vector
coupling and fπ = 92.4 MeV the pion decay constant. The labels
i, j, k run over the values 1, 2, 3, which take into account all the
six possible permutations in each sum. In equation (4) c1, c3, c4,
cD, and cE denote the so-called LECs. We note that c1, c3, and c4
are already fixed at two-body level by the πN Lagrangian; there-
fore, they do not represent free parameters. In Table 1 we report
the values of ci that we have adopted in the present work. The last
two parameters cD and cE are not fixed by the data from two-body
scattering and have to be set up using some specific observable in
finite nuclei or in infinite nuclear matter. In the present work we
have explored both the possibilities. In the following the TNF fitted
by Ekström et al. (2014) to reproduce the properties of light nuclei
will be denoted as the N2LO TNF, whereas the parametrisation fit-
ted to provide a good saturation point of SNM will be denoted as
the N2LO1 TNF.

Finally, we havemultiplied the whole interaction by a non-local
cut-off of the form:

F�(p, q)= exp
[
−

(
4p2 + 3q2

4�2

)n]
. (5)

This allows to regularise the short part of the interaction which
is not correctly described by ChPT and it is sensible to the inter-
nal structure of nucleons. In equation (5): p= (p1 − p2)/2 and
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Table 1. Values of the LECs of the two TNF parametrisations used in the present
work

TNFmodel cD cE c1 c3 c4

N2LO 0.1488 −0.747 −0.906 −3.897 3.906

N2LO1 −0.5000 0.900 −0.906 −3.897 3.906
For the two parametrisations we have set a cut-off of 550 MeV. cD and cE are dimensionless
whereas c1, c3, and c4 are expressed in GeV−1.

q= 2/3[p3 − (p1 − p2)]. Finally, following Ekström et al. (2014),
in the present work, we have set � = 550 MeV and n= 2.

3. The BHF approach with three-body forces

The BBG many-body theory (Day 1967; Baldo & Burgio 2012)
allows to calculate the ground state of nuclear matter in terms of
the so-called hole-line expansion. The different diagrams which
contribute to the energy of the system are grouped according to
the number of independent hole-lines, where the hole-lines repre-
sent empty single particle states in the Fermi sea. The lowest order
the BBG theory is the so-called BHF approximation. In the present
work we have performed all the calculations in such framework.
The starting point of the BHF approach is the calculation of the
so-called G-matrices which describe the interaction between two
nucleons taking into account the presence of all the surrounding
nucleons of the medium; these nucleons restrict the possible final
states of the NN scattering.

For asymmetric nuclear matter with total nuclear density ρ =
ρn + ρp and isospin asymmetry β = (ρn − ρp)/ρ (being, ρn and
ρp the neutron and proton densities), one has to consider three
different G-matrices for the nn-, np-, and pp-channels. These
G-matrices are obtained solving the well-known Bethe–Goldstone
equation:

Gττ ′ (ω)=Vττ ′ +
∑
k,k′

Vττ ′
| k, k′〉Qττ ′ 〈k, k′ |

ω − ετ (k)− ετ ′ (k′)+ iε
Gττ ′ (ω), (6)

where τ , τ ′ = n, p are isospin indices, Vττ ′ denotes the bare NN
interaction in a given NN channel, | k, k′〉Qττ ′ 〈k, k′ | is the Pauli
operator which projects the intermediate nucleons states out of the
Fermi sphere. In this way the Pauli exclusion principle is automat-
ically satisfied. ω is the so-called starting energy which is given by
the sum of energies of the interacting nucleons in a non-relativistic
approximation. The single-particle energy ετ (k) of a nucleon with
momentum k and massmτ is given by

ετ (k)= �
2k2

2mτ

+Uτ (k), (7)

where the single-particle potential Uτ (k) is the mean field felt by
one nucleon due to the interactions with the other nucleons of the
medium. In the BHF approximation,Uτ (k) is given by the real part
of the Gττ ′-matrix calculated on energy shell:

Uτ (k)=
∑

τ ′=n,p

∑
k′≤kF

τ ′

Re 〈kk′ |Gττ ′ (ω = ω∗) | kk′〉A, (8)

where ω∗ = ετ (k)+ ετ ′ (k′) and the sum runs over all neutron
and proton occupied states and the matrix elements are anti-
symmetrised. In the solution of the Bethe–Goldstone equation,
we have employed the so-called continuous choice (Jeukenne,
Lejeunne, & Mahaux 1967; Grangé, Cugnon, & Lejeune 1987) for
the single-particle potentialUτ (k). It has been shown in Refs. Song

et al. (1998); Baldo et al. (2000) that the contribution to the energy
per particle E/A from the diagrams coming from the three hole-
lines is strongly minimised using this prescription. Consequently,
a faster convergence of the hole-line expansion for E/A is achieved
(Song et al. 1998; Baldo et al. 1990, 2000) when compared to the
so-called gap choice for Uτ (k), where the single-particle potential
is set to zero above the Fermi momentum.

Equations (6)–(8) are solved in a self-consistent way and then
the energy per particle is calculated as

E
A
(ρ, β)= 1

A
∑
τ=n,p

∑
k≤kFτ

(
�
2k2

2mτ

+ 1
2
Uτ (k)

)
. (9)

From the energy per particle, all the other relevant quantities can
be calculated using standard thermodynamical relations.

3.1. Inclusion of TNFs in the BHF approach

Non-relativistic quantum many-body approaches are not able to
reproduce the empirical saturation point of SNM: ρ0 = 0.16±
0.01 fm−3, E/A|ρ0 = −16.0± 1.0 MeV. Several studies employing
a large variety of different NN potentials have indeed shown that
the saturation points lie inside a narrow band known in litera-
ture as Coester band (Coester et al. 1970; Day 1981). The various
models showed either a too large saturation density or a too small
value for the energy per particle with respect to the empirical
value. A similar behaviour has been also found for the binding
energies of finite nuclei where the ground states turned out to be
too large or too small when compared to the experimental ones.
The inclusion of TNFs allows to improve the description of both
SNM nuclear matter (Friedman & Pandharipande 1981; Baldo,
Bombaci, & Burgio 1997; Akmal et al. 1998; Logoteta, Bombaci, &
Kievsky 2016b; Logoteta et al. 2015) and finite nuclei. In addition,
TNFs are very important in the case of β-stable nuclear matter to
get an EOS stiff enough to produce neutron star masses able to
fulfil the limits put by the measured masses M = 1.97± 0.04M�
(Demorest et al. 2010) andM = 2.01± 0.04M� (Antoniadis et al.
2013) of the neutron stars in PSR J1614-2230 and PSR J0348+0432,
respectively.

However in the BHF approach, as well as in almost all micro-
scopic many-body approaches, TNFs cannot be employed directly
without approximation. This is because, it would be necessary
to solve very complicated three-body Bethe–Faddeev equations
in the nuclear medium (Bethe–Faddeev equations) (Bethe 1965;
Rajaraman & Bethe 1967). Although this may be attempted in next
future, for now this is a task beyond our possibilities. In order to
bypass this problem, an average density dependent two-body force
is built starting from the original three-body one. The average is
made over the coordinates (including also spin and isospin degrees
of freedom) of one of the three nucleons (Loiseau, Nogami, & Ross
1971; Grangé et al. 1989).

In the present work, we have used the in-medium effective
NN force derived by Holt, Kaiser, & Weise (2010) which has the
following structure:

Veff(p, q)=VC + τ1 · τ2 WC

+ [VS + τ1 · τ2 WS] σ1 · σ2

+ [VT + τ1 · τ2 WT] σ1 · q σ2 · q
+ [VSO + τ1 · τ2 WSO] i(σ1 + σ2) · (q× p)

+ [
VQ + τ1 · τ2 WQ

]
σ1 · (q× p) σ2 · (q× p) . (10)
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Figure 1. (Colour online) In the figure we show the energy per particle of pure neutron
matter (left panel) and SNM (right panel) as function of the nuclear density (ρ) for the
twomodels described in the text. The empirical saturation point of nuclearmatterρ0 =
0.16± 0.01 fm−3, E/A|ρ0 = −16.0± 1.0 MeV is represented by the grey box in the right
panel. See text for details.

The subscripts on the functions Vi, Wi stand for central (C),
spin (S), tensor (T), spin-orbit (SO), and quadratic spin-orbit (Q)
(see Holt et al. (2010) for the explicit expressions of these func-
tions). This effective interaction can be obtained by averaging
the original three-nucleon interaction V3N over the generalised
coordinates of the third nucleon:

Veff = Tr(σ3,τ3)

∫ dp3
(2π)3

np3 V3N (1− P13 − P23), (11)

where

Pij = 1+ σi · σj

2
1+ τi · τj

2
Ppi↔pj (12)

are operators which exchange the spin, isospin, and momentum
variables of the nucleons i and j. np3 is the Fermi distribution func-
tion at zero temperature of the ‘third’ nucleon withmomentum p3.
Here we assume for np3 a step function approximation.

4. Results for nuclear matter

In this section we discuss the results concerning the calculation
of the energy per particle E/A as a function of the nuclear den-
sity ρ, for pure neutron matter (PNM) and SNM using the two
interactionmodels and the BHF approach described previously. In
order to perform a partial wave expansion of the Bethe–Goldstone
equation (6), we have made the usual angular average on the Pauli
operator as well as on the energy denominator in the propagator
(Grangé et al. 1987). For each calculation, we have included all par-
tial wave contributions up to a total two-body angular momentum
Jmax = 8. The contributions coming from higher partial waves are
completely negligible.

In Figure 1 we show the density behaviour of the energy per
particle of PNM (left panel) and SNM (right panel) for both
the models considered in the present work. The dashed dotted
lines in Figure 1 have been obtained using just the N2LOopt NN
interaction without TNFs. We note that in the case of PNM
employing either the N2LO or the N2LO1 TNF, the curve of the
energy per particle does not change (red continuous line in left
panel of Figure 1). This happens because when performing the
average of the TNF in PNM to get the effective density-dependent

Table 2. Nuclear matter properties at saturation density (ρ0) for the two models
discussed in the text

Model ρ0(fm−3) E/A (MeV) Esym (MeV) L (MeV) K∞ (MeV)

N2LOopt+N2LO1 0.163 −15.20 34.38 79.01 222

N2LOopt+N2LO 0.110 −10.72 24.03 35.70 134
Notes: In the first column of the table the model name is reported; in the other columns we
give the saturation point of SNM (ρ0), the corresponding value of the energy per particle (E/A),
the symmetry energy (Esym), the slope Lof Esym, and the incompressibilityK∞. All these values
are referred to the saturation density (ρ0) calculated for each model.
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Figure 2. (Colour online) The nuclear symmetry energy is shown as a function of the
nucleonic density for the two interaction models used in the present work. The con-
straints on the symmetry energy obtained by (Danielewicz & Lee (2014)) using the
excitation energies of isobaric analogue states (IAS) in nuclei are represented by the
black-dashed band, labelled IAS. The smaller region covered by the red-dashed band
labelled IAS+�rnp (Roca-Maza et al. (2013)) are additional constraints provided by the
data analysis of neutron skin thickness (�rnp) of heavy nuclei.

two-body force Veff (see equation (11)), the terms containing the
LECs cD and cE vanish for symmetry reasons (see Logoteta et al.
(2016a) for more details) while the other LECs c1, c3, and c4, which
take contribution to the average have the same values in the two
models. Thus in PNM Veff is the same both for the N2LO1 and
N2LO TNF. The effect of the TNF in both models is to produce a
stiffer EOS. This is actually needed to improve the saturation point
of SNM obtained using the sole NN interaction (black dashed
dotted line in right panel of Figure 1). In the latter case the satu-
ration point turns out to be ρ0 = 0.26 fm−3 and E/A|0 = −19.23
MeV. Using the model N2LOopt+N2LO1 a better nuclear matter
saturation point is obtained: ρ0 = 0.163 fm−3 and E/A|0 = −15.20
MeV. The empirical saturation point of SNM is represented by a
grey box in Figure 1. For the model N2LOopt+N2LO the repulsion
provided by the TNF, needed to reproduce the binding energies
of light nuclei, is too strong in nuclear matter and the resulting
curve of the energy per particle (black dashed line in right panel
of Figure 1) saturates at a too small density comparing to the
empirical one. For the model N2LOopt+N2LO the saturation point
of SNM is ρ0 = 0.110 fm−3 and E/A|0 = −10.72 MeV. The values
of the saturation density and energy per particle at saturation for
the two models considered are reported in Table 2.

The energy per particle of asymmetric nuclear matter, which
is essential to describe neutron stars, can be calculated with
very good accuracy using the so-called parabolic approximation
(Bombaci & Lombardo 1991):

E
A
(ρ, β)= E

A
(ρ, 0)+ Esym(ρ)β2 , (13)
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where Esym(ρ) is the nuclear symmetry energy (Li et al. 2014) and
β is the asymmetry parameter defined in the previous section.
Using equation (13), the symmetry energy can be obtained from
the difference between the energy per particle of PNM (β = 1) and
SNM (β = 0). In Figure 2 we report the plot the density behaviour
of Esym.

In Table 2 we show the values of the symmetry energy and the
so-called slope parameter L defined as

L= 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣
ρ0

(14)

at the calculated saturation density ρ0 (second column in Table 2)
for the two interaction models considered in the present paper.
We note that the values of Esym(ρ0) and L calculated with model
N2LOopt+N2LO1 are in a good agreement with those obtained
by other calculations based on the BHF approach including two-
and three-body forces (see, e.g. Li et al. (2006) and Li & Schulze
(2008)) and with the values derived from different experimental
data as discussed by Lattimer (2014). Our second model instead
underestimates both the values of Esym and L.

The incompressibility K∞ of SNM calculated at saturation
density is given by

K∞ = 9ρ2
0
∂2E/A
∂ρ2

∣∣∣
ρ0
. (15)

The value of the incompressibility K∞ can be obtained analysing
experimental data of giant monopole resonance (GMR) energies
in medium and heavy nuclei. Such analysis performed first by
Blaizot, Gogny, & Grammaticos (1976) provided the value K∞ =
210± 30MeV. The refined analysis of Shlomo, Kolomietz, & Colò
(2006) gave instead the value K∞ = 240± 20MeV. Recently Stone
et al. (2010) on the basis of a re-analysis of GMR data found 250
MeV<K∞ < 315 MeV. In the last column of Table 2 we have
reported the incompressibility K∞ at the calculated saturation
point ρ0 for the twomodels considered in the present work. Model
N2LOopt +N2LO1 is in very good agreement with the value ofK∞
predicted by Blaizot et al. (1976) and Shlomo et al. (2006). It should
be noted that the value ofK∞ is a very important quantity not only
for nuclear physics but also for astrophysics. It has been shown
indeed that K∞ is strongly correlated to the physics of supernova
explosions and neutron star mergers.

Another important constraint that should be fulfilled by a
good nuclear matter EOS concerns the behaviour of the pressure
of SNM as function of the nucleonic density. Such constraints
are provided by experiments of collisions between heavy nuclei.
In such experiments matter is compressed up to ∼ 4ρ0, and it
is therefore possible to extract important information about the
behaviour of the EOS at densities larger than normal saturation
density (ρ0 = 0.16 fm−3)).

The black hatched area in Figure 3 is the region in the pressure–
density plane for SNM determined by Danielewicz, Lacey, &
Lynch (2002), performing several numerical simulations able to
reproduce the measured elliptic flow of matter in the collision
experiments between heavy nuclei.

In the same figure, we show the pressure of SNM for the
N2LOopt+N2LO1 (red continuous line) model obtained from the
calculated energy per nucleon and using the standard thermody-
namical relation:

P(ρ)= ρ2 ∂(E/A)
∂ρ

∣∣∣
A
. (16)

Our results are fully consistent with the empirical constraints
given by Danielewicz et al. (2002).

0 2 4 6 8

100

101

102

103

Pr
es

su
re

 [M
eV

 fm
-3

]

Danielewicz 2002
N2LOopt+N2LO1

r /r0 [fm-3]

Figure 3. (Colour online) Pressure of SNM as a function of the nucleonic density ρ (in
units of the empirical saturation density ρ0 = 0.16 fm−3) for themodel N2LOopt+N2LO1.
The black hatched area represents the region for SNM which is consistent with the
constraints provided by collision experiments between heavy nuclei (Danielewicz et al.
2002).

5. Neutron star structure

Wenext apply themodel N2LOopt+N2LO1, which reproduces var-
ious empirical nuclear matter properties at the saturation density
(Table 2), to calculate the structure of neutron stars.

The composition of the inner core of neutron stars cannot
be completely determined by data from observations and there-
fore different scenarios are currently under consideration. The
appearance of hyperons (Glendenning 1985; Vidaña et al. 2011)
or the transition to a phase with deconfined quarks (quark mat-
ter) (Glendenning 1996; Bombaci et al. 2009; Logoteta et al. 2012a;
Bombaci & Logoteta 2013; Logoteta, Providência & Vidaña 2013)
are among the most admissible possibilities.

In this work we want mainly to concentrate on the simplest
case of pure nucleonic matter with the aim to establish if the
modern chiral nuclear interactions considered here can provide
an EOS which is able to fulfil the constraints put by observa-
tional data on neutron stars properties. This first check represents
a mandatory step before to explore more sophisticated possibil-
ities with additional feasible degrees of freedom. We point out,
however, that allowing for a quark deconfinement phase transition
and considering the possible existence of a second branch of com-
pact stars (quark stars) with ‘large’ masses compatible with present
mass measurements, i.e. within the so-called two families scenario
(Berezhiani et al. 2003; Bombaci, Parenti & Vidaña 2004, 2016;
Drago et al. 2016), is not necessary that the neutron star branch
reproduces the limit of two solar masses.

We also report a calculation of the EOS that includes, in addi-
tion to nucleons, hyperonic degrees of freedom and in particular
the presence of � and �− hyperons. These are in fact the first
hyperon species expected to appear in microscopic calculations
of neutron star matter (Glendenning 1985; Vidaña et al. 2011;
Schulze et al. 2006). We thus consider also the so-called hyperonic
stars.

In order to determine the mass–radius (M(R)) and mass–
central density (M(ρc)) relations for non-rotating neutron stars,
one needs first to calculate the β-stable EOS of the system.
The composition of β-stable stellar matter is determined by the
relations between the chemical potentials of the various con-
stituent species. In this paper we consider neutrino-free matter
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Figure 4. (Colour online) Particle fractions in β-stable neutron star matter for model
N2LOopt+N2LO1. The continuous lines (dashed lines) refer to particle fractions in the
case of β-stable nucleonic matter (hyperonic matter).

(μνe = μν̄e = μνμ
= μν̄μ

) in the general case of matter if matter
with hyperons. We have

μn − μp = μe− , μe− = μμ− , (17)

μ� = μn, μ�− = μn + μe− . (18)

In equations (17) and (18) μn, μp, μ�, μ�− , μe− , and μμ− are
chemical potentials of neutron, proton, �, �−, electron, and
muon. Finally charge neutrality requires

ρp = ρ�− + ρe− + ρμ− . (19)

The various chemical potentials of baryons (B= n, p,�,�−) and
leptons (l= e−,μ−) are determined through

μB = ∂ε

∂ρB
, μl = ∂ε

∂ρl
, (20)

where ε = εN + εY + εL is the total energy density which sums
up the nucleonic contribution εN, the hyperonic one εY , and the
leptonic one εL. The nucleonic contribution εN has been cal-
culated using the N2LOopt+N2LO1 nuclear interaction and the
thermodynamical relation εN = ρ E/A(ρ, β), with the energy per
particle E/A(ρ, β) of asymmetric nuclear matter calculated in
BHF approximation and employing the parabolic approximation
(Bombaci & Lombardo 1991). For the hyperonic contribution
εY we have used the parametric form of the BHF energy per
particle of asymmetric hyperonic matter provided by Rijken &
Schulze (2016) and obtained using the nucleon–hyperon (NY) and
hyperon–hyperon (YY) interactions. More specifically Rijken &
Schulze (2016) used the NY Nijmegen soft core NSC08b poten-
tial (Rijken, Nagels & Yamamoto 2010) supplemented with the
new YY Nijmegen soft core NSC08c potential (Nagels, Rijken
& Yamamoto 2014). We note that these interactions have been
derived following the scheme of traditional meson exchange the-
ory and not in the framework of ChPT. However, they provide
an accurate description of the available hypernuclear data (Rijken
et al. 2010).

We have then self-consistently solved the equations (17), (18),
(19), and (20) as function of the total baryonic density ρ =
ρn + ρp + ρ� + ρ�− and obtained the EOS for β-stable hyperonic
matter with nucleons, hyperons, electrons, and muons (μ−).

The composition of β-stable nucleonic matter is shown by the
continuous lines in Figure 4. The black circle on the black line,
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Figure 5. (Colour online) Mass–radius (M(R)) (left panel) and mass–central density
(M(ρc)) (right panel) relationships for the models described in the text. The continuous
lines refer to the calculation performed considering the EOS containing only nucle-
onic degrees of freedom, while the dashed lines have been obtained including also the
� and the �− hyperons in the calculation. The hatched region in the left panel rep-
resents the mass–radius constraints obtained by Steiner et al. (2010, 2013). The strip
with boundaries marked with blue lines stands for the measured mass 2.01± 0.04M�
(Antoniadis et al. 2013) of the neutron stars in PSR J0348+0432.

which represents the proton fraction, marks the density thresh-
old for the direct URCA processes n→ p+ e− + ν̄e , p+ e− →
n+ νe (Lattimer et al. 1991). In our model this threshold is ρDU =
0.339 fm−3 which corresponds to a neutron star mass M(ρDU)=
0.97 M�. The dashed lines in Figure 4 represent the results of
the solution of the β-equilibrium equations for hyperonic matter
with � and �− hyperons. The � hyperon is the first hyperonic
species to appear at a density around 0.37 fm−3 while the �−
hyperon appears at density of 0.47 fm−3. This behaviour is a new
feature of modern NY interactions which find a much more repul-
sive contribution in the N�− channel to the total energy density.
The same trend has been also found by recent NY interactions
derived in ChPT by Haidenbauer &Meißner (2015). Such a repul-
sion leads to the appearance of the � hyperon before the �−
one contrarily to the predictions of older NY interaction models
(Schulze et al. 2006).

In order to calculate the neutron stars structure, we have
numerically solved the equations for hydrostatic equilibrium in
general relativity (Tolman 1939; Oppenheimer & Volkoff 1939).
For nucleonic density smaller than 0.08 fm−3 we havematched our
EOS models of the core with the Negele & Vautherin (1973) and
Baym, Pethick, & Sutherland (1971) EOSs which model neutron
stars crust.

In Figure 5 we show the results of our calculations. In the left
(right) panel we plot the mass–radius (mass–central density) rela-
tions for our models. Referring now to the left panel in Figure 5,
the hatched regions are constraints derived from the analysis
of observational data of both transiently accreting and bursting
X-ray sources obtained by Steiner et al. (2010); Steiner, Lattimer,
& Brown (2013). We note the maximum mass Mmax = 1.99 M�
obtained for nucleonic stars, i.e. for the EOS model including only
nucleons (continuous line in Figure 5), is compatible with present
neutron star mass measurements and in particular with the mea-
sured mass 2.01± 0.04M� (Antoniadis et al. 2013) of the neutron
star in PSR J0348+0432 (strip with boundaries marked with blue
lines in Figure 5). In addition, our results are also in rather good
agreement with the empirical constraints on the mass–radius rela-
tionship reported in Steiner et al. (2010); Steiner et al. (2013).
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We note, however, that presently there is no general agreement
on neutron star radii measurements due to the large uncertainties
in the techniques used to extract this quantity. For instance, small
stellar radii in the range of 9–12 km (Guillot et al. 2013) have found
considering information from spectral analysis of X-ray emission
from quiescent X-ray transients in low-mass binaries (QLMXBs).
Larger radii around 16 km are instead obtained considering data
on neutron stars with recurring powerful bursts. However, these
last measurements are subject to large uncertainties (Poutanen
et al. 2014). In a recent work Lattimer & Prakash (2016) sug-
gests that neutron star radii should lie in the range between 10.7
and 13.1 km.

The red dashed lines in Figure 5 represent the mass–radius (left
panel) and mass–central density (right panel) relations for hyper-
onic stars (i.e. for the EOS model including hyperons in addition
to nucleons). In this case there is a sizable decrease of the stel-
lar maximum mass down to Mmax = 1.6 M�, a value which is
incompatible with measured neutron star masses. This outcome is
caused by the softening of the EOS due to the presence of hyperons
in the stellar core (Schulze et al. 2006; Vidaña et al. 2011; Logoteta
et al. 2012b).

This difficulty to reconcile the measured masses of neutron
stars with the seemingly unavoidable presence of hyperons in their
interiors is called hyperon puzzle (Lonardoni et al. 2015; Bombaci
2017; Chatterjee & Vidaña 2016) in neutron stars. This unsolved
puzzle is currently the subject of several investigations, and various
possible solutions have been proposed. Some researches pointed
out the importance of taking into account the effect of hyperonic
three-body forces between nucleons and hyperons (Lonardoni
et al. 2015; Vidaña et al. 2011; Chatterjee & Vidaña 2016), while
other investigations (Bombaci et al. 2016; Drago et al. 2016) under-
line the possibility for a phase transition to quark matter at large
baryonic density and the existence of a second branch of com-
pact stars (quark stars) with ‘large’ masses compatible with present
mass measurements. Finally we emphasise that also the two-body
YY interaction can play a role in solving the hyperon puzzle. In
fact, as shown by Schulze et al. (2006), the new NSC08c YY inter-
action makes the EOS stiffer and allows to increase the maximum
mass of about 0.25 M� with respect to the case when only NN and
NY interactions are taken into account to describe the two-body
baryon–baryon interactions.

The properties of the maximum mass configuration for our
models of nucleonic and hyperonic stars are reported in Table 3.
These results are in good agreement with other calculations based
on microscopic approaches. Concerning this point it is interesting
to note that our present findings are very similar to those reported
in Taranto, Baldo, & Burgio (2013) where nuclear matter proper-
ties and β-stable EOS have been obtained using the BHF approach
and employing two- and three-body forces based on the meson-
exchange theory. In addition, our results are in good accord with
those in Bombaci & Logoteta (2018) where the neutron stars
structure was described adopting chiral potentials calculated in
the so-called �-full theory both at two- and three-body levels.
Such agreement provides an independent way to check the cor-
rect behaviour of the interactions used in the present work at large
baryonic density. We note indeed that the interactions derived
in ChEFT are characterised by a low-momentum expansion and
therefore can be trusted up to baryonic densities for which the
Fermi momentum is of the order of magnitude of the cut-off set
in the regulator function. At larger densities, the EOS should be
extrapolated or an accurate analysis of convergence of the many-
body calculation has to be properly accounted for. We note that

Table 3. Mass (in unit of solar mass M� = 1.989× 1033g), corresponding radius
(in km) and central density (in fm−3) for the neutron star configuration corre-
sponding to the maximummasses of Figure 5

Model M (M�) R (km) ρc (fm−3)

N2LOopt+N2LO1 1.99 10.52 1.13

N2LOopt+N2LO1+NY+YY 1.60 9.86 1.50
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Figure 6. (Colour online) Gravitational redshift calculated at the neutron star surface
as a function of the stellar gravitationalmass for the two EOSmodels used in our work.
The horizontal lines stand for themeasured gravitational redshift z= 0.35 for the X-ray
bursts source in the low-mass X-ray binary EXO 07482−676 (Cottam et al. 2002) and
z= 0.205+0.006

−0.003 for the isolated neutron star RX J0720.4−3125 (Hambaryan et al. 2017).

for neutron stars these considerations are mandatory because the
maximum density reached in the core can be even larger than 1
fm−3 (see Table 3).

The gravitational redshift of a signal emitted from the stellar
surface is given by

zsurf =
(
1− 2GM

c2R

)−1/2

− 1. (21)

The measurements of zsurf of spectral lines can provide a direct
information on the neutron star compactness parameter:

xGR = 2GM
c2R

(22)

and therefore on the EOS of neutron star matter. The calculation
of the surface gravitational redshift for our two EOS models is
shown in Figure 6. The two horizontal lines in the same figure
stand for the measured gravitational redshift z = 0.35 for the
X-ray bursts source in the low-mass X-ray binary EXO07482−676
(Cottam, Paerels, & Mendez 2002) and z = 0.205+0.006

−0.003 for the
isolated neutron star RX J0720.4−3125 (Hambaryan et al. 2017).

6. Summary

We have investigated the behaviour and the properties of β-stable
nuclear matter using two microscopic models based on nuclear
hamiltonians obtained from ChPT at the N2LO in the framework
of many-body BHF approach. In particular, we have used the non-
local NN chiral potential derived by Ekström et al. (2014), which
is able to reproduce the NN scattering data with a χ 2/datum∼ 1.
In order to get a good description of nuclear matter at saturation
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density, we have included in our calculation also a TNF con-
sistently calculated at the same order of ChPT. Concerning the
TNF, we have explored two different parametrisations: the first
one (N2LO) fitted to reproduce binding energies of light nuclei,
while the second one (N2LO1) fitted to reproduce a good satura-
tion point of SNM. We have shown that in the first case it was not
possible to reproduce also good properties of nuclear matter at sat-
uration density. For the second case, we have shown that once the
saturation point of SNM was well reproduced, other nuclear mat-
ter properties at the saturation density were also well determined.
We have later calculated the EOS for β-stable nuclear matter for
our best model, namely the N2LOopt+N2LO1 one, and determined
the neutron stars structure. We have found that the maximum
mass obtained is compatible with the present measured neutron
star masses. In addition we have found that the mass–radius
relation for nucleonic stars is in a quite good agreement with
the mass–radius constraints determined by Steiner et al. (2010);
Steiner et al. (2013). Finally, we have extended our EOS model to
include hyperons and we have thus calculated the corresponding
hyperonic star properties. Confirming the results of previous stud-
ies, e.g. (Schulze et al. 2006; Vidaña et al. 2011; Lonardoni et al.
2015; Chatterjee & Vidaña 2016), we have found that the inclu-
sion of hyperons leads to a substantial reduction of the value of
the maximum mass which turns out to be not compatible with
measured neutron star masses. This so-called hyperon puzzle is
one of the hottest topics in neutron star physics which is stimulat-
ing copious experimental and theoretical research in hypernuclear
physics.

Several extensions of the present model to include hyperonic
three-body forces and quark degrees of freedom are indeed under
consideration. In addition, the inclusion of thermal effects nec-
essary for application to supernova explosions and consistent
neutron star merger simulations are also in development.
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