
ASYMPTOTIC EXPANSIONS II 

LEO MOSER AND MAX WYMAN 

1. Introduction. In a previous paper (1) the authors considered the 
problem of finding an asymptotic formula for numbers or functions Bnt?n 

whose generating function is of the form 

(1.1) exp(Pw(x)) = 2-jBn>m--, 
n=Q % ' 

where Pm{x) is a polynomial of degree m in x given by 
m 

(1.2) Pm{x) = XI akx\ am ^ 0. 

The above-mentioned paper contained the restriction that ak > 0. In 
our present paper we remove this restriction and allow the coefficients ak to 
be positive, negative or zero. However we do retain am ^ 0. In (1) it was 
shown that there is no loss in generality in assuming that the greatest common 
divisor of the values of k, for which ak ^ 0, is one. This assumption we shall 
also retain throughout the present paper. 

Since the degree m of the polynomial Pm(x) is fixed we shall, wherever 
possible, suppress m from our notation. Iterated exponential functions occur 
throughout the paper. For this reason we shall use alternative notations 
ex or exp(x) to denote the exponential function. In this notation we write 
(1.1) and (1.2) as 

Q.3Ï exp(P(*)) = X > n - T 
7i=0 til 

m 

(1.4) P(x) = 2 > » * * , am^0. 
A - = l 

2. Trigonometric polynomials. In our previous paper (1) the trigono
metric polynomial S(R, 6) associated with P(x) by means of 

m 

(2.1) S(R, 6) = Vl[P(Reie)] = £ ak R
k cos k$ 

played a very important role. We shall call this function the dominant function 
of P(x) and throughout the paper R shall be considered as large and positive. 

When the coefficients ak > 0 the dominant function has a greatest maximum 
at 0 = 0. Further in a sense, which we shall explain later in the paper, this 
greatest maximum is unique in the range 0 < 0 < w. However when we do 
not restrict the sign of the ak the greatest maximum will, in general, occur at 
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some value of 6 which depends on R. There may also be other maxima which 
we shall define to be equivalent to the greatest maximum. From the point of 
view of finding an asymptotic formula for the Bn these equivalent maxima are 
important. In fact the asymptotic formula is obtained by expansions about 
the angles which give the greatest maximum and its equivalents. 

For the above reasons we shall, in this section, discuss and classify the 
maxima of the dominant function S(R, 6). Throughout the section we restrict 6 
to be in the range 0 < 6 < r. 

Denoting differentiation with respect to 6 by a prime then the values of 6 
which make S(R, 6) a maximum are contained in the solutions of the equation 

m 

(2.2) S'(R, 6) = - Z * a* ^*sin k 0 = 0. 

For a large positive value of R it is easily shown that all of the solutions of 
(2.2) for 6 must have the form 

(2.3) dr(R) = — + Zt>s,rR-s, 
m s=1 

where r is an integer in the range 0 < r < m and bSjT are constants. 
The only values of r for which 6r will give a maximum of S(R, 0) are those 

values that will satisfy the equation 

(2.4) amcos(r7r) = \am\, 

which of course implies that consecutive maxima are separated by an angular 
displacement of approximately 2w/m. 

Definition 2.1 The angles 6T of (2.3) which yield maxima of S(R, 6) shall 
be called the asymptotic angles of S(R, 6). The reason for the name will become 
apparent later in the paper. 

Definition 2.2 Let Bu 63- be two asymptotic angles of S(R, 6). These shall 
be called equivalent asymptotic angles if and only if 

(2.5) lim (S(R, 6t) - S(R, 0j)) = finite constant. 
-R->co 

Definition 2.3 The maxima associated with equivalent asymptotic angles 
are called equivalent maxima. 

THEOREM 2.1. There is no other asymptotic angle equivalent to 6 = 0 when 
6 = 0 is an asymptotic angle of S (R yd). A similar theorem holds for 6 = w. 

Proof. Let us assume there is an asymptotic angle 6r contained in (2.3) 
which is equivalent to 6 = 0. Two possibilities exist either 6r is independent of 
R and hence bs>r = 0 or else 6r depends on R and there exists at least one 
b S t T * 0 . 

For the first possibility 6r — rir/m and 
m 

(2.6) S(R, 0) - S(R, Or) = Z) at R" (1 - cos k 6r). 
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Hence 
lim[5(i?,0) - S(R,dr)] 
i2->oo 

is finite if and only if 
(2.7) cos k 6T = 1 

for all values of k, 1 < k < m, for which ak ^ 0. Since the greatest common 
divisor of the above-mentioned values of k is one it is easily shown that the 
only solution of equations (2.7) in the range 0 < 6r < -K is BT = 0. 

Let us now assume that the constants bSjT are not all zero. This implies that 
there must exist a value of k in (2.2), for which ak ^ 0, and such that 
sin k(rw/m) ^ 0. Otherwise 6r = rir/m would be a solution of (2.2) and we 
would be back to the case where 6r is independent of R. Let us suppose that 
k = q is the largest value of k such that 

(2.8) sin(gnr/ra) ^ 0, aq =̂  0, 1 < q < m - 1. 

Under these conditions we can easily show from (2.2) that 

(2.9) BT = — + 0(l/Rm-q). 
m 

We shall now consider values of k > q for which ak ^ 0. For all such values 
of k we have by assumption that 

(2.10) sin (krw/tn) = 0. 

Hence by using (2.8), (2.9) and expanding cos(&0r) we have 

(2.11) cos(JWr) = cos(krw/m) + 0(l/R2m~2Q). 

This implies that 

(2.12) akR
k cos kdr = akR

k cos(krir/m) + 0(Rk+2q-2m). 

Since k < m and q < m — 1, k + 2q — 2m < q — 1. Hence the order term 
cannot affect any terms of order Rs, s > q. A similar result can be obtained 
for the single term k = q. This means that 

m m 

(2.13) X) a* -#*cos £0. = X) <** Rkcos (krw/m) 4- 0 ( ^ c _ 1 \ 

From (2.13) we can conclude that 

lim[S(i?,0) - S(£,0 r ) ] 
-B->oo 

is finite only if 
(2.14) cos(krir/m) = 1 

for all values of k, q < k < w, such that â  7e 0. However aç ^ 0 by assump
tion. Hence (2.14) implies cos(qrw/m) = 1. This in turn means sm(qr7r/m) = 0 
which contradicts (2.8). Hence if 6 — 0 is an asymptotic angle of S{R, 6) it 
has no equivalent asymptotic angles. A similar proof can be given for 6 — TT. 
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THEOREM 2.2. Let Qt and Oj be two non-equivalent asymptotic angles ofS(R, 0). 
Then 
(2.15) S(R, St) - S(R, 6j) = 0(R*), 

where q is some integer in the range 1 < q < m — 1. 

Proof. Using (2.3) one can easily see that S(R, 0*), S(R, 6j) have expansions 
in the powers of R of the form 

m 

(2.16Ï S(R,et) = Ec . i ? 1 , 
—oo 

(2.17) SiR.O,) = Jt,G.R: 
—00 

where Cs and Cs are constants such that Cm — Cm. Since the maxima are not 
equivalent there must be a value of 5 for which Cs 9^ Cs, 1 < s < w — 1. 
If we denote by q the largest such value of s then 

(2.18) S(R, di) - S(R} dj) = 0(RQ). 

Definition 2.4. Let 0i < 02 < . . . < 0^ be the subset of asymptotic angles 
which includes the asymptotic angle for which S(R, 6) is equal to its greatest 
maximum and all asymptotic angles which are equivalent to this latter 
asymptotic angle. The asymptotic angles 4>t (i = 1 , 2 , . . . , / ) are called the 
maximal asymptotic angles of S(R, 9). 

THEOREM 2.3. The set of maximal asymptotic angles consists only of one 
angle if either d = Oord = irisa maximal asymptotic angle. 

This follows immediately from Theorem 2.1. 

THEOREM 2.4. Let us assume that the set of maximal angles consists of a single 
angle <£i, such that 0 < </>i < -K. If e is defined by 

(2.19) e = #(i-4»)/8 | 

then 
(2.20) S(R, 6) < S(R, 0i - e) 

for all values of 6 in the range O < 0 < $ i — e0r<£i + € < 0 < 7 r . 

The proofs for the two ranges of 6 are similar so that we shall consider 
only the range 0 < 6 < $i — e. In this range we note that there must always 
exist at least one minimum of S(R, 6). This is easily seen because 0 = 0 is 
always a solution of (2.2). Hence S(R, 0) is either a maximum or minimum 
of S(R, 0). If S(R, 0) is a minimum then there is nothing more to prove. 
If S(R, 0) is a maximum then there is a minimum in the range 0 < 0 < <£i 
because S(R, </>i) is also by assumption a maximum. However all the maxima 
and minima are determined by (2.3), hence the angles at which they occur 
are always a finite distance apart. Since e —> 0 as R —> o° we must have that 
there always exists at least one minimum of S(R, 0) in the range 0 < 0 < 0i— e. 
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If there is only one minimum of S(R, 6) in the range 0 < 6 < 0i — e and 
if it occurs at 6 = 0 then the proof of the theorem is trivial. In this case 
S(R, 6) is an increasing function in the range 0 < 6 < 0i — e and hence for 
this range S(R, 6) < S(R, 0i - e). 

Let us now assume that there are other minima of S(R, 6) in this range 
and denote by \f/ > 0 the angle closest to 0i for which S(R, 8) is a minimum. 
Since S(R, 6) is increasing in the range \j/ < 6 < 0i — e we must have 5(i?, 0) < 
S(R, 0i — e) in this range. Hence to complete the proof we need only consider 
the range 0 < 6 < \p. Again it is easily shown that in this later range a maxi
mum of S(R, 6) must exist. We denote by a the angle at which the greatest 
maximum of S(R, 6) occurs for the range 0 < 6 < yp. We note of course that 
a is an asymptotic angle. Clearly for the range 0 < 6 < ^, S(R, 6) < S(R, a). 
Hence 

(2.21) S(R, * i - € ) - S(R, d) > S{R, 0i - e) - S(R, a). 

Expanding S(R, 4>i — e) in a Taylor's expansion, and remembering that 
S' (R, 0i) = 0 because S{R, <j>\) is a maximum, we must have 

(2.22) S{R, 0i - e) = S(R, 0i) + %S"(R, 0i) e2 + . • . . 

Since S(R, 0i) is a maximum S"(R, 0i) is negative and is of order 0(Rm) 
in R. Hence using (2.19) 

(2.23) S(R, 0i - e) = S(R, 0i) - 0(i^1/4). 

From (2.21) and (2.23) 

(2.24) S(R, 0i - e) - SCR, 6) > S(i^, 0i) - S(R, a) - 0(i^1/4). 

However, 0i, a are non-equivalent asymptotic angles, hence, by Theorem 2.2, 

(2.25) 5(2?, 0i) - 5(i?, a) = 0(7^). 

where g is an integer in the range 1 < g < m — 1. Thus (2.24) and (2.25) 
imply 

(2.26) S(R, 0i - e) - S(R, 6) > O(J^). 

By assumption S(R, 0i) is the greatest maximum of S(R, 6) in the range 
0 < 6 < 7T. Hence the order term must be positive. When this is so (2.26) 
gives 

(2.27) S(R,6) < 5(2?, 0i - e). 

This completes the proof for the range 0 < 8 < 0i — e. The proof for the 
range 0i + e < 0 < T is similarly obtained. 

THEOREM 2.5. Le/ ws assume that the set of maximal asymptotic angles 
0i < 02 < . • • < 0* consists of at least two angles. Further let us assume that 
0i and 0 i + i are two consecutive maximal asymptotic angles. If e is given by 
(2.19) then one of the following inequalities must hold: 
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(2.28) S(R, 6) < S(R, 4>t + e) 
or 
(2.29) S(R, 6) < S(R, 4>i+1 - e) 

for all values of 0 in the range 0*: + e < 6 < 0<+i — €. 
We omit the proof of this theorem because of its similarity to the proof 

used in Theorem 2.4. 

THEOREM 2.6. Let us assume that the conditions of Theorem 2.4 are satisfied. 
Further let Iu I2 be defined by 

dB, (2.30) h = f expiP(Reid) - P(Rei<l>l) - ind] 
Jo 

(2.31) h = f exp[P(Reie) - P(Rei4>1) - infi dd, 

where n is any real number. Then a number k > 0 exists such that 

(2.32) I/JI < exp(-£i?1/4) 
(2.33) |/2 | < exp(-kRu*). 

Proof. 

\Ii\ < J l exp[S(R, 0) - S(R, 0i)] d». 

By Theorem (2.4), S(R, 6) < 5(i?f 0i - e). Hence 

(2.28) \h\ < ir exp [S(R, 0! - e) - S(£, 0i)}. 

However, using (2.23) we have 

(2.29) \h\ < 7rexp(-£i?1 /4). k > 0. 

We may absorb the ir into the exponent and write 

(2.30) | / i | < exp(-£i?1 / 4) . k > 0. 

The proof for I2 is similar. 

THEOREM 2.7. Le/ us assume that the conditions of Theorem (2.5) are satisfied. 
Under these conditions the absolute value of each of the integrals : 

(2.31) Jo = f exp[P(Reid) - P(Rei<j>i) - ind] dd, 

(2.32) Ii= ( t+1 exp[P(Reie) - P(Reih) - ind] dd, i = 1, 2, . . . , / - 1, 

(2.33) It= ( exp[P(Reid) - P(Re*') - ind] dd, 

is at most of order exp { — o(RlU)} no matter which maximal asymptotic angle 0y 
is chosen. 

The proof is essentially the same as that used in Theorem 2.6. 
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THEOREM 2.8. Let P(x) be given by (1.4) and as usual S(R, 6) denotes the 
dominant function of P(x), given by (2.1). We shall denote by r the complex 
number 
(2.34) r = Re*9 

and by 9 the operator 

(2.35) 0 = 7 7 . 
dr 

If n is a sufficiently large real number then the equation 

(2.36) QP(r) = n 

has a unique solution for r corresponding to each asymptotic angle of S(R, 6). 
Further the solution rr(n) corresponding to the asymptotic angle 6ry given by 
(2.3), satisfies the equations 

(2.37) arg rr = 6r 

and 
(2.38) |r r(«)| = Rr(n) ~ (n/m\an\y<m. 

Proof. From (1.4) 

(2.39) 0 ? ( T ) = 2 * 0 * 7 * = 2 kak R
kcos(k 6) - i S'(R, 6). 

Hence equating the real and imaginary parts of (2.36) we find 

(2.40Ï Y,kak Rkcos k 6 = n 
k=l 

and 
(2.41) S'iR^e) = 0. 

Equation (2.41) is of course the same as (2.2) hence all of the solutions of 
(2.41) for 6 are given by (2.3). Let us choose a particular 6r which is also 
an asymptotic angle of S(R,d). We have already seen that this implies 
amcosrT = \am\. If we substitute (2.3) into (2.40) and expand into powers 
of R we see that (2.40) can be written 

(2.42) m\am\ Rm + O ^ " 1 ) = n. 

Although the first term is independent of r the order term will in general be 
dependent on r. From (2.42) it is easily seen that for large values of n the 
solution of (2.42) for a real positive value of R is unique for each fixed value 
of r. Denoting this solution by Rr(n) it is also easily seen 

(2.43) Rr(n) — (n/m\am\)l/m. 

Since dr = argr r(w) and Rr(n) = |rr(w)| the theorem is proven. One may 
also show without too much difficulty that if RT(n) and Rj(n) are two different 
solutions for \r\ corresponding to different asymptotic angles that 

lim [Rr(n) - Rj(n)] = 0. 
w-x» 
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In concluding this section we might mention that only the maximal asymp
totic angles are necessary in developing our asymptotic formula for Bn. 

3. An example of equivalent maxima. By Theorem 2.3 we know that if 
6 = 0 is a maximal asymptotic angle that S(R, 6) has no other maximal 
asymptotic angles. This result is, of course, only true when we assume that 
the greatest common divisor of the values of k, for which ak 9e 0, is one. 
For a long time the authors conjectured that under the above assumption 
any dominant function S(R, 6) would have only one maximal asymptotic 
angle. Since the conjecture proved to be false it is of interest to give an example 
in which the dominant function has two such angles. 

Let us take P(x) to be given by 

(3.1) P(x) = x90 + x30 - xu + xlb - x10. 

Clearly the G.C.D. (90, 30, 24, 15, 10) = 1. The dominant of (3.1) is given by 

(3.2) S(R, 6) = R*° cos(9O0) + R™ cos(30<9) - R2* cos(240) 
+JR16cos(150) - R10cos(lQ6). 

(3.3) Clearly the solutions of S'(R, 6) = 0 which correspond to maxima of 
S(R,d) are of the form 

(3.4) dr = ~~ + 0(l/i?6°), r = 0, 1, 2, . . . , 45. 

Hence 

(3.5) S(R, 6r) = S(R, nr/45) + 0(l/i?3°). 

This means that the maximal asymptotic angles can be obtained by choosing 
those values of r which will make S(R} rir/^b) as large as possible. In each 
case the coefficient of R90 is one. All the other coefficients of powers of R 
depend on r. In order to make S(R, r7r/45) as large as possible wre start with 
coefficient of R*° and make this coefficient as large as possible. Then, in turn, 
wre deal with each of the coefficients of the lower powers. 

(3.6) S(R, rir/^b) = R90 + R*° cos(2nr/3) - i^24 cos(8nr/15) 
+i?15cos(f7r/3) - i?10cos(2r7r/9) 

Step A. cos(2r7r/3). The values of r in the set 0, 1,2, . . . , 45 which make 
cos(2nr/3) = 1 are r = 0, 3, 6, , 45. 

Step B. — cos(8r7r/15). The values of r in the set 0, 3, 6, . . . , 45 which make 
— cos(8r7r/15) as large as possible are 6, 9, 21, 24, 36, 39. 

For these values — cos(8f7r/15) = cos(7r/5). 

Step C. cos(r7r/3). The values of r of the set 6, 9, 21, 24, 36, 39 which make 
cos(nr/3) = 1 are r = 6, 24, 36. 

Step D. — cos(2nr/9). The values of r of the set 6, 24, 36 which make 
— cos(2r7r/9) as large as possible are r = 6, 24. 
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Hence there will be two maximal asymptotic angles corresponding to the 
values r = 6 and r = 24. 

It is interesting to note that if the sign of x10 in P(x) is changed to positive 
then we would again have had a unique maximal asymptotic angle. Namely, 
the one corresponding to r = 36. 

4. Asymptotic formula for unique maximal asymptotic angles. 
When 6 = 0 is a maximal asymptotic angle of the dominant function we have 
seen that there are no other maximal asymptotic angles. For this case the 
derivation of an asymptotic formula for Bni as given by (1.3), can be obtained 
by using the same procedure as was used in our previous paper (1). The 
proofs and final formulae are identical. For this reason we state, without 
proof, that the first term of the asymptotic formula is 

(4.1) Bn„!«espmi2rA*Pm->i 

where A is the operator 

(4.2) A=R ± 

and R as a function of n is given by 

(4.3) A P(R) = n. 

Other terms of the asymptotic formula can be obtained from the general 
formula given in (1). 

Further the fact that 

(4.4) A2P(R) = T,k2akR 

allows us to reduce (4.1) to 

(4.5) ^ . - ^ « 
(2T)'m(am)TR^m ' 

with R again given by (4.3). 
The case 6 = w can be reduced to the case 6 = 0 by replacing 6 by w — 6. 

This is equivalent to replacing R by —R. For this case the first term of the 
asymptotic formula for Bn is given by 

(4.6) Bn ~ L=}y^i=m. ( 2 7 r ^ p ( _ * ) r . 

and R as a function of n is given by 

(4.7) A P(-R) = n. 

The formula that corresponds to (4.5) is 

( 4 - 8 ) Bn l 2 ^ ï ) r m î ? " + î m ' 

and R is given by (4.7). 
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We now proceed to discuss the case when the dominant function has a unique 
maximal asymptotic angle say at 

(4.9) 6 = a(R), a(R) 9* 0, a(R) 5* TT. 

Throughout we shall simply write 

(4.10) a(R) = a. 

From (1.3) we have 

(4.11) Bn = f~ (exp(P(*))) 

By Cauchy's Theorem 

(4.12) Bn = ~--!, f z~{n+l) exp(P(s)) dz, 

where C is chosen as the circle z = Reid. At this stage the radius of the circle 
R is an arbitrary positive number. Equation (4.12) can be written 

(4.13) Bn = ~^n f_exp[P(Rei6) - indï de 

7Ti< J o 

If we define the complex number r by 

(4.14) r = i ^ i a 

then (4.13) can be put into the form 

(4.15) Bn = ~di\ r-nexp(P(r)) jexp[P(rexp(i(d-a)))~P(r)-in(d-a)]de I 

We shall show that the integral of (4.15) has an asymptotic expansion in 
terms of powers of 1/r. However by using Theorem (2.6) we can easily show 
that the integrals 

(4.16) exp[P(r exp(i(e - a))) - P{r) - in(6 - a)] dO 
Jo 

and 

(4.17) I exp[P(r exp(i(d - a))) - P(r) - in(d - a)] dd 
Ja+e 

are both of order exp( — 0 ( | T | 1 / 4 ) ) when e is given by (2.19). Anticipating this 
result we may write 

(4.18) £ » ~ ^ 9 î | r~"expP(r) f exp{P(r exp i(d-a)) -P(T) -in(fi-a) }dd\. 

We define / to be the integral contained in (4.18) and replace 6 — a by 6. 
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Hence 

(4.19) 1= j exp(F(d))dd, 

where 
(4.20) F(0) = P(reid) - P(r) - inO. 

Remembering that 9 is the operator given by 

(4.21) 9 = rd/dr 

we have on expanding F(6) about 0 = 0 that 

(4.22) F(9) = (9 P(r) - n) id - 92 P ( r ) ~ + £ 6*P(r) ^ . 

We have assumed that there exists a unique maximal asymptotic angle 
6 = a and by Theorem (2.8) there corresponds a unique solution of the 
equations 
(4.23) 9 P ( r ) =n 

(4.24) arg T = a. 

By choosing r to be this unique solution we may write (4.22) as 

(4.25) F(0) = - 92 P ( r ) -- + £ B* P( r ) 

Since 0 < arg T < w there is no loss in generality in considering the complex 
plane of r as cut along the negative real axis. For this reason there is no 
ambiguity in finding the square root of r. Similarly we shall find that there is 
no ambiguity in finding the square root of certain polynomials in r which later 
enter into the discussion. 

For simplicity we introduce the following notation: 

(4.26) T = ZT\Z = r_i; 

(4.27) 4, = 0(|62 Pir))1'; 

(4.28) h = e{WP{r)f-

(4.29) 
m 

Ck(Z) = £ / a s Z 2 m - 2 s ; 
s = l 

(4.30) MZ) = ck{Z) zm(*-2) (èc2(z))-*/2 

(4.31) Hz,*)= th(z)^--. 

In this notation the substitution (4.27) reduces the integral (4.19) to the 
form 

(4.32) I = (ôr|^y)* J W - <t>2 + HZ, *)] <**• 
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We note that although 6 is a real variable that <£ as given by (4.27) is, in 
general, complex. Similarly h is, in general, a complex variable. From Theorem 
(2.8) we know that 

(4.33) lim |T| = limi? = oo. 

It is easily shown that \h\ = 0(|r |1 /8) and hence 

(4.34) lim |A, = » . 
M->0O 

Finally one can show without too much difficulty that 

(4.35) lim arg h = 0. 
n-ïœ 

Our next step is to expand exp(^(Z, $)) into a Maclaurin expansion about 
Z = 0, of the form 

oo 

(4.36) exp(iKZ, <*>)) = £ ¥ , (*) Zk, *„ = 1, 

where the ^(</>) are polynomials in <j>. Quite formally one would have on 
integrating term by term and replacing h by œ that 

(4.37) t-KwrûJ&JS**™***' 
The rigorous justification of (4.37) requires only a slight modification of the 
procedure that was used in our previous paper (1). For this reason we omit 
this justification. Defining bk to be given by 

(4.38) 6 * = P e~** ¥ t (<*>) d<j>, 
« J - c o 

we can obtain from (4.18) and (4.37) that 

(4.39) Bn ~ TT1 2* n\ M r~n(e2 P ( r ) )^exp(P( r ) ) f ) J4 r"** 1 

and r is given as the solution of 

(4.40) 6 P(r) = n, 

which corresponds to the unique (by assumption) maximal asymptotic angle of 
the dominant function of P(x). 

Since b0 = Or)* the first term of (4.39) is 

(4.41) Bn ~ 2*(«!) $K[T-W(TT e 2 P ( r ) H e x p ( P ( r ) ) ] . 

We can, if we so desire, replace (02(P(r)))^ by 

(4.42) (9 2
 P(T))^ ~ m\am\^m; 

hence 
(4.42) Bn~n\ $R[r-w(27r-1)i exp(P(r))/m|aJ* | r | H 
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In concluding this section we would like to point out that formula (4.39) 
does not hold for a — 0 or a = ir. The reason being that a maximal asymptotic 
angle internal to the range 0 < 6 < w gives a contribution to the asymptotic 
formula from both sides of the maximal asymptotic angle. However at the 
boundary points of the interval a contribution to the asymptotic formula is 
obtained from one side only. For this reason when a = 0 or w formula (4.39) 
and the subsequent formulas are out by a factor of \. 

5. The general asymptotic formula. In the general case we have seen 
that the dominant function can have more than one maximal asymptotic 
angle. We assume that there is at least two such angles and denote the set of 
maximal asymptotic angles by <t>j U — 1> 2, . . . , t\ t > 2). Under these 
assumptions neither of the angles 0 or -K can be a member of the set. 

From Theorem (2.8) we have seen that corresponding to a fixed value of j 
there corresponds a unique solution for r of the equations 

(5.1) QP(T) = n, 

(5.2) arg r = 0,. 

Let us denote this solution by 

(5.3) TJ = R<ei<t>j. 

Without difficulty one can show that Rj} Rk are two different solutions for 
\r\ such that 
(5.4) lim (Rj - Rk) = 0. 

w->oo 

Now Bn is given by 

(5.5) Bn = £- f 2- (n+1) exp (P (z) ) dz, 

where C is any closed contour enclosing the origin. Instead of a circular contour 
we choose C to be given as follows: 

A. Range 0 < 0 < 0i + ei, where ei = R^-w*. In this range C is the 
circular arc z = R\ eie. 

B. Range 

<t>j + ej < 6 < <t>j+1 + ej+1, 1 < j < / - 1, ej = R^~^'\ 

For this range C is the circular arc z — Rj+i eid. 
C. Range 

* i + et <e < 7T, et = 2?,(!-*«>/«. 

Here C is the circular arc z = Rt eid. 
D. In order to make a closed contour we join all the circular arcs by radial 

lines at the end points of each arc. 
E. Range — w < 6 < 0. The contour C for this range is taken to be the 

mirror image of the contour for 0 < 6 < ir. 
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By using Theorems (2.5) and (2.7) we can show that only the portions of 
the contour 4>j — tj < 6 < 4>j + ej> j — 1 , 2 , . . . , / and their mirror images 
contribute to the asymptotic formula. Hence 

d$ 
(5.6, B , ~ ^ \ ± p W t W " ) - * ! 

Each of the maximal asymptotic angles can then be treated individually by 
the method of the previous section. This leads to the asymptotic formula 

(5., , B , ~ - {R| f ) £ bt, T7 exp(P(r,)) r?k ( | e 2 P(r y ) ) -M , 

where OP(TJ) means [9 P(r)]T==Tj. Similarly for G2P(TJ). Further the ry are 
given as the solutions of the equations 

(5.8) 0 P ( T ) = n 

and 
(5.9) arg r = cj>j} 

where <t>j is a maximal asymptotic angle of the dominant function of P(x). 
Finally the bkj will have formulae analogous to (4.38). To obtain explicit 
formulae, expansions about each maximal asymptotic angle are involved. 

6. Example. We have chosen as an example to illustrate our method the 
Hermite polynomials Hn(t). Szegô (3; p. 194) gives an asymptotic expansion 
of these polynomials and the method of proof divides the expansion formula 
into two cases according as n is even or odd. Our method makes no such 
separation and the two cases are treated as one. 

The generating function of Hn{t) is 

(6.1Ï exp(2to - x ) = 22 Hn{t) —.. 
w.=o n\ 

In the notation of the present paper: 

(6.2) P(x) = 2tx - x\ 

(6.3) S(R, 6) = 2tR cos 6 - R2 cos 26. 

It is easily seen that the dominant function has a single maximum at 
6 = fa where </>i is given by 

(6.4) 0i = arc cos (t/2R). 

The value of r is determined by 

(6.5) 2t r - 2r2 = «, 

(6.6) arg r = 0i. 
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Hence 

(6.7) R = (n/2)% 

(6.8) 0i = arc cos (t/(2n)*), 

(6.9) r = Rem = §(/ + î(2» - t2)h). 

From (6.8) for all real / and large n 

(6.10) </>i = ITT - t (2w)-* - (/3(2n)"3/2/6) 

and 
(6.11) n cj)i = \ nw — (\ri)h + terms of order n~\ 

We shall drop terms of the order n~~* in our final formula to get an expression 
for the first term in the asymptotic expansion. At certain stages one must 
retain such terms. For example to obtain (6.11) from (6.10). 

From (6.7), (6.9) and (6.11) 

(6.12) rn = (\nfn ei{hn*-{hn) t+'"\ 

Similarly 

(6.13) exp(P(r)) = exp[è (/2 + n) + i({\n)h . . .)], 

(6.14) [B 2P(r)]* = (2»)* + 

Hence by (4.41) 

(6.15) Hn(t) - (2/*)* »! 3U(^)-"W (exp M*2 + n) 
+i((2»)* / - |»TT + . . .)](2»)~è. 

Using Stirling's formula for w! 

(6.16) Hn(t) - 2è(w+1)(»/e)^ e^2 cos((2w)* / - inv). 

This term agrees to the proper order with Szego's formula. Other terms can 
easily be calculated and it can be seen that our method does not distinguish 
between even and odd n. 

We hope in subsequent papers to apply the method to other problems 
involving asymptotic expansions. 

7. Conclusion. In concluding this paper we would like to point out several 
possibilities for further generalizations. The most obvious generalization 
would be to obtain an asymptotic formula when the coefficients ak of P(x) 
are allowed to be complex functions of a complex parameter /. We have 
carried this problem far enough to be reasonably certain that our method will 
generalize to this case with a minimum of modification. A second type of 
generalization would be to allow the ak to be functions of n and obtain formulas 
of the Plancherel-Rotach type. We have found examples of this type of 
problem for which our method will apply but it does not seem likely that the 
method can be used to solve the general problem of this type. A final type of 
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generalization we have considered is the replacement of the polynomial 
P(x) by a function of f(x). We have found that the method can be applied 
to the special case of the Bell numbers (2), in which f(x) = ex — 1, but fairly 
stringent conditions would have to be placed on f(x) in order for our method 
to apply to an arbitrary class of functions. 
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