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Abstract

The impact of April sea-ice thickness (SIT) initialization on the predictability of September sea-
ice extent (SIE) is investigated based on a series of perfect model ensemble experiments using the
MIROC5.2 climate model. Ensembles with April SIT initialization can accurately predict the
September SIE for greater lead times than in cases without the initialization – up to 2 years
ahead. The persistence of SIT correctly initialized in April contributes to the skilful prediction
of SIE in the first September. On the other hand, errors in the initialization of SIT in April
cause errors in the predicted sea-ice concentration and thickness in the Pacific sector from
July to September and consequently influence the predictive skill with respect to SIE in
September. The present study suggests that initialization of the April SIT in the Pacific sector sig-
nificantly improves the accuracy of the September SIE forecasts by decreasing the errors in sea-ice
fields from July to September.

Introduction

The Arctic sea-ice cover has decreased in all months since satellite observations began in the
late 1970s (Stroeve and Notz, 2018). In particular, sea-ice extent (SIE) in September exhibits a
decreasing trend of 12.8% per decade (National Snow and Ice Data Center, 2018, http://nsidc.
org/arcticseaicenews/). The decline in Arctic sea ice influences the climate system not only in
the Arctic region but also in the midlatitudes (e.g., Mori and others, 2019) and economic activ-
ity via the Northern Sea Route (e.g., Khon and others, 2010; Liu and Kronbak, 2010). These
factors indicate that there is a need for accurate seasonal-to-interannual sea-ice forecasts
(Eicken, 2013).

Initialized predictions using climate models have shown that the summer SIE can be pre-
dicted up to 2–7 months ahead (e.g., Sigmond and others, 2013; Wang and others, 2013;
Msadek and others, 2014; Bushuk and others, 2017). On the other hand, perfect model ensem-
ble prediction experiments have suggested that the Arctic SIE has a potential predictability of
1–2 years (Blanchard-Wrigglesworth and others, 2011). There is still a gap of a few months to
1 year in the predictable periods between initialized predictions and perfect model experi-
ments. For this reason, further work is needed to improve the forecast accuracy of the real
sea ice. The key variables for improving predictive skill are sea-ice thickness (SIT) and subsur-
face water temperatures (e.g., Day and others, 2014a), which are thought to be a memory for
sea-ice variability. Hence, the initialization of these physical quantities is very important for
seasonal-to-interannual sea-ice forecasts.

Previous studies have pointed out the importance of SIT when predicting the summer
sea ice. For example, the SIT in winter to spring is considered to be a key predictor of
the SIE in summer (e.g., Kauker and others, 2009; Kimura and others, 2013). The SIT ini-
tialization has considerably improved the predictive skill of the Arctic sea ice (e.g., Day and
others, 2014b; Collow and others, 2015; Dirkson and others, 2017; Blockley and Peterson,
2018; Kimmritz and others, 2018; Zhang and others, 2018). Some studies have also
shown that the persistence of SIT could contribute to the skilful prediction of the
September SIE (e.g., Bushuk and others, 2017; Ono and others, 2018). However, the sensi-
tivity of the predictions to initializations for different regions for the Arctic sea ice has not
yet been thoroughly investigated.

Motivated by the above studies, we investigate the impact of the initialized SIT in April
on the predictability of Arctic SIE in September following Day and others (2014b) because
they did not examine the impact of SIT initialized in spring. To this end, control and perfect
model ensemble prediction experiments are first conducted using a climate model, under
the Arctic Prediction and Predictability on Seasonal-to-Interannual Time Scales
(APPOSITE) project (Day and others, 2016). When performing sea-ice forecasts with
coupled global climate models, forecast errors arise from errors in the initial conditions
and an incomplete representation of physical processes in the model. In the perfect
model experiments, the model can predict itself with ideal initial conditions and no biases
(e.g., Collins, 2002). However, it is noted that the predictive skill of a perfect model is not
necessarily an upper bound of the predictability, as the climate in the model may be more
predictable than in reality or vice versa (Kumar and others, 2014). Second, critical areas for
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the improvement of forecast accuracy in the September Arctic
SIE are identified based on comparisons of predictability
metrics. This will help inform the effective use of the limited
ice thickness data for initialization and provide information
for target sites focusing on ice thickness observations.

Methods

The climate model used in this study is the Model for
Interdisciplinary Research on Climate (MIROC) version 5.2
(Tatebe and others, 2018). The horizontal resolution of the
atmospheric component is a T42 spectral truncation (∼300 km),
and there are 40 vertical levels up to 3 hPa. The warped bipolar
horizontal coordinate system of the MIROC5 oceanic component
has been replaced by a tripolar coordinate system (Murray, 1996).
The horizontal resolution of the oceanic component is a nominal
1° to the south of 63°N and ∼60 km over the central Arctic Ocean.
There are 62 vertical levels, the lowermost level of which is located
at the 6300 m depth. The sea-ice component implements one-
layer thermodynamics (Bitz and Lipscomb, 1999), elastic–vis-
cous–plastic rheology (Hunke and Dukowicz, 1997) and a subgrid
ice thickness distribution (Bitz and others, 2001) with five cat-
egories. The detailed framework and parameters have been
described in Komuro and others (2012).

This study is based on perfect model simulations, which is
the same approach used in Ono and others (2019). The experi-
ments performed in this study are briefly summarized in
Table 1. A control experiment (CTRL) with radiative forcing
fixed at present-day levels (year 2000) is conducted following
the APPOSITE project framework (Day and others, 2016). The
model is newly integrated for 1000 years, arbitrarily labelled
1–1000, with the initial conditions from the CTRL of Ono and
others (2019).

A series of perfect model ensemble prediction experiments are
carried out to assess the predictability of sea ice. The start date is
1 April of the same year. An ensemble of eight members is gener-
ated for the start date. As in Ono and others (2019), only eight
ensemble members were used in the perfect model experiments
based on the APPOSITE protocol. However, care should be
taken when interpreting the results because 10–15 ensemble mem-
bers are required to effectively capture the internal variability (Jahn
and others, 2016). The initial conditions are taken from CTRL, and

each member differs only by a perturbation of the sea surface tem-
perature, which is generated by spatially uncorrelated Gaussian
noise with a std dev. of 10–4 K following the APPOSITE project.
Each ensemble is run for 3 years and 9 months from 1 April.
The above experiments are referred to as INIT.

Ensemble prediction experiments with the same setup as in
INIT but without the initialization of SIT are also conducted fol-
lowing Day and others (2014b). To remove the initial memory of
the SIT, the grid-averaged SIT is replaced by a climatology for
which the monthly mean values during the period of 1–1000
are used, but with the grid-averaged sea-ice concentration (SIC)
and snow depth held fixed. The replaced ice thickness for the
ith category (ITi

REPL) is represented as ITi
REPL = ITi

CTRL + DSIT
SICCTRL

,

where ITi
CTRL is the thickness of the ice for the ith category of

CTRL, ΔSIT ( = SITCLIM− SITCTRL) is the difference in the grid-
averaged SIT between the climatology and CTRL, and SICCTRL is
the grid-averaged SIC of CTRL. Consequently, the replaced grid-
averaged SIT is calculated as

∑5
i=1 IC

i
CTRLIT

i
REPL(= SITCLIM),

where ICi
CTRL is the ice concentration of the ith category of

CTRL. However, there is a case where the ice thickness of the
ith category is outside of the upper and lower thickness limits
(see Table 3 of Komuro and others (2012) for the limits). In
that case, the initial values for the ice concentration and thickness,
snow depth on ice and temperature in the ice for the ith category
are redistributed so that the ith category ice thickness is within the
limits. The above experiments are referred to as CLIM. As will be
explained in detail later, two additional experiments are also con-
ducted to confirm this paper’s hypothesis based on the INIT and
CLIM results.

Results

Control experiment

Before showing the results, we briefly review here the basic per-
formance of the model used in this study. As shown in Ono
and others (2019), MIROC5.2 largely reproduced the observed
features for the mean state, variability and diagnostic predictabil-
ity of sea ice, indicating that it is a useful model for investigating
sea-ice predictability. Note that anomalies for all variables are
defined as the deviation from the 1000-year climatology of
CTRL. In the present study, we did not consider the climatology

Table 1. Overview of simulations considered in this study

Experiments Forcing year Length Number of start dates Start months Ensemble size Sea-ice thickness initialization

CTRL 2000 1000 years
INIT 3 years and 9 months 10 April 8 Yes
CLIM 3 years and 9 months 10 April 8 No
PSINIT 9 months 10 April 8 Only Pacific sector
PSCLIM 9 months 10 April 8 Except for Pacific sector

Fig. 1. Time series of the September sea-ice extent (SIE) anomaly relative to the 1000-year climatology of CTRL. Plus and minus two std dev. boundaries are indi-
cated by horizontal dashed lines. Vertical lines denote the ten cases used for perfect model ensemble prediction experiments. Positive anomalies are shown in red
and negative in blue.
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using a shorter window, as suggested by Cruz-García and others
(2019), because there is no significant difference in climatology
between a 1000-year period and a shorter period (not shown).

Figure 1 shows the time series of the SIE anomaly in
September for CTRL. The 1000-year climatology of the
CTRL is 7.10 million km2 and the std dev. is 0.47 million
km2. The interannual variability in SIE is broadly similar to
that of the observations, and dozens of extreme anomalies
exceeding ± 2 std dev. occur during the 1000 years. A low-
frequency variability is also found in the time series, which
is characterized by the persistent positive and negative anom-
alies over the decadal-to-multidecadal timescales. This might

be related to longer climate variability, but sea-ice predict-
ability at longer timescales is beyond the scope of this study.
For the perfect model ensemble prediction experiments, ten
cases will be chosen from CTRL based on the 100-year interval
(vertical lines in Fig. 1). There are two positive and eight
negative anomalies in SIE from ten cases (Table 2). While
the highest SIE is in the model year 151, the anomaly of
0.35 million km2 is less than one std dev. The lowest SIE is
in the model year 751, where the anomaly of −1.35 million
km2, which ranks as the lowest minimum SIE over the
1000 model years, is considerably more than two std dev.
below the 1000-year climatology of the CTRL. Among the

Fig. 2. Sea-ice thickness (SIT) anomalies in September for ten cases in regions from 60 to 90°N. The black lines denote the 15% contours of sea-ice concentration.
Dashed lines show latitude 70° and 80° and longitude 0°, 90°, 180° and 270°.

Fig. 3. Sea-ice thickness (SIT) used as an initial value for (a) INIT (1st April 51 model year), (b) CLIM and (c) the difference in sea-ice thickness between INIT and
CLIM in regions from 60°N to 90°N (latitude circles of 70°N and 80°N are drawn by dashed circles).

Table 2. September sea-ice extent (SIE) (million km2) and volume (SIV) (thousand km3) for 10 model years and their anomalies from the climatology of CTRL
(values for the year shown in Figs 4 and 5 are indicated in bold)

Year 51 151 251 351 451 551 651 751 851 951

SIE 6.31
−0.68

7.36
0.35

6.94
−0.09

6.60
−0.45

6.55
−0.53

7.27
0.16

7.06
−0.07

5.81
−1.35

6.54
−0.65

6.73
−0.48

SIV 11.3
−4.23

17.2
1.44

16.7
0.71

14.8
−1.39

13.8
−2.58

15.8
−0.79

17.6
0.83

12.2
−4.73

15.1
−2.05

14.6
−2.73

Annals of Glaciology 99

https://doi.org/10.1017/aog.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.13


ten cases, model years 151 and 751 also have the highest
positive and negative anomalies, respectively, in sea-ice
volume (SIV).

In most cases for the negative SIE anomalies, the sea ice widely
retreats in the Beaufort, Chukchi, East Siberian and Laptev Seas and
the thickness anomaly is smaller near the ice edge, especially in
model years 51, 751 and 851 (Fig. 2). In contrast, the thickness anom-
alies in themodel year 151 are positive inmost areas of thePacific sector
of the Arctic Ocean except for the East Siberian Sea, leading to the

positive SIE anomaly. It is likely, at least in MIROC5.2, that the
September SIE anomaly is determined by sea-ice variability in the
Pacific sector under the influence of the atmospheric circulation
anomaly.

Perfect model ensemble prediction experiments

Figure 3 shows the spatial distribution of SIT on 1 April in model
year 51 for INIT and CLIM, together with the difference, as an

Fig. 4. Time series of sea-ice (a, b) extent (SIE) and (c, d) volume (SIV) anomalies in INIT (blue) and CLIM (red) started from 1 April for model years (a) 251 and (b)
751. Black lines indicate the CTRL results. Blue and red shadings denote the ensemble spread for INIT and CLIM.
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example of the SIT replacement. The sea ice in CLIM is thicker in
the Pacific sector and the western part of the Kara Sea and thinner
in the Barents Sea, the northern part of Greenland and the Baffin
Bay when compared to INIT.

Before assessing the prediction skill of sea ice, it might be
more useful to compare the results in INIT with those in
CLIM for a specific model year. Figure 4 shows the time series
of the SIE and SIV anomalies for model years 251 (nearly-
climatology case) and 751 (highly-extreme case). For the
year 251 (Figs 4a and c), the SIE of CTRL remains continu-
ously within the ensemble spread up to the second
November (lead month 20) in INIT. In CLIM, it remains
within the ensemble spread during the first two lead months
(April and May) and freezing seasons (October–March) but
not during the first and second melting seasons (April–
September). With regard to the SIV, the result of CTRL
remains within the ensemble spread over longer lead-times
in both prediction experiments because the SIV in the year
251 is close to the climatology. For the year 751 (Figs 4b
and d), however, the SIE of CTRL is outside of the ensemble
spread in the first September by ∼0.2 million km2 even in

INIT. These results are consistent with the previous study by
Ono and others (2019), who showed that predictions started
in April have no significant skill for a drastic ice reduction
in September. In CLIM, the SIE during the melting season
is far from CTRL up to the second prediction years. Similar
features are also found in the SIV.

Figure 5 shows the spatial distribution of the September SIT
anomaly for model years 251 and 751 in INIT and CLIM. For
the year 251, the sea-ice edge in CLIM (red line) is inconsistent
with those in INIT (blue line) and CTRL (black line) between
the East Siberian and the Laptev Seas. These differences lead to
the differences in the predictions of the SIE, as shown in
Figure 4. For the year 751, even in INIT, the sea-ice retreat
lags behind that in CTRL in the northern part of the East
Siberian and Laptev Seas (black and blue lines in Fig. 5b).
One of the reasons for this is that predictions started on 1
April do not reproduce the Arctic dipole anomaly in sea-level
pressure formed in June–August of year 751 (not shown). In
contrast, the sea-ice retreat in CLIM is delayed further as a
result of the replacement with the thicker climatology, there-
fore leading to the positive SIE and SIV anomalies.

Fig. 5. September sea-ice thickness (SIT) anomaly in INIT and CLIM for model years (a) 251 and (b) 751 in regions from 60°N to 90°N (latitude circles of 70°N and 80°
N are drawn by dashed circles). The 15% contours of sea-ice concentration in September are indicated by black, blue and red curves for CTRL, INIT and CLIM,
respectively. In INIT for model years 251 and 751, the 15% contours for each ensemble member are also denoted by thin blue (INIT) and red (CLIM) lines.
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Next, the prediction skill for SIE and SIV is assessed based on
the root-mean-square error (RMSE) presented in Day and others
(2014b). In perfect model experiments, each ensemble member is
assumed to be the truth, and the sufficient sample size can be
increased by taking each member in turn as the truth and every
other member as a forecast. Therefore, the ensemble RMSE is
defined as

RMSE(t) =
�������������������������������������∑nd

j=1

∑nm
i=1

∑
k=i (xkj(t)− xij(t))

2

ndnm(nm − 1)

√
,

where xij (t) is a certain variable (such as SIE) at lead time t for
the ith member of the jth ensemble, nd ( = 10) is the number of
start dates, and nm ( = 8) is the number of ensemble members.
The state is said to be predictable at lead time t, if
RMSE (t) ,

��
2

√
s where σ is the climatological std dev. of CTRL

(Collins, 2002). As in Day and others (2014b), the RMSE of
INIT is calculated in such a way that xkj is considered to be the
truth and each xij the forecast. Similarly, the RMSE of CLIM is
calculated by replacing xij in the above equation with yij, which
is the equivalent member from CLIM. The difference between
these two RMSE values gives the gain in skill between the clima-
tological and perfect initialization of the SIT field. The signifi-
cance of the difference is calculated based on an F test with
nd (nm− 1) = 70 degrees of freedom.

Figure 6 shows the time series of the normalized RMSE of SIE
and SIV (normalized by

��
2

√
s) in INIT and CLIM, which were

initialized on 1 April. The normalized RMSE in CLIM (Fig. 6a)
exceeds 1.0 from June (lead month 3) to October (lead month 7),
and thus SIE in September is not predictable. In contrast, the
INIT predictions indicate that SIE is continuously predictable
up to the third September (lead month 30). A significant differ-
ence between them is found in lead months 3–7 (Fig. 6a),
which is somewhat better than the predictions started on 1
January in Day and others (2014b). This difference is likely
impacted by April being a shorter lead time than January. In
this study, there are also significant differences in the second
August and September. This is likely because of the
summer-to-summer re-emergence mechanism associated with
the persistence of ice thickness (Day and others, 2014b).
Similarly, there are significant differences in SIV over longer
lead times, compared to those in SIE, as in Day and others
(2014a). As shown in Cruz-García and others (2019), since the
autocorrelation structure of SIV in MIROC (also see Fig. 3c in
Ono and others (2019)) is larger than in other models, there is
the potential for unrealistically high SIV predictability.
Therefore, the predictability of SIV in INIT and CLIM might be
influenced by the autocorrelation structure of SIV in MIROC.

Focusing on the first forecast year (lead months 1–9 or April–
December), we investigate the area underlying the prediction
skill of the September SIE. Figure 7 shows the spatial distribu-
tion of the difference in the RMSE of SIT and concentration
between INIT and CLIM. For the SIT RMSE, the difference
for the first lead month (April) is significant in most regions
of the Arctic Ocean. In the fourth to sixth lead months (July–
September), the difference in SIT RMSE decreases except for
the Pacific sector (Fig. 7a). For the SIC RMSE, there are no sig-
nificant differences in most of the Arctic Ocean in the first 3
months (April–June). During lead months 4–6 (July to
September), the differences become significant in the Beaufort,
Chukchi, East Siberian and Laptev Seas (Fig. 7b). Initial errors
in the April SIT cause errors in the July to September SIC in
the Pacific sector and influence the prediction skill of the
September SIE. Therefore, the initialization of ice thickness in
the Pacific sector is thought to be crucial. These results are sup-
ported by Ono and others (2018), who found a significant rela-
tionship between the September SIE and the sea-ice fields in the
Pacific sector during the melting season. Additionally, the
impacts of initializing predictions with different SIT in April
on other variables are shown in Figure S1. Significant differences
in RMSE are found in most of the Pacific sector, where the dif-
ferences in SIC and SIT RMSE are significant (Fig. 7).

To confirm whether the thickness of April sea-ice fields in
the Pacific sector of the Arctic Ocean determines the
September SIE variability, two additional ensemble prediction
experiments started on 1 April with the SIT initialization only
in (PSINIT) and except for (PSCLIM) the Pacific sector (the
area enclosed by thick lines shown in Fig. 8c) are conducted
until the first December (lead months 9). The normalized SIE
RMSE of PSINIT (green line) is generally consistent with that
of INIT (blue line), except for lead months 1 and 3 (April and
June), indicating that the September SIE is predictable
(Fig. 8a). The normalized SIE RMSE of PSCLIM (black line) is
larger than that of INIT (blue line), as in CLIM (red line). In
contrast, the normalized SIV RMSE is significantly higher
in both PSINIT (green line) and PSCLIM (black line) than in
INIT (blue line) up to lead months 9 (Fig. 8b). From these
results, the RMSE in the sea-ice fields of PSINIT is expected
to be small compared to CLIM. In fact, in PSINIT (Figs 8c
and d), differences in the RMSE of SIC and SIT in September
(lead months 6) decrease substantially in the Pacific sector

Fig. 6. Time series of the normalized RMSE of sea-ice (a) extent (SIE) and (b) volume
(SIV) in INIT (blue) and CLIM (red) initialized on 1 April. Dots indicate where differ-
ences between INIT and CLIM are significant at the 5% levels based on a one-sided
F test.

102 Jun Ono and others

https://doi.org/10.1017/aog.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.13


Fig. 7. Spatial distribution of the difference in the RMSE of sea-ice (a) thickness (SIT) and (b) concentration (SIC) in April (lead month 1), July (lead month 4), August
(lead month 5) and September (lead month 6) in regions from 60°N to 90°N (latitude circles of 70°N and 80°N are drawn by dashed circles). All coloured grid points
are significant at the 5% level based on a one-sided F test.

Fig. 8. Time series of the normalized RMSE of sea-ice (a) extent and (b) volume in INIT (blue), CLIM (red), PSINIT (green) and PSCLIM (black) initialized on 1 April.
Blue dots indicate where differences between INIT and PSINIT are significant at the 5% levels based on a one-sided F test. Spatial distribution of the difference in
the RMSE of sea-ice (c) concentration (SIC) and (d) thickness (SIT) in September (lead month 6) between INIT and PSINIT in regions from 60°N to 90°N (Latitude
circles of 70°N and 80°N are drawn by dashed circles). All coloured grid points are significant at the 5% level based on a one-sided F test. The area enclosed by thick
lines is the region of the Pacific sector considered in this study.
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when compared to CLIM (Figs 7a and b). As pointed out in pre-
vious studies (e.g., Bushuk and others, 2017; Ono and others,
2018), the persistence of sea ice is the source of predictability
for the September SIE. These results therefore suggest that ini-
tialization of the April SIT only in the Pacific sector improves
the forecast accuracy of the September SIE.

Concluding Remarks

The present study investigated the impacts of initialization of SIT
in April on Arctic sea-ice predictability and further identified the
critical areas for the skilful forecasts of the September SIE. To this
end, following partly Day and others (2014b), a series of perfect
model ensemble prediction experiments were conducted using
climate model MIROC5.2. Ensembles with initialization of the
April SIT can predict the September SIE for greater lead times
than those without initialization – up to 2 years ahead. SIT cor-
rectly initialized in April leads to the skilful prediction of SIE in
the first September due to the persistence of SIT (Fig. S2). We
also speculate that a summer-to-summer re-emergence mechan-
ism contributes to the prediction skill in the second September.
On the other hand, the incorrect initialization of SIT in April
results in errors in the SIC and thickness in the Pacific sector
from July to September and consequently influences the predic-
tion skill of the SIE in September. Our results suggest that the ini-
tialization of the SIT in the Pacific sector significantly improves
the forecast accuracy of SIE by decreasing the errors in sea-ice
fields from July to September.

Incorporating accurate sea-ice observations for forecast initial-
ization is an important step in making skilful seasonal sea-ice fore-
casts. Production centres routinely assimilate available satellite-
derived and in situ atmosphere and ocean observations and SIC.
However, SIT data are not currently available from May to
September each year (e.g., Tilling and others, 2016). For other
months, these data do not go back far enough to initialize a suffi-
cient number of hindcasts to provide robust estimates of predictive
skill. The present study showed the effectiveness of SIT initializa-
tion in April when the observed data are available (e.g., Ricker
and others, 2014), as shown in previous studies (Day and others,
2014b; Yang and others, 2016; Chen and others, 2017; Mu and
others, 2017; Blockley and Peterson, 2018; Kimmritz and others,
2018). Furthermore, our results suggest that the critical region for
sea-ice initialization is the Pacific sector. If the initialization of ice
thickness only in a specific region of the Arctic Ocean is found
to improve the regional predictability of sea ice, from the viewpoint
of cost performance, it will be useful for planning observational
campaigns as well as developing forecast systems.

Meanwhile, large-scale Arctic sea-ice circulations are dominated
primarily by the Beaufort Gyre (BG) and the Transpolar Drift
Stream (TDS) (e.g., Kwok and others, 2013). Considering the
sea-ice advection, the initialization of thickness is expected to be
sufficient in upstream regions. However, predictions initialized in
the Pacific sector (PSINIT in this study) include a substantial con-
tribution from the BG and TDS. It is therefore unclear how initial
SIT in the upstream of the BG and TDS contributes to errors in the
Pacific sector via advection as well as melting processes. This point
needs to be addressed in future work.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2020.13.
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