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LETTER TO THE EDITOR

Dear Editor,
On an inequality of Karlin and Rinott concerning

weighted sums of i.i.d. random variables

This note delivers an entropy comparison result concerning weighted sums of independent
and identically distributed (i.i.d.) random variables. The main result, Theorem 1, confirms a
conjecture of Karlin and Rinott (1981).

For a continuous random variable X with density f (x), x ∈ R, the (differential) entropy is
defined as

H(X) = −
∫

f (x) log f (x) dx

and the more general α-entropy, α > 0, is defined as

Hα(X) = 1

1 − α
log Gα(X),

where

Gα(X) =
∫

f α(x) dx. (1)

It is convenient to define H(X) = Hα(X) = −∞ when X is discrete, e.g. degenerate. (Our
notation differs from that of Karlin and Rinott (1981) here.)

We study the entropy of a weighted sum, S = ∑n
i=1 aiXi , of i.i.d. random variables Xi ,

assuming that the density f of Xi is log-concave, i.e. supp(f ) = {x : f (x) > 0} is an interval
and log f is a concave function on supp(f ). The main result is that H(S) (or Hα(S) with 0 <

α < 1) is smaller when the weights a1, . . . , an are more ‘uniform’ in the sense of majorization.
A real vector b = (b1, . . . , bn)

� is said to majorize a = (a1, . . . , an)
�, denoted a ≺ b, if there

exists a doubly stochastic matrix T , i.e. an n × n matrix (tij ) where tij ≥ 0,
∑

i tij = 1, j =
1, . . . , n, and

∑
j tij = 1, i = 1, . . . , n, such that

T b = a.

A function φ(a) symmetric in the coordinates of a = (a1, . . . , an)
� is said to be Schur convex

if
a ≺ b �⇒ φ(a) ≤ φ(b).

Basic properties and various applications of these two notions can be found in Hardy et al.
(1964) and Marshall and Olkin (1979).

Theorem 1. Let X1, . . . , Xn be i.i.d. continuous random variables having a log-concave den-
sity on R. Then H(

∑n
i=1 aiXi) is a Schur convex function of (a1, . . . , an) ∈ R

n. The same
holds for Hα(

∑n
i=1 aiXi) if 0 < α < 1.

As an immediate consequence of Theorem 1, we have the following corollary.
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Corollary 1. In the setting of Theorem 1, subject to a fixed
∑n

i=1 ai , the entropy H(
∑n

i=1 aiXi)

is minimized when all the ais are equal. The same holds if H is replaced by Hα with α ∈ (0, 1).

Note that Corollary 1 and, hence, Theorem 1 need not hold without the assumption that
the density of Xi is log-concave. For example, if Xi ∼ gamma(1/n, 1), i.e. a gamma
distribution with shape parameter 1/n, then the equally weighted

∑n
i=1 Xi, which has an

exponential distribution, maximizes rather than minimizes the entropy H among
∑n

i=1 aiXi

with
∑n

i=1 ai = n. For more entropy comparison results where log-concavity plays a role, see
Yu (2008a), (2008b).

Karlin and Rinott (1981) conjectured Theorem 1 (their Remark 3.1) and proved a special
case (their Theorem 3.1) assuming that (i) ai > 0 and (ii) f (x), the density of the Xis, is
supported on [0, ∞) and admits a Laplace transform of the form

∫ ∞

0
e−sxf (x) dx =

( ∞∏
i=1

(1 + βis)
αi

)−1

,

where αi ≥ 1, βi ≥ 0, and 0 <
∑∞

i=1 αiβi < ∞. Their proof of this special case, however, is
somewhat complicated and does not extend easily when the additional assumptions are relaxed.
A short proof of the general case is presented below.

We shall make use of the convex order between random variables. For random variables X

and Y on R with finite means, we say that X is smaller than Y in the convex order, denoted
X ≤cx Y , if

E φ(X) ≤ E φ(Y )

for every convex function φ. Properties of the convex order and many other stochastic orders
can be found in Shaked and Shanthikumar (1994).

Lemma 1, below, relates the convex order and the log-concavity to entropy comparisons.
The basic idea is due to Karlin and Rinott (1981). See Yu (2008b) for a discrete version that is
used to compare the entropy between compound distributions on nonnegative integers.

Lemma 1. Let X and Y be continuous random variables on R. Assume that X ≤cx Y and that
the density of Y is log-concave. Then H(X) ≤ H(Y) and Hα(X) ≤ Hα(Y ), 0 < α < 1.

Proof. Denote the density functions of X and Y by f and g, respectively. Note that because
g is log-concave, EY 2 < ∞, which implies that H(Y) < ∞, as H(Y) is bounded from above
by the entropy of a normal variate with the same variance as Y . Also, X ≤cx Y implies that
EX2 ≤ E Y 2 < ∞, which gives H(X) < ∞.

Using X ≤cx Y and Jensen’s inequality, we obtain

H(Y) = −
∫

g(x) log g(x) dx

≥ −
∫

f (x) log g(x) dx

≥ −
∫

f (x) log f (x) dx

= H(X).

All integrals are effectively over supp(g) as X ≤cx Y implies that f assigns zero mass outside
of supp(g) when supp(g) is an interval.
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To show that Hα(Y ) ≥ Hα(X), we can equivalently show that Gα(Y ) ≥ Gα(X), where Gα

is given in (1). From the log-concavity of g and α < 1, it follows that (α − 1) log g and, hence,
gα−1 = exp[(α − 1) log g] are convex. We may use this, X ≤cx Y , and Hölder’s inequality to
obtain

Gα(Y ) =
(∫

g(x)gα−1(x) dx

)α(∫
gα(x) dx

)1−α

≥
(∫

f (x)gα−1(x) dx

)α(∫
gα(x) dx

)1−α

≥
∫

f α(x) dx

= Gα(X).

Lemma 2, below, compares weighted sums of exchangeable random variables in the convex
order.

Lemma 2. Let Xi , i = 1, . . . , n, be exchangeable random variables with a finite mean.
Assume that (a1, . . . , an) ≺ (b1, . . . , bn), ai, bi ∈ R. Then

n∑
i=1

aiXi ≤cx

n∑
i=1

biXi.

Theorem 1 then follows from Lemmas 1 and 2 and the well-known fact that convolutions of
log-concave densities are also log-concave.

Remark. Lemma 2 can be traced back to Marshall and Proschan (1965) (see also Eaton and
Olshen (1972) and Bock et al. (1987)). When the Xis are i.i.d., Lemma 2 is given in Arnold
and Villaseñor (1986) for a1 = · · · = an = 1/n, b1 = 0, and b2 = · · · = bn = 1/(n − 1),
and in O’Cinneide (1991) for a1 = · · · = an = 1/n and general b. Further discussions and
generalizations of Lemma 2 can be found in Ma (2000). Some recent applications of Lemma 2
in the context of wireless communications can be found in Jorswieck and Boche (2007).
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