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Previous studies on emergency management of large-scale urban networks have commonly
concentrated on system development to off-load intensive computations to remote cloud
servers or improving communication quality during a disaster and ignored the effect of
energy consumption of vehicles, which can play a vital role in large-scale evacuation owing
to the disruptions in energy supply. Hence, in this paper we propose a cloud-enabled navi-
gation system to direct vehicles to safe areas in the aftermath of a disaster in an energy and
time efficient fashion. A G-network model is employed to mimic the behaviors and inter-
actions between individual vehicles and the navigation system, and analyze the effect of
re-routing decisions toward the vehicles. A gradient descent optimization algorithm is used
to gradually reduce the evacuation time and fuel consumption of vehicles by optimizing the
probabilistic choices of linked road segments at each intersection. The re-routing decisions
arrive at the intersections periodically and will expire after a short period. When a vehicle
reaches an intersection, if the latest re-routing decision has not expired, the vehicle will fol-
low this advice, otherwise, the vehicle will stick to the shortest path to its destination. The
experimental results indicate that the proposed algorithm can reduce the evacuation time
and the overall fuel utilization especially when the number of evacuated vehicles is large.

1. INTRODUCTION

Compared with emergency evacuations in built environment which primarily demand time-
critical responses, large-scale evacuations trigger sudden massive demands on the transport
network and require efficient traffic management and resource allocation mechanisms. Dur-
ing urban-scale evacuations, traffic infrastructures including roads built for daily activities
can suffer high congestion levels which prolong the evacuation process. In addition, non-
eco-driving at less fuel-efficient speeds as well as the frequent acceleration and deceleration
caused by braking can consume a large amount of fuel, which has a significant impact on
large-scale evacuations due to the disruption in energy supply. Hence, in this paper we pro-
pose a cloud-enabled system to guide vehicles to safe areas in the aftermath of large-scale
disasters with the aid of a queueing network based model, namely G-network [9,10]. The
G-network model is used to comprehensively mimic the behaviors and interactions of indi-
vidual vehicles and the navigation system in an evacuation process and analyze the effect
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of the re-routing decisions toward the vehicles. A gradient descent algorithm is employed to
reduce the evacuation time and fuel consumption of vehicles by optimizing the probabilistic
choices of linked road segments at each intersection.

The remainder of the paper is organized as follows. We first review related work in
Section 2, then describe the system framework in Section 3.1 and the approximation mod-
els in Sections 3.2 and 3.3. The energy efficiency and latency routing metrics are introduced
in Section 4. Using the gradient descent optimization in Section 5, the long-term proba-
bilistic routing decisions for vehicles are selected so as to achieve energy and time efficiency.
The simulation model and assumptions are discussed in Section 6, and the related and
experimental results are presented in Section 7. Finally, we draw conclusions in Section 8.

2. RELATED WORK

2.1. Emergency Navigation in Large-scale Disasters

Previous work on large-scale evacuations has mainly focused on system development to
off-load intensive computations to the remote Cloud or maintain and improve communica-
tion quality during a disaster. For instance, early warning systems such as [27,31] leverage
existing public cloud services to gather and disperse multimedia emergency information
among evacuees; users can upload observed emergency situations via portable devices and
share within the community. Emergency navigation systems such as [17] employ camera-
equipped smart phones to take and upload snapshots to cloud servers for localization. Based
on the distribution of evacuees, a Cognitive Packet Network [14,20,21] algorithm is used to
search for safe evacuation routes with shortest times to exits. Vehicular Ad hoc Networks
(VANETs) and cloud computing technologies are utilized in [2] to establish an urban-level
intelligent disaster management system; information from multiply sources and locations is
gathered to make effective decisions, and the Lighthill–Whitham–Richards model is used
to simulate the traffic flows in the city. On the other hand, emergency communication has
also raised considerable interests since it plays a critical role in emergency response. For
example, [26] utilizes opportunistic communications (Oppcomms) among portable devices
carried by evacuees to disperse emergency messages in a “store-carry-forward” manner,
while [30] employs application-layer multicast to rapidly deliver emergency traffic without
the support of a dedicated network infrastructure. However, in large-scale disasters such
as earthquakes, energy utilization can also have a significant influence on the evacuation
process due to the disruptions in energy supply. Indeed, fuel shortage has been reported
in several recent earthquake-related disasters [5], but this aspect has been largely ignored
in the emergency management literature.

2.2. Energy-Efficient Traffic Management

Energy-efficient traffic management has received considerable attention recently, due to
strong regulations and ambitious targets concerning the reduction of green house gas emis-
sions. In particular, a number of route planning algorithms have been proposed to reduce
energy consumption of vehicles during daily usage, by integrating various macroscopic and
microscopic scale traffic/energy models [4]. The work in [39] employs Dijkstra’s algorithm to
calculate fuel-efficient paths in terms of the physical length and the estimated fuel consump-
tion on each road segment which is estimated from the average travelling speed. Similarly, an
energy-efficient routing algorithm for electric cars is presented in [32], where a cost function
is defined for each edge in the network in terms of road slope, vehicle speed, vehicle acceler-
ation, journey time and road surface conditions; since edge weights may evaluate negative
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values which cannot be handled by Dijkstra’s or A* algorithms, the Bellman-Ford-algorithm
is employed to compute the most energy-efficient paths. A fuel-efficient driving strategy for
high-way vehicles is proposed in [29], using the Max–Min Ant system [36] to optimize the
vehicle speed and acceleration commands. By re-routing traffic and giving speed advice at
signalized intersections, [37] presents a comprehensive intelligent transportation system to
balance traffic and reduce fuel consumption with the aid of vehicle-to-vehicle and vehicle-
to-infrastructure communication technologies; experimental results show that the proposed
system can significantly reduce the number of stops and the average waiting time at inter-
sections as well as the overall fuel consumption. In summary, although much work has been
dedicated to reducing the energy consumption of vehicles for daily usage, to the best of
our knowledge, there are no studies that consider optimizing both energy and latency in
large-scale evacuations.

3. THE NAVIGATION SYSTEM

3.1. System Architecture

Figure 1 shows the architecture of our proposed system. We assume that a sensor node (SN)
and a communication node (CN) are pre-installed at each intersection. SNs are roadside cam-
eras that can detect and count vehicles in roadways while CNs are communication units
that are responsible for information exchanges between vehicles and cloud servers. When the
evacuation process starts, if the existing communication infrastructure is non-operational,
we assume a few cloud access points can be quickly deployed to maintain communication
between the cloud servers and the CNs. The collected sensory data is periodically uploaded
to the cloud servers, which are responsible for calculating the shortest path from each inter-
section to the entrance of the safe area, as well as running the G-network based algorithm to
compute possible re-routing decisions at each intersection. A re-routing decision activates
a timeout upon arriving at a CN: when a vehicle reaches an intersection and the latest
re-routing decision has not expired, it will follow the re-routing advice calculated by the
G-network based algorithm; otherwise, it will follow the shortest path to the safe area. Thus,
we call our approach the G-network assisted Dijkstra’s shortest path (GDSP) algorithm.
We assume evacuees can use portable devices or vehicle-mounted devices to communicate
with the CNs and obtain support at intersections during the evacuation.

3.2. System Approximation Model

The transportation network of our targeted area is represented by a directed graph con-
sisting of nodes and edges. Nodes are Points of Interest (PoIs) such as intersections where
vehicles may congregate, and are modeled as a first-in-first-out (FIFO) queue. Edges are the
physical links between PoIs, and are modeled as a processor sharing system [7] to represent
the facts that the time taken to traverse an edge is affected by the number of vehicles on
it, and that the order in which vehicles reach the next PoI is not necessarily FIFO. Rather
than choosing the shortest paths for vehicles to reach the safe areas, we use a G-network
model to optimize in a centralized manner the probabilistic choices among all possible roads
to achieve both time and energy efficiency.

G-networks [11], which were inspired by the random neural network [8], are a class of
queueing network models with additional control capabilities such as negative customers
[9] that remove normal positive customers from the system, batch removals [10], triggers
[10] and resets [19]. G-networks have been used in a wide range of applications, including
describing the workload in computer systems [24,33], realizing energy efficiency in packet
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Figure 1. The architecture of the proposed framework.

networks [23], as well as modeling energy systems [16], populations of biological agents [12]
and gene regulatory networks [13].

The model we use to capture the dynamics of an evacuation process is based on [10],
and has only positive customers and triggers representing vehicles and re-routing decisions,
respectively. We assume that positive customers (vehicles) that have just started to move
will join their nearest PoIs, and this “external” arrival of vehicles to ni occurs at an average
rate of Λni

. The average service rate of vehicles at PoI ni is denoted by rni
which depends

on the physical characteristics of the node including the size and number of intersecting
roads. A vehicle which is leaving PoI ni will either head to another connected PoI nj

with probability P (ni, nj) or pull up at the side of the road with probability dni
, where

dni
+

∑N
j=1[P (ni, nj)] = 1 and N is the total number of PoIs.

In addition to the above navigation decisions which are taken by the evacuees, re-routing
decisions from the cloud-based system arrive to PoI ni with average rate λ−

ni
, instructing

the leading vehicle to move to PoI nj with probability Q(ni, nj), where
∑N

j=1 Q(ni, nj) = 1.
This probability is a key parameter to be optimized in our system, as previous research [23]
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has indicated that it can significantly affect performance. With these assumptions, the
steady-state probability that a PoI ni has one or more vehicles is given by [10]:

qni
=

λ+
ni

rni
+ λ−

ni

, (1)

where λ+
ni

is the total average arrival rate of vehicles to PoI ni, including vehicles that were
previously parked or at other PoIs:

λ+
ni

= Λni
+

N∑
j=1

qnj
[rnj

P (nj , ni) + λ−
nj

Q(nj , ni)]. (2)

Notice that the quantities qni
are coupled, and therefore (1) is a non-linear equation that

can be solved numerically.
For the edges of the network, the arrival rate of vehicles to a road segment eij connecting

PoIs ni and nj can be calculated as:

λ+
eij

= qni
[rni

P (ni, nj) + λ−
ni

Q(ni, nj)]. (3)

Furthermore, the service rate of the road segment eij is approximated by:

reij
=

Veij

Leij

, (4)

where Leij
is the physical length, and Veij

is the average speed of a vehicle when no other
vehicles are concurrently using the road segment. The utilization of the road segment then
becomes:

qeij
=

λ+
eij

reij

= qni

[rni
P (ni, nj) + λ−

ni
Q(ni, nj)]Leij

Veij

≡ qni
R(ni, nj). (5)

Let Kni
(t) and Keij

(t) denote the number of vehicles at time t in PoI ni and edge eij ,
respectively, then the joint equilibrium distribution of the number of vehicles in the network
has a product form [10] and is given by:

Pr(Kni
= ki, Keij

= kij , i, j = 1, 2, . . . , N) =
N∏

i=1

qki
ni

(1 − qni
)

N∏
i,j=1

qkij
eij

(1 − qeij
). (6)

From the above expression, one can compute interesting measures such as the average
number of vehicles in each intersection and road segment, the response time (or equivalently
the travel time) along a road segment, and the average speed of vehicles along a road segment
which is obtained as the ratio of the physical length Leij

and average response time.

3.3. Fuel Consumption Models

The fuel consumption of a vehicle is well known to be significantly affected by the speed,
acceleration level [39] and loading weight [38]. In this section, we employ two separate models
to characterize fuel consumption on the road segments and intersections. These models are
used by both the re-routing algorithm in estimating the energy cost of a decision as well as
the simulator in calculating the total cost of the evacuation process. However, the algorithm
relies on the G-network model in order to estimate the speed of a vehicle which is then used

https://doi.org/10.1017/S0269964816000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000115


ENERGY-AWARE NAVIGATION IN LARGE-SCALE EVACUATION USING G-NETWORKS 345

to compute fuel consumption, while the simulator employs a more realistic vehicle mobility
model as described in Section 6.1.

The work in [39] establishes mesoscopic models for light-duty gasoline vehicles, mid-
duty diesel vehicles and heavy-duty diesel vehicles based on collected emission data. The
models reflect the relation among average travel speed, travel distance and fuel consumption
of a vehicle, and are suitable for modeling consumption on road segments. For example, the
fuel consumption factor FCL in kg/100 km for light-duty gasoline vehicles is described in
terms of the average travel speed v̄ km/hr as follows:

FCL =
125.015

v̄
− 0.097v̄ + 9.22 ∗ 10−4v̄2 + 7.056. (7)

On the other hand, fuel consumption at the intersections is mainly affected by braking
events, which occur for example, when a vehicle reaches an intersection with a non-zero
queue. Although the deceleration part of the braking cycle does not have an obvious impact
on fuel consumption, remarkable fuel utilization is observed during acceleration when the
vehicle operator releases the brake pedal and starts to depress the accelerator. Based on
[3,28], the vehicle specific power (VSP), defined as the instantaneous power per unit mass of
a vehicle and measured in kW/Metric Ton, for light-duty or mid-duty vehicles is given by:

V SPlm = 0.037v + 2.358 ∗ 10−5av + 6.859 ∗ 10−6v3, (8)

where v is the instantaneous speed of the vehicle in km/h and a is the acceleration in km/hr2.
The energy consumption of the vehicle is then obtained by multiplying V SPlm by the weight
of the vehicle, and integrating over the duration of the acceleration period. The total fuel
consumed in this process is subsequently calculated from the energy density of the fuel.

4. ROUTING METRICS

The QoS requirements during a large-scale evacuation are typically related to evacuation
time which, however, can be influenced by the availability of energy supply. Hence, in this
section we define a compound objective function that includes both evacuation time Dt

and fuel consumption Ct. Specifically, to achieve energy efficiency while maintaining an
acceptable level of delay, we combine these two metrics as follows:

Ft = Ct + εDt, (9)

where ε is a constant that determines the relative importance of the two metrics. The above
objective function is computed based on the G-network representation of the network, and
is optimized periodically during the evacuation process using a gradient descent algorithm.

4.1. Time-Aware Metric

The total evacuation time in the network includes delays at both intersections and road
segments, and depends on the congestion level. The average number of vehicles at an
intersection ni or a road segment eij can be derived directly from (6) yielding:

Nni
=

qni

1 − qni

, Neij
=

qeij

1 − qeij

(10)

Using Little’s formula, the average traversal times are given by:

Dni
=

Nni

λ+
ni

, Deij
=

Neij

λ+
eij

(11)
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while the total average delay experienced by a vehicle in the network is:

Dt =

∑N
i=1 Nni

+
∑N

i,j=1 Neij∑N
i=1 Λni

(12)

where the numerator is the total average number of vehicles in the network, and denominator
is the total rate at which vehicles join the network (e.g., start the evacuation or arrive from
outside the evacuation area).

4.2. Energy-Aware Metric

Since fuel consumption of vehicles depends not only on travelled distance but also on speed
and acceleration, the energy-aware metric should take into account congestion at both road
segments and intersections. Using (7), the total average fuel consumption, measured in kg,
by the vehicles traversing the road segment eij is:

Ceij
= Neij

Leij

100
FCL (13)

where FCL is a function of the average speed of vehicles veij
that can be estimated from

the queueing model as:

veij
=

Leij

Deij

=
Leij

λ+
eij

Neij

(14)

Next we describe how the G-network based algorithm estimates fuel consumption at
the intersections. Due to the stop-and-go behavior in traffic waves at each intersection, we
can relate on average the number of breaking events to the number of vehicles Neij

. To
further simplify computations and the data collected by the algorithm, it is assumed that
whenever a vehicle encounters congestion (at least one other vehicle at the intersection),
then it will decelerate and accelerate once. Thus, if we denote by clm the fuel consumed by
a vehicle in this process, which will be estimated in Section 6.2 using the energy model (8)
and the mobility model of the simulator (26), then the total average fuel consumption at
intersection ni becomes:

Cni
=

∞∑
k=1

(k − 1)clm Pr(Ki = k) =
∞∑

k=1

(k − 1)clm(1 − qni
)qk

ni
= clm

q2
ni

1 − qni

and the total fuel consumption in the network is given by:

Ct =
N∑

i=1

Cni
+

N∑
i,j=1

Ceij
. (15)

5. GRADIENT DESCENT OPTIMIZATION

To minimize the objective function (9), we use a gradient-based algorithm to select appro-
priate Q(ni, nj) which is the probabilistic re-routing decision from intersection ni to
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intersection nj , where i, j = 1, 2, . . . , N . Using the above analysis, (9) can be expressed as:

Ft =
N∑

i,j=1

[
1.25015

N2
eij

λ+
eij

− 9.7 ∗ 10−4L2
eij

λ+
eij

+ 9.22 ∗ 10−6
L3

eij
λ+

eij

2

Neij

+ 7.056 ∗ 10−2Leij
Neij

]

+
N∑

i=1

clm

q2
ni

1 − qni

+ ε

⎛
⎝ N∑

i=1

Nni
+

N∑
i,j=1

Neij

⎞
⎠ , (16)

where the denominator of Dt is incorporated into ε since it does not depend on the opti-
mization parameters. To evaluate the partial derivative of Ft with respect to Q(nx, ny) –
which is difficult to compute directly—we utilize the chain rule:

∂Ft

∂Q(nx, ny)
=

N∑
k=1

∂Ft

∂qnk

∂qnk

∂Q(nx, ny)
(17)

Using (2)–(5) and (10) we can write (16) as follows:

Ft =
N∑

i,j=1

{
1.25015Leij

Veij
[1 − qni

R(ni, nj)]2
− 9.7 ∗ 10−4Leij

Veij

+ 9.220 ∗ 10−6Leij
V 2

eij
[1 − qni

R(ni, nj)] +
7.056 ∗ 10−2Leij

+ ε

1 − qni
R(ni, nj)

}
qni

R(ni, nj)

+
N∑

i=1

[
clm

q2
ni

1 − qni

+ ε
qni

1 − qni

]
. (18)

Taking the partial derivative of the above expression with respect to a specific qnk
yields:

∂Ft

∂qnk

=
N∑

j=1

R(nk, nj)
{

1.25015Lekj
[1 + qnk

R(nk, nj)]
Vekj

[1 − qnk
R(nk, nj)]3

− 9.7 ∗ 10−4Lekj
Vekj

+ 9.220 ∗ 10−6Lekj
V 2

eij
[1 − 2qnk

R(nk, nj)]

+
7.056 ∗ 10−2Lekj

+ ε

[1 − qnk
R(nk, nj)]2

}
+

clmqnk
(2 − qnk

) + ε

(1 − qnk
)2

. (19)

Also, the partial derivative of qnk
for a specific Q(nx, ny) is given by:

∂qnk

∂Q(nx, ny)
=

1
rnk

+ λ−
nk

N∑
j=1

{
λ−

nj
qnj

∂Q(nj , nk)
∂Q(nx, ny)

+
[
rnj

P (nj , nk) + λ−
nj

Q(nj , nk)
] ∂qnj

∂Q(nx, ny)

}
. (20)

Notice that:

∂Q(nj , nk)
∂Q(nx, ny)

=

⎧⎪⎨
⎪⎩

1, if j = x, k = y,

−1, if j = x, k �= y,

0, otherwise,
(21)

where the second case arises from the identity Qnx,ny
= 1 − ∑

k �=y Qnx,nk
. Now

define the N × N matrices A(i, j) = rnj
P (nj , ni), B(i, j) = λ−

nj
Q(nj , ni), and
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C = diag(rn1 + λ−
n1

, . . . , rnN
+ λ−

nN
)−1, then we can write (20) in a more compact form as:

∂qn

∂Q(nx, ny)
= C(AT + BT)

∂qn

∂Q(nx, ny)
+ CHT

xyqn, (22)

where Hxy is a N × N matrix whose elements are:

Hxy(i, j) =

⎧⎪⎨
⎪⎩

λ−
ni

, i = x, j = y,

−λ−
ni

, i = x, j �= y,

0, otherwise.
(23)

Combining (19) and (22), the partial derivative of the cost function becomes:

∂Ft

∂Q(nx, ny)
=

(
∂Ft

∂qn

)T [
IN − C(AT + BT)

]−1
CHT

xyqn, (24)

where IN is the N × N identity matrix. Finally, we compute Q(nx, ny) using the following
iterations:

Qn+1(nx, ny) = Qn(nx, ny) − η
∂Ft

∂Qn(nx, ny)
, (25)

where η > 0 is the learning rate.

6. SIMULATION MODEL AND ASSUMPTIONS

To evaluate the proposed routing scheme for vehicles, we employ a multi-agent based
simulation tool, the distributed building evacuation simulator (DBES) [6] to conduct
earthquake-related simulations. The area under consideration is located in London as shown
in Figure 2. Vertices represent PoIs, which are broad areas where vehicles can queue in lines
and receive suggestions, while edges represent available roads in the aftermath of a disaster.
As mentioned previously, each intersection is equipped with a SN which collects on-site
information and a CN which uploads the gathered information and transmits advice to
nearby vehicles. The CNs can communicate with each other and a few cloud access points,
and can be quickly deployed in the affected area in case of infrastructure failure. Hence, cer-
tain cloud servers outside of the disaster area can be available to provide optimal solutions
in a centralized manner.

Figure 2. Transportation network of the targeted area in London city.
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The re-routing decisions calculated by the cloud servers arrive at the CNs every 4
seconds (i.e., λ−

ni
= 1/4) and the time-out of the re-routing decisions is set to 1 s. Initially,

the simulated vehicles are randomly distributed in the area. Moreover, all the simulated
vehicles are assumed to be light-duty with identical physical attributes, and the gross vehicle
weight rating is 3 metric tons.

6.1. Vehicle Mobility

According to [34,35], the average travel speed of a vehicle highly depends on the density of
the road segment it is on. Thus, we use the mobility model proposed in [35] to represent the
travel speed of vehicles in our simulator. Specifically, if a vehicle arrives at a road segment
without other vehicles, we assume that the vehicle will move at the most fuel-efficient speed;
otherwise, the speed of the vehicle will depend linearly on congestion as follows:

v =

{
vo, if no other vehicle is present,
σ vo

c (c + 1 − n), otherwise,
(26)

where σ is a constant, vo is the most fuel-efficient speed of the vehicle, n is the total number
of vehicles, and c is the capacity of the road segment which depends on its maximum density,
number of lanes, and length.

On the other hand, drivers at intersections are affected by the space headway, and will
perform either the free-flow behavior or the car-following behavior [1]. In particular, if an
intersection is unoccupied, the driver can choose its desired speed, while if the intersection
is in use by at least one vehicle, then the speed and acceleration are governed by the leader
[1]. We assume that the leader and followed vehicles at an intersection will first accelerate
to 60 km/hr after a braking event, at an acceleration rate of 64,800 km/h2 (18 km/hr/s).

6.2. Fuel Consumption

The fuel consumption of vehicles travelling on a road segment is calculated in the simulator
based on the mobility model in (26) and the fuel consumption factor FCL in (7). Also, since
the gross vehicle weight rating is assumed to be 3 metric ton, the power consumption of
vehicles at intersections (in kW) can be computed from (8) as:

Plm = V SPlm × weight

= 0.111v + (7.074 × 10−5)av + (2.058 × 10−5)v3. (27)

The time for a stopped vehicle to accelerate to 60 km/h at a rate of 18 km/hr/s is 9.26 ∗
10−4 hr, and the energy cost of this process in KWh can be calculated by integrating the
above expression and noting that the speed of the vehicle v is related to acceleration a and
time t by v = at (starts from a standstill):

Elm =
∫ 9.26×10−4

0

Plmdt = 0.111at + 7.074 × 10−5a2t

+ 2.058 × 10−5a3t3 dt = 0.1314 kWh (28)

Since energy density of gasoline is about 44.4 MJ/kg or 12.432 kWh/kg, the fuel consumption
for a single braking event is:

clm = Elm × energy density ≈ 0.01 kg (29)
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7. RESULTS AND DISCUSSION

The experiments are conducted for scenarios with 50, 100 and 500 vehicles representing
light, moderate and heavy traffic conditions, respectively. We compare the performance of
our G-network assisted GDSP approach against the standard DSP algorithm.

Figure 3 shows the average evacuation time per vehicle for both GDSP and DSP. The
simulation results indicate that GDSP achieves similar performance to DSP at low traffic
density (50 vehicles) and shorter evacuation times at higher traffic densities. This is because
DSP tends to guide all the vehicles toward the shortest path, causing severe congestion. As
a result, the travel speed of vehicles is reduced and evacuation process is prolonged. On
the other hand, GSDP reduces the likelihood of such bottlenecks by distributing vehicles
at each intersection.

The average overall fuel consumption during the evacuation process is shown in Figure 4,
where GDSP achieves less fuel consumption in all of the three scenarios. The reason is
that, when using GDSP, the probabilistic choices to the linked road segment are optimized

Figure 3. The average evacuation time of different scenarios in seconds. The results are
the average of 5 randomized simulation runs, and error bars shows the min/max result in
any of the five simulation runs.

Figure 4. The average total fuel utilization of different scenarios in kilograms. The results
are the average of 5 randomized simulation runs, and error bars shows the min/max result
in any of the five simulation runs.
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periodically at the intersections, allowing vehicles to be re-routed to unoccupied paths
where they can travel at more fuel-efficient speeds. In contrast, DSP guides vehicles to
the congested shortest paths, where vehicles perform braking operations frequently, thus
consuming more fuel.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a cloud based architecture and an algorithm to direct vehicles
to safe areas in the aftermath of a large-scale disaster. A G-network model is used by the
algorithm to represent the movement of vehicles and their interactions with the navigation
system. To reduce the overall fuel consumption and evacuation time, re-routing decisions at
intersections are computed based on a compound routing metric, and gradually optimized
using a gradient descent algorithm. Simulation results indicate that our approach achieves
better fuel efficiency and evacuation time than when vehicles follow shortest paths to des-
tinations, and the improvements in performance become more pronounced as congestion
increases. In future work, we will consider the use of heuristic routing algorithms such as
the Cognitive Packet Network [15,22,25] to guide vehicles, which eliminates the need to
run our solution on top of a shortest path routing algorithm which can be time consum-
ing and computationally complex in a large-scale network. Moreover, we believe that the
proposed G-network model can be an effective tool in optimizing the daily traffic flows
in urban networks. Indeed, current studies on road traffic optimization typically make a
simplifying assumption of a fixed number of origin and destination pairs. On the other
hand, G-networks can achieve long-term objectives while allowing randomness in both the
destinations of vehicles and the individual’s choice at each interaction [18].
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