
CENTENARY REVIEW

The analysis of crop cultivar breeding and evaluation

trials : an overview of current mixed model approaches

A. B. SMITH 1*, B. R. CULLIS1
AND R. THOMPSON 2

1Wagga Wagga Agricultural Institute, Private Mail Bag, Wagga Wagga, NSW 2650, Australia
2Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK

(Revised MS received 23 June 2005)

SUMMARY

The analysis of series of crop variety trials has a long history with the earliest approaches being based
on ANOVA methods. Kempton (1984) discussed the inadequacies of this approach, summarized
the alternatives available at that time and noted that all of these approaches could be classified as
multiplicative models. Recently, mixed model approaches have become popular for the analysis of
series of variety trials. There are numerous reasons for their use, including the ease with which
incomplete data (not all varieties in all trials) can be handled and the ability to appropriately model
within-trial error variation. Currently, the most common mixed model approaches for series of
variety trials are mixed model versions of the methods summarized by Kempton (1984). In the present
paper a general formulation that encompasses all of these methods is described, then individual
methods are considered in detail.

INTRODUCTION

The breeding and evaluation of improved crop
varieties is one of the oldest agricultural research
pursuits and has had a major impact on world food
production, particularly in the last 100 years. As
Nobel peace prize laureate Dr Norman Borlaug
stated ‘During the twentieth century, conventional
breeding has produced – and continues to produce –
a vast number of varieties and hybrids that have
contributed immensely to much higher grain yields,
stability of harvests and farm incomes, while also
sparing vast tracts of land for nature (wildlife habi-
tats, forests, outdoor recreation)’ (speech given at
Tuskegee University, April 2001). The challenge now
is to maintain the improvement of crops at a rate that
will meet a rapidly increasing world population (pro-
jected to be 8.3 billion people in 2025). Borlaug makes
the important point that in order to achieve this, both
conventional breeding and biotechnology method-
ologies will be needed. He suggests that ‘While bio-
technology research tools offer much promise, it is
also important to recognize that conventional plant

breeding methods are continuing to make significant
contributions to improved food production and
enhanced nutrition’. It is, therefore, vital that the
statistical methods used to design and analyse data
from crop cultivar breeding and evaluation pro-
grammes are as accurate, efficient and informative as
possible. In this paper current analytical methods are
reviewed with this objective in mind. The focus is on
the analysis of grain yield data although many of the
concepts apply to other traits such as quality traits
related to end-use product manufacture (for example,
bread making).
Typically, the yield data generated from crop

breeding and evaluation programmes arises from
series of field trials known as multi-environment
trials (MET). These trials allow the investigation of
varietal yield performance across a range of geo-
graphic locations and, possibly, years (seasons). The
development of statistical methods for the analysis
of MET data has a long history. Early methods were
focused on Analysis of Variance (ANOVA) techni-
ques that partitioned total variation into sources
due to varieties, environments (location/year combi-
nations), variety by environment (VrE) interaction
and within-trial error variation. As Kempton (1984)
pointed out, a major drawback with this approach
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is that it provides no insight into the nature of VrE
interaction. This may hinder varietal selection and
recommendation decisions. For example, it may be
insufficient merely to obtain an estimate of overall
(average) variety performance across environments.
Additionally, a measure of varietal stability to en-
vironmental change may be required, either for the
identification of varieties that are both high yielding
and stable (so are suitable for broad usage) or vari-
eties that perform exceptionally well under certain
conditions (so may be suitable for use in specific
environments).
As a result, a range of more complex and infor-

mative models has been proposed for the analysis
of MET data. This paper does not attempt to review
all methods but defers to Kempton (1984), who
summarized the models succinctly by stating that
‘methods for describing patterns in VrE are the
method of principal components, and of regression
onto an independent environmental variable or onto
the marginal means of the VrE table’. He continued
by noting that all of these methods ‘… describe crop
response as a series of multiplicative terms, each term
being a product of a variety and an environment
effect ’ so can all be classified under the heading of
multiplicative models. The models discussed by
Kempton (1984) involve fixed effects only (with the
exception of residual error). Recently, the advantages
afforded by linear mixed models compared with
ordinary linear models have been recognized for the
purpose of analysing MET data. These advantages
include the ease with which incomplete data (not all
varieties in all environments) can be handled, the
ability to use more realistic within-trial models for
error variation (e.g. incomplete blocks, spatial corre-
lation models) and the ability to assume some sets of
effects (e.g. variety and/or environment effects) to be
random rather than fixed. Thus, linear mixed models
have become popular for the analysis of MET data.
They range from simple variance component models
that provide information similar to ANOVA through
to multiplicative mixed models that aim to explore
or better accommodate VrE interaction. The most
commonly used models are essentially mixed model
analogues of the afore-mentioned methods described
by Kempton (1984). These models provide the focus
of the current paper, which is arranged as follows.
The next section describes a general formulation for
the mixed model analysis of a series of variety trials.
Four of the most popular mixed model approaches
are considered in detail, namely variance component
models, regressions on environmental variables, re-
gressions on environmental means and multiplicative
models. Models for within-trial error variation are
also discussed. The section ‘Estimation and software’
provides a general description of estimation pro-
cedures for these models. Finally, some concluding
remarks are made.

LINEAR MIXED MODEL FOR
MET DATA

MET data may be summarized as a two-way table
indexed by varieties and environments. The extension
to higher order tables (for example, when environ-
ments comprise the factorial combination of geo-
graphic locations and years) will be discussed later.
Consider a series of t trials (synonymous with environ-
ments) in which a total of m varieties has been grown
(without necessarily all varieties grown in all trials).
A ‘base-line’ model for the yield of the kth replicate
of variety i in trial j can be written as

yijk=gij+eijk (1)

where gij is the effect of variety i in environment j
and eijk is the residual effect for replicate k of this
variety by environment combination. In the current
paper, statistical models are represented using vector
notation so the model in Eqn (1) is re-written as

y=Mg+e (2)

where y is the nr1 vector of individual plot yields
combined across trials (ordered as plots within trials)
and n=

P
t
j=1nj where nj is the number of plots in the

jth trial. The vector g=(g11, g21 … gm1 … g1t … gmt)k
is the mtr1 vector of variety by environment effects
(ordered as varieties within environments) and M
is an nrmt design (replication) matrix that assigns
variety by environment combinations to the vector
of yields. Note that M will contain columns whose
elements are all zero if not all varieties appeared in
all trials. The nr1 vector e is the combined vector
of residual effects from all trials (ordered as for the
vector of yields).
The most commonly used mixed models for MET

data can be formed from the base-line model in Eqn
(2) by specifying two submodels, namely a model for
the ‘table of’ VrE effects (g) and a model for the
residual effects (e). These are described in the follow-
ing sections.

Models for VrE effects

As previously noted, current mixed model approaches
for the analysis of MET data can be viewed as mixed
model analogues of the approaches discussed by
Kempton (1984). Thus, each of these models is con-
sidered in turn.

Variance component mixed models

In the classical ANOVA approach for the analysis
of MET data the model for the effect of variety i in
environment j is given by

gij=m+ai+hj+dij (3)

where m is an overall mean effect, ai is the main effect
for variety i, hj is the main effect for environment j
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and dij is the interaction effect for variety i and
environment j. The model in Eqn (3) can be written in
vector notation by considering the complete set of
variety by environment effects, that is, the mtr1
vector g. Thus

g=1mtm+(1t�Im)a+(It�1m)h+d (4)

where a=(a1 … am)k is the mr1 vector of variety
main effects, h=(h1 … ht)k is the tr1 vector of
environment main effects and d is the mtr1 vector
of VrE interaction effects (ordered as for g).
Standard notation for unit vectors and identity
matrices is used so that, for example, the vector 1t
denotes the unit vector of length t and the matrix
It denotes the trt identity matrix. The symbol �
represents the Kronecker product of two matrices
or vectors. A definition of Kronecker products is
given in the Appendix, together with a small example
to show how they are used to expand Eqn (4).
Historically, all effects in this model were regarded

as fixed, but more recently mixed model versions
of Eqn (4) have been used (Patterson et al. 1977;
Patterson & Silvey 1980; Talbot 1984; Patterson &
Nabugoomu 1992; Cullis et al. 1996a, b ; Frensham
et al. 1997, 1998; Smith et al. 2001a, b, for example).
In all these approaches the VrE interaction
effects, together with at least one set of main effects,
is assumed to be random. Each set of random
effects is assumed to be independent and to follow a
Gaussian distribution with zero mean and constant
variance.
The issue of whether the main effects, particularly

variety effects, should be regarded as fixed or random
is an important one and is not confined to the simple
ANOVA type models but arises in the context of
all mixed model analyses of MET data. Therefore,
the issue is discussed in detail later. For now, the
ANOVA type mixed model is considered, using
the two scenarios that appear most commonly in
the literature, namely (a) random variety and fixed
environment main effects and (b) fixed variety and
random environment main effects. The extension to
both variety and environment main effects as random
is trivial.
First, consider case (a), that is, the model in Eqn (4)

with the assumption that the vector h comprises
fixed effects and a and d are random effects with

a
d

� �
� N

0

0

� �
s2
aIm
0

0

s2
d(It�Im)

� �� �

where sa
2 and sd

2 are the variance components for the
variety main effects and VrE interaction respect-
ively. Thus

E(g)=1mtm+(It�1m)h

var(g)=(s2
aJt+s2

dIt)�Im
(5)

where Jt is the trt unit matrix (i.e. with all elements
equal to one). Expansion of this variance structure
(see Appendix) reveals that all VrE effects have
the same variance (sa

2+sd
2), VrE effects for different

varieties are uncorrelated and VrE effects for dif-
ferent pairs of environments (for the same variety)
all have the same covariance (sa

2 ) and thence corre-
lation. This variance structure is known as a uniform
(or compound symmetric) structure.
If the converse scenario (case (b)) is assumed, in

which the vector a comprises fixed effects and h and
d are random effects, the following is obtained

E(g)=1mtm+(1t�Im)a

var(g)=It� (s2
hJm+s2

dIm)
(6)

where sh
2 is the variance component for the environ-

ment main effects. Once again this is a uniform
variance structure but now VrE effects for different
environments are uncorrelated and VrE effects for
different pairs of varieties (for the same environment)
all have the same covariance (sh

2 ).
With balanced data, the models in Eqns (5) and

(6) can be analysed using ANOVA techniques. This
analysis provides least squares means for varieties,
environments and the two-way table of VrE means.
Variance components may be estimated by equat-
ing mean squares in the ANOVA table with their
expectations. In the more common situation of
unbalanced data, the ANOVA method is unsuitable
so an alternative is required. The most popular
method for estimation of variance components in
unbalanced data is Residual Maximum Likelihood
(REML, Patterson & Thompson 1971). Given esti-
mates of the variance components, the fixed effects
in Eqns (5) and (6) may be estimated using Empirical
Best Linear Unbiased Estimation (E-BLUE) and
the random effects predicted using Empirical Best
Linear Unbiased Prediction (E-BLUP). (See section
‘Estimation and software’ for full details on methods
of estimation.)
The analyses based on the models in Eqns (5)

and (6) are deficient in two key areas. Firstly, they
only provide information on the magnitude of
VrE interaction (through the size of the estimate
of the variance component sd

2 ) and do not formally
explore patterns of interaction. Secondly, the variance
assumptions underpinning the models may be unre-
alistic. The uniform variance structure may be un-
satisfactory due to heterogeneity of both variance and
covariance. Many authors (including Patterson &
Nabugoomu 1992; Frensham et al. 1997; Cullis et al.
1998) have recognized the possibility of variance
heterogeneity among VrE interaction effects. In
addition, a relaxation of the independence assumption
for VrE interactions may be necessary. These issues
are addressed in the more complex mixed models
described in the following sections.
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Mixed models with regressions on
environmental variables

One method for exploring VrE interaction is to
use a regression-based approach that relates varietal
performance to environmental information such as
rainfall, soil moisture and sowing date. Generally this
approach has been considered within the framework
of fixed effects models (Knight 1970; Freeman &
Perkins 1971; Hardwick & Wood 1972, for example)
but more recently mixed model approaches have
been used. The focus in the present paper is on the
approaches of Piepho et al. (1998) and Theobald et al.
(2002). Note also that some authors have used mixed
models with varietal covariates in order to investigate
VrE interaction (Cullis et al. 1996b ; Frensham et al.
1998).
The base-line model used by Piepho et al. (1998)

for a single environmental covariate is given by

g=1mtm+(1t�Im)a+(x�Im) b+d (7)

where x is the tr1 vector of covariate values, b is
the mr1 vector of variety regression coefficients
and the vector d now represents residual VrE inter-
actions (that is, unexplained by the regression). It
is assumed that the vectors a and b comprise fixed
effects and d is a vector of random effects. Piepho
et al. (1998) assume a separable variance matrix
for d that allows correlations between varieties but
for simplicity it is assumed in the present paper that
var (d)=sd

2It�Im. Thus

E(g)=1mtm+(1t�Im)a+(x�Im) b

var (g)=s2
dIt�Im

(8)

The base-line model used by Theobald et al. (2002)
is similar to that of Piepho et al. (1998) except that
Theobald et al. (2002) use a Bayesian approach to
estimation, so assume all effects to be random and
specify prior probability distributions for them. Thus
the interpretation of the model in terms of what con-
stitutes the mean and variance of the VrE effects is
very different from a frequentist approach. Since all
other authors referenced in the present paper have
used the latter, no further details of the Theobald
et al. (2002) model are presented; the reader is
referred instead to that paper.
The use of environmental covariates for the analy-

sis of MET data has been criticized because the
regressions often only explain a small proportion
of VrE interaction. There may be additional diffi-
culties in terms of data availability and/or selection
of variables to include in the regression. The key
advantage, however, is that for suitably chosen
covariates, the associated VrE interaction is pre-
dictable. This has important consequences for crop
variety evaluation programmes in particular, since it
enables local-area predictions, that is, predictions of

varietal performance that are specific to individual
farmer conditions.

Mixed models with regressions on
environmental means

A method that has often been used to study varietal
response to environment is the regression of varietal
yield on the mean yield of all varieties in each
environment. Yates & Cochran (1938) introduced the
idea and Finlay & Wilkinson (1963) gave a thorough
account. Finlay & Wilkinson (1963) state the logic
underpinning the approach, namely that ‘The mean
yield of all varieties at a site and season [provide]
a quantitative grading of environments, and …
varieties specifically adapted to good or poor seasons
and those showing general adaptability may be
identified. ’ Thus, the use of environment means is a
surrogate for a potentially complex regression model
involving numerous environmental covariates.
Mixed model analogues of the Finlay-Wilkinson

model have been proposed by Gogel et al. (1995) and
Nabugoomu et al. (1999). The base-line mixed model
in the Gogel et al. (1995) and Nabugoomu et al.
(1999) approaches uses

g=1mtm+(1t�Im)a+(It�b)h+d (9)

Gogel et al. (1995) and Nabugoomu et al. (1999)
assume that the vector a comprises fixed effects and
h and d are random effects with

h
d

� �
� N

0

0

� �
s2
hIt
0

0

s2
dIt�Im

� �� �

from which is derived

E (g)=1mtm+(1t�Im)a

var (g)=It� (s2
h b bk+s2

dIm)
(10)

Note that the model in Eqn (9) can be re-expressed as

g=1mtm+(1t�Im)a+(h�Im) b+d (11)

which has the same form as Eqn (7) except that in
Eqn (11) the environmental covariate (h) is unknown
so must be estimated from the data.
Finlay & Wilkinson (1963) proposed a graphical

display of the results of their analysis, namely a plot
of variety regression coefficients against variety mean
yields, in order to visualize varietal stability and per-
formance. This display could also be used in associ-
ation with the mixed model analysis. As with the
regression approach using ‘external ’ environmental
covariates, the regression on environment mean yield
has been criticized for the inability to explain large
portions of VrE interaction. Also, unlike external
covariates, trial mean yield must be estimated from
the data themselves so is subject to error. However,
there is still the key advantage that local-area
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predictions may be possible since farmers have
knowledge of the likely mean yield (or range of yields)
for their environment.

Multiplicative mixed models

Kempton (1984) discusses the method of principal
components as a means of summarizing the patterns
of varietal response to different environments. In
this method the matrix of estimated VrE interaction
effects from the classical ANOVA model of Eqn (4) is
subjected to a principal component analysis (PCA).
VrE interaction is thereby decomposed into a num-
ber of multiplicative terms. The conjecture is that
most of the VrE interaction can be explained by
the first few terms from the PCA and that these have
some meaningful interpretation. This method of
analysis dates back to Mandel (1971) and was more
recently popularized for MET data under the banner
of AMMI (Additive Main effects and Multiplicative
Interaction, Gauch 1992). There are variants of the
method (the so-called Shifted Multiplicative Model,
SHMM) in which variety and/or environment main
effects are not fitted in the ANOVA, so that the PCA
is performed on combined effects rather than the
interactions.
Piepho (1997) and Smith et al. (2001b) employed a

mixed model analogue of PCA for the analysis of
MET data. These authors differ in that Smith et al.
(2001b) assume random variety and fixed environ-
ment effects, whereas Piepho (1997) assumes the
converse. Smith et al. (2001b) do not explicitly fit
variety main effects but the extension is straightfor-
ward and for comparative purposes they are included
here. Thus the extended Smith et al. (2001b) approach
uses

g=1mtm+(1t�Im)a+(It�1m)h+(Le�Im)fv+d

where Le is a trk matrix of environment loadings,
fv is the associated mkr1 vector of variety scores and
k is the number of components (multiplicative terms)
included in the analysis. It is assumed that the vector
h comprises fixed effects and a, fv and d are random
effects with

a

fv

d

0
B@

1
CA � N

0

0

0

0
B@

1
CA

s2
aIm

0

0

0

Ik�Im

0

0

0

Ye�Im

0
B@

1
CA

2
64

3
75

where Ye is a diagonal trt matrix with elements
commonly referred to as specific variances, from
which is derived

E (g)=1mtm+(It�1m)h

var (g)=s2
a(Jt�Im)+(LeLek+Ye)�Im

=(Le*Le*k+Ye)�Im

(12)

where Le*=[sa1t Le]. The variance structure for
the VrE interaction effects, namely (LeLek+Ye)�Im
is known as a Factor Analytic (FA) structure of
order k (see Mardia et al. 1988, for example). The
overall variance structure for VrE effects in Eqn (12)
is also an FA structure but with order k+1 and
constraints such that the first set of loadings is pro-
portional to the unit vector. A key consequence of
the model is that it allows for fairly general VrE
variance and covariance heterogeneity between
environments.
Piepho (1997) assumes a model of the form

g=1mtm+(1t�Im)a+(It�1m)h+(It�Lv)fe+d

where Lv is a mrk matrix of variety loadings, fe is
the associated tkr1 vector of environment scores. It
is assumed that the vector a comprises fixed effects
and h, fe and d are random effects with

h

fe

d

0
B@

1
CA � N

0

0

0

0
B@

1
CA

s2
hIt

0

0

0

It�Ik

0

0

0

s2
dIt�Im

0
B@

1
CA

2
64

3
75

from which is derived

E (g)=1mtm+(1t�Im)a

var (g)=s2
h(It�Jm)+It� (LvLvk+s2

dIm)

=It� (Lv*Lv*k+s2
dIm)

(13)

where Lv*=[sh1m Lv]. As in Eqn (12) the structure
in Eqn (13) is an FA structure with order k+1,
but the model now allows for VrE variance and
covariance heterogeneity between varieties rather
than environments. Also note that Piepho (1997)
assumes a common residual VrE variance (sd

2 )
whereas Smith et al. (2001b) allow for different
residual VrE variances for each trial (through the
diagonal matrix Ye).
A key feature of the FA model for MET data is

the generality of the associated variance structure
for VrE effects, either in the environment or variety
dimension (models (12) or (13) respectively). The
most general variance model, and therefore the model
that will provide the best fit (in a likelihood sense)
to the data, is an unstructured matrix. This can be
difficult to fit from a computational perspective, par-
ticularly for large structures (large m for a matrix in
the variety dimension or large t for the environment
dimension). The FA model with sufficient multi-
plicative terms has been found to provide a good
and parsimonious approximation to the unstructured
form and is generally more computationally robust
(see Thompson et al. 2003). Smith et al. (2001b) use
the FA model in this context where the analysis was
motivated by the quantitative genetics approach to
VrE as explained in Falconer & Mackay (1996).
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Falconer & Mackay (1996) state that ‘The concept
of genetic correlation can be applied to the solution
of some problems concerned with the interaction of
genotype and environment … a character measured
in two different environments is to be regarded not as
one character but as two … If the genetic correlation
between them is high, then performance in two dif-
ferent environments represents very nearly the same
character … If it is low, then the characters are to a
great extent different. ’ Thus Smith et al. (2001b)
use an FA model to approximate an unstructured
matrix for the environment dimension of var (g) (that
is, the matrix of genetic variances and covariances
between environments).
Estimation of the models (12) and (13) provides

estimates (or predictions) of tables of means for
varieties, environments and the two-way table of
VrE means. Additionally, estimates (or predictions)
of loadings and scores can be obtained, thence
displayed graphically using tools such as bi-plots
in order to better understand VrE interaction. The
FA model has some similarities with the regression
approach considered earlier. For example, the Smith
et al. (2001b) approach can be viewed as a regression
of varietal yield on environmental covariates (the
loadings) but the covariates are estimated from the
data rather than measured externally. This has
the advantage that the regressions usually account
for a large proportion of VrE interaction. However,
the environmental covariates are data-dependent so
cannot be used for local-area predictions.

Variety effects: fixed or random?

With the widespread adoption of mixed model
analyses for MET data there has been a dichotomy of
thought as to the classification of variety effects as
fixed or random. This is evident from the examples
presented in the previous sections. The present
authors believe the choice depends on the aim of the
analysis and consideration of the properties of the
two types of estimation procedures, namely empirical
best linear unbiased prediction (E-BLUP) for random
effects and empirical best linear unbiased estimation
(E-BLUE) for fixed effects (see Section ‘Estimation
and software’).
If the aim of the analysis is selection (that is, to

identify the best varieties of those under consider-
ation) then the rankings of the estimated variety
effects are required to be as close as possible to the
rankings of the true variety effects. In more exact
terms, a set of estimates of variety effects is required
that best predict the true effects. By definition, this
implies the use of BLUP so that variety effects should
be regarded as random. The optimality properties
of BLUP are based on the assumption that the
variance parameters in the model are known. In gen-
eral, this is not the case and the parameters are

estimated from the data. The only question that
remains, therefore, is whether the estimates of the
variance parameters are sufficiently precise to ensure
that the optimality of BLUP is maintained with
E-BLUP.
If the aim of the analysis is to determine the dif-

ference between specific pairs of varieties, then the
use of BLUP as an estimation method is inappropri-
ate since the BLUP of a specific difference is biased.
Thus, in this case variety effects should be regarded
as fixed.
The key issue, therefore, is a clear definition of the

aim of the analysis. In order to pursue this, common
practice is followed with differentiating between
breeding and evaluation programmes, although the
distinction is sometimes hazy. Breeding programmes
are concerned with the early stages of varietal evalu-
ation (Finney (1980) refers to this as the ‘cradle to
kindergarten’ phase) in which large numbers (often
greater than 1000) of new breeding lines are grown
in small numbers (usually less than 3) of field trials.
The ‘best ’ lines are selected to continue to the next
stage of testing, in which fewer lines are evaluated
in more locations. The process culminates in the
testing of a small number (usually less than 40) of
elite breeding lines, together with commercial stan-
dard varieties, in a large number of trials that span a
wide range of geographic locations and several
growing seasons. On the basis of these trials, a new
breeding line may be recommended for commercial
use and thence make the transition to a commercial
variety. These trials (Finney (1980): ‘kindergarten
to grave’) are usually the domain of crop variety
evaluation programmes (CVEP). In many countries,
CVEP are funded by government institutions and/
or farmer groups, and their mission is to conduct
independent evaluation of potential new varieties.
In the UK, for example, the evaluation system is
co-ordinated and run under a statutory authority.
Breeders and seed merchants enter new varieties
for testing in so-called National List (NL) trials
and thence, if selected, the varieties proceed to
Recommended List (RL) trials from which farmer
recommendations are made (see Patterson & Silvey
(1980) for further details). In Australia, CVEP are run
by state departments of agriculture, but a nationally
based system similar to that in the UK is about to be
launched.
It is clear that the aim of the analysis of breeding

data is selection so that the use of random variety
effects is appropriate. Some statisticians advocate
the use of random effects in this setting because they
regard that the varieties themselves are a random
sample from a population. After some unspecified
number of stages of selection, this ceases to be a
reasonable assumption so that at this point variety
effects are regarded as fixed. The present authors do
not adhere to this line of reasoning.
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Most of the literature on methods for analysing
MET data appears to be focused on evaluation data
(or at least the example data-sets used are of this
nature). It is in this setting that the fixed versus
random variety effects issue is most heatedly debated.
We believe that the aim of analysis of data from
evaluation programmes such as those in Australia
and the UK is still selection but it is now the farmer
making the selection decisions rather than the plant
breeder. The farmer wishes to know which varieties
are best for his/her environment. These views are
shared by Patterson & Silvey (1980) in their landmark
paper describing the analysis of data from the UK
evaluation system in which it was stated that ‘The
main objective of a series of NL or RL trials is to
identify, with minimum selection error, the best
varieties for cultivation and use. ’ Thus, once again
the rankings of estimated variety effects (possibly
within specific environments) are required to corre-
late well with the true rankings. In contrast, a seed
company may wish to know the difference between
their potential new variety and other commercial
varieties, an aim that would require the use of fixed
variety effects. The present authors believe, however,
that the analysis of evaluation data is conducted
‘for the common good’, that is, to allow farmers to
identify and thus adopt the best varieties for their
environment. The assumption of random variety
effects for both breeding and evaluation data is
therefore made.
Of course, with balanced data and orthogonal

analyses, the rankings of varieties would be the same
in both the fixed and random variety settings. Even
so, the present authors still prefer the use of random
variety effects since the resultant predictions of gen-
etic gain are more realistic than those based on fixed
variety effects. The latter are generally over-optimistic
due to selection bias (Patterson & Silvey 1980). An
additional key advantage with the use of random
variety effects is that it allows a valid analysis of
data combined across stages of selection (often cor-
responding to a sequence of years). The analysis of
such data is crucial for plant breeders since it provides
more reliable estimates of variety main effects (being
based on all relevant data, not merely the data for the
current year) and since years are synonymous with
seasons the analysis provides information on variety
by season interactions. Henderson et al. (1959) dis-
cuss the estimation of fixed effects in the presence of
selection. In our context, their suggestions imply that
a likelihood approach with random variety effects
reduces bias in the estimation of (fixed) year effects.
Thompson (1973) also proposes a likelihood ap-
proach for data arising from selection and shows that
this allows unbiased estimation of genetic variance
parameters both before and after selection. The pre-
diction of genetic effects (in our case variety effects)
under selection is discussed by Thompson (1979).

It is interesting to note that the variance structures
for VrE effects for all models presented earlier have
two basic forms, namely

var (g)=Ge�Im (14)

or

var (g)=It�Gv (15)

where Ge and Gv are positive definite symmetric
matrices of dimension trt and mrm respectively.
The model in Eqn (14) implies that VrE effects are
correlated between environments whereas in Eqn (15)
they are correlated between varieties. The ‘side’ on
which effects are correlated is a direct consequence
of whether variety or environment effects are assumed
random. With random variety and fixed environment
effects the model in Eqn (14) is obtained and the
converse leads to the model in Eqn (15). The choice
between the models in Eqns (14) and (15) may be
driven by various influences including parsimony
(clearly if t is much larger thanm then Eqn (14) would
be preferred), biology (for example, as discussed
earlier, the theory of quantitative genetics would
lead to the use of Eqn (14)) and goodness of fit. The
variance structure for VrE effects need not be
restricted to the ‘one-sided’ forms in Eqns (14) and
(15). A more general form is

var (g)=Ge�Gv

Both matrices Ge and Gv may contain unknown
parameters (to be estimated). An important case,
however, is where Gv is a known matrix reflecting the
pedigrees or marker genotypes of the varieties.

Models for residual effects

The vector of residual effects, e, in Eqn (2) consists
of sub-vectors, that is, e=(ek1 … ekt)k where ej is the
njr1 vector of residual effects for the jth trial, j=
1 … t. The two key issues for specification of models
for e are the form of analysis that would be used for
an individual trial and the need to allow for hetero-
geneity of the associated variance parameters across
trials. The literature on methods for individual
variety trial analysis is quite diverse but the methods
can be broadly classified as either randomization or
model based. In the former, the model for residual
effects is determined purely from the experimental
design, whereas in the latter it is either assumed or
selected with the objective of providing a good fit to
the data. In order to explore this further, the general
statistical model for the njr1 vector yj of yields for
the jth trial is specified. This can be expressed as

yj =Mjgj+ej (16)

where gj represents the variety effects for the jth

trial (that is, the sub-vector of g corresponding to
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that trial) and Mj is the associated design matrix.
A further model for the residual effects may be
required:

ej=Xpjtpj+Zpjupj+ej (17)

where tpj and upj are vectors of fixed and random
effects, respectively, with associated design matrices
Xpj (assumed to have full column rank) and Zpj and ej
are vectors of plot error effects for the jth trial. The
vectors tpjand upjrepresent effects peripheral to the
variety effects in the sense that they are not the main
focus of the analysis. Typically, they are associated
with the experimental design and/or are included to
model field trend (see below). The vectors upj and ej
are assumed to follow a Gaussian distribution with
zero means and variance matrix given by

var
upj

ej

 !
=

Gpj

0

0

Rj

" #

Finally, by substituting Eqn (17) into Eqn (16) the full
mixed model for the jth trial can be written as

yj=Mjgj+Xpjtpj+Zpjupj+ej (18)

Variety trials are usually laid out as rectangular
arrays that can be indexed by field rows and columns.
This scenario is assumed in the following, with the
data ordered correspondingly as rows within col-
umns. The assumption of a lattice arrangement of
plots can be relaxed but the ordering of data accord-
ing to the field plot layout is important for the model-
based approaches outlined below.
A randomization-based analysis may be conducted

using the model in Eqn (18) with sub-vectors of upj
corresponding to terms in the block structure of the
experiment (see Nelder 1965, for a complete account).
For example, if the experiment were designed as a
randomized complete block (RCB) experiment with
nrj replicates (complete blocks) then upj would have
length nrj (comprising an effect for each replicate)
and the effects would be assumed independent with
constant variance s2

rj
, say. Thus Gpj=s2

rj
Inrj . The

vector of plot error effects would then comprise
independent effects with constant variance s2

j ,
thence Rj=s2

j Inj . In an incomplete block (IB) design
with nrj replicates and nbj (incomplete) blocks per
replicate there would be two sub-vectors in upj , the
first corresponding to the replicate effects and the
second to block within replicate effects. Independence
is assumed both within and between these sub-vectors
and the effects have associated variance components
of s2

rj
and s2

bj
for replicates and blocks within

replicates, respectively. Thus Gpj=diagðs2
rj
Inrj , s

2
bj
Inbj Þ.

As in the RCB design this would give Rj=s2
j Inj .

Note that Nelder (1954) discusses the need to allow
variance components associated with blocking fac-
tors to be negative in order for the mixed model to

provide a proper surrogate for the randomization
analysis.
Model-based approaches for the analysis of field

trials focus on the need to control spatial variation.
As implied by the terminology, this variation is linked
to the location of plots in the field and may be due, for
example, to fluctuations in soil fertility. Numerous
authors have proposed analytical methods to remove
the effects of such trend from the estimation of
varietal contrasts. The earliest method was that of
Papadakis (1937), in which neighbouring plot yields
were used as covariates in the analysis. The next
major contribution to the area was that of Wilkinson
et al. (1983), who suggested that spatial field trend
could be expressed as the sum of two components,
namely a smooth trend and an independent error
term. The assumed trend was removed by (second)
differencing the data. Other authors have used the
method of differencing adjacent plot yields as a means
of removing trend (Green et al. 1985; Besag &
Kempton 1986, for example).
Gleeson & Cullis (1987), Martin (1990) and Cullis

& Gleeson (1991) proposed approaches that model
trend directly using time series models (with differ-
encing still having a role as a means to achieve
stationarity). A key aspect of Martin (1990) and
Cullis & Gleeson (1991) is the use of separable
correlation models to accommodate trend in two
dimensions (field rows and columns). Zimmerman &
Harville (1991) also propose a direct modelling
approach but use models based on the theory of
random fields; spatial variation was viewed as
comprising two sources, namely large-scale variation
that is modelled through the mean, and small-scale
variation that is modelled through a correlation
structure.
Gilmour et al. (1997) extended the approach of

Cullis & Gleeson (1991) by partitioning spatial
variation into two types of smooth trend (local and
global) and extraneous variation. Local trend reflects,
for example, small-scale soil depth and fertility fluc-
tuations. Global trend reflects non-stationary trend
across the field. Extraneous variation is often linked
to the management of the trial. In the Gilmour et al.
(1997) approach, global trend and extraneous vari-
ation are accommodated in the model by including
appropriate effects in tpjand/or upj . Local stationary
trend is accommodated using a correlation struc-
ture for Rj. Thus there are similarities with the
Zimmerman & Harville (1991) approach. Gilmour
et al. (1997) suggest that a separable autoregressive
correlation process of order one usually provides a
reasonable fit to the data. They stress the importance
of using diagnostic tools to check model adequacy.
Most of the current spatial approaches for the

analysis of field trials are of the form advocated by
Zimmerman & Harville (1991) and Gilmour et al.
(1997), that is, they involve a direct modelling of
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local spatial trend using a covariance model. In terms
of the model in Eqn (18) this is specified through the
form of Rj .
Model-based spatial analyses for variety trials now

have wide usage. They can lead to substantial gains
in terms of response to selection compared with the
randomization based approach, particularly when
the experimental design involves large block sizes.
The major criticism of model-based approaches is
that estimates of treatment effects and their standard
errors rely solely on the chosen model, whereas
the randomization-based analysis is validated by
recourse to randomization theory. In the experience
of the current authors with conducting the annual
analyses of variety trials from most Australian public
breeding and evaluation programmes, the gains of a
spatial approach outweigh this potential disadvan-
tage. To safeguard against this to some extent, an
approach is used that merges the randomization and
spatial approaches. The randomization-based model
is used as the baseline (maintaining the associated
random terms irrespective of their significance) and
this is built on to model remaining spatial variation.
For the latter, the approach of Gilmour et al. (1997)
is used. Thus a spatial model is not regarded as a
replacement for the randomization-based model but
rather as an enhancement to better accommodate
field trend.
The benefits of spatial methods flow through to

the analysis of MET data, where the importance of
allowing for heterogeneity of residual variance par-
ameters (that is, associated with upjand ej) between
trials is also noted (see Smith et al. 2001b, for
example). Many authors assume simple block models
(RCB, for example) with both common block vari-
ance components for all trials and a common plot
error variance for all trials. With Australian data,
such models rarely provide a good fit and can induce
misleading sources of VrE interaction. In terms of
spatial modelling in the MET analysis, Cullis et al.
(1998) and Smith et al. (2001b), who estimate a sep-
arate spatial covariance structure for each trial, are
followed.

The full model

In terms of the overall analysis for MET data the
model in Eqn (2) can now be written as

yjg=Mg+Xptp+Zpup+e

g=Xgtg+Zgug
(19)

where g=(gk1 … gkt)k is, as before, the vector of VrE
effects with associated design matrix M=diag (Mj).
The vectors tp=(tp1k . . . tptk)k and up=(up1k . . . uptk)k are
the combined vectors of trial-specific peripheral
effects (fixed and random, respectively) and e=
(ek1 … ekt)k is the combined vector of plot error effects

from all trials. The design matrices for tp and up are
given by Xp=diag (Xpj ) and Zp=diag (Zpj ). The
vectors tg and ug (with design matrices Xg and Zg)
are the fixed and random effects associated with the
model for VrE effects. The random effects ug are
assumed to follow a Gaussian distribution with zero
mean and variance matrix Gg. For example, in the
variance component VrE model of Eqn (5) the
vector of fixed effects is given by tg=(m, hk)k with
design matrix Xg=[1mt It�1m] and the vector of
random effects is given by ug=(ak, dk)k with design
matrix Zg=[1t�Im It�Im] and variance matrix Gg=
diag (sa

2 Im, sd
2It�Im).

The random effects in Eqn (19) are assumed to
follow a Gaussian distribution with zero mean and
variance matrix

var

ug

up

e

0
B@

1
CA=

Gg 0 0

0 Gp 0

0 0 R

2
64

3
75

Independence of the sub-vectors in up and e is
assumed so that Gp=diag (Gpj ) and R=diag (Rj). As
a justification for this, recall that trials may comprise
factorial combinations of geographic locations and
years. It is clearly valid to assume independence
of block and plot error effects between geographic
locations, but the temporal aspect requires clarifi-
cation. In terms of annual crops, the independence
assumption is reasonable since a new trial is sown
each year and it is unlikely that an identical set of
field plots would be used in successive years. The
situation for perennial crops (pastures, for example)
is very different, since the associated data comprise
repeated measurements made on the same plots.
The focus in the present paper is on data from annual
crops so block diagonal forms for Gp and R are as-
sumed. The extension to allow correlations between
trials (for repeated measures MET data, for example)
is possible.

ESTIMATION AND SOFTWARE

Most of the literature concerning mixed model
analyses forMETdata contain frequentist approaches
to estimation in which the variance parameters of the
model are estimated using residual maximum likeli-
hood (REML, Patterson & Thompson 1971) and the
fixed and random effects are estimated using best
linear unbiased estimation (BLUE) and best linear
unbiased prediction (BLUP) respectively. There is
an exception, namely, Theobald et al. (2002) who
use Bayesian estimation methods. In the following,
a brief summary of the frequentist approach is pres-
ented. For a more detailed account of estimation in
general linear mixed models the reader is referred
elsewhere (see Cullis et al. 2004, for example).
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The model in Eqn (19) is re-written to the usual
form for a general linear mixed model, namely

y=Xt+Zu+e (20)

where t=(tgk, tpk)k is the vector of fixed effects with
associated design matrix X=[Xg Xp] (assumed full
rank) and u=(ugk, upk)k is the vector of random
effects with associated design matrix Z=[Zg Zp]. It
is assumed that the joint distribution of u and e is
Gaussian with zero mean and variance matrix

var
u

e

� �
=

G 0

0 R

� �
(21)

where G=diag (Gg, Gp) and G=G(c), R=R(w) and
c=(cgk, cpk)k is the vector of variance parameters as-
sociated with u (partitioned into VrE and peripheral
parameters) and w is the vector of variance par-
ameters associated with e. The distribution of y is
then Gaussian with mean Xt and variance matrix var
(y)=H=ZGZk+R.
The fixed and random effects in Eqn (20) are

estimated using best linear unbiased estimation and
prediction, respectively. This leads to the estimates

t̂t=(XkHx1X)x1XkHx1y

~uu=GZkHx1( yxXt̂t)

Generally, the parameters in H are unknown so
in practice are replaced by their REML estimates
(see below). The resultant estimates of the fixed
and random effects are then termed empirical BLUEs
(E-BLUEs) and empirical BLUPs (E-BLUPs).
The most popular method for estimation of the

variance parameters in a linear mixed model is
REML. This involves maximization of the residual
log-likelihood that can be written as

‘R=x1
2{ log jHj+ log jXkHx1Xj+ykPy} (22)

where P=Hx1 xHx1X (XkHx1X)x1 XkHx1.
In general, maximization of this likelihood with

respect to the vector of variance parameters k=
(ck, wk)k requires an iterative scheme. In the original
REML paper, Patterson & Thompson (1971) used a
Fisher Scoring (FS) algorithm that requires calcu-
lation of the expected information matrix for k.
This is very computer-intensive and may be untenable
for large data sets or complex variance models. As a
result, methods have been devised that are less com-
puter-intensive and employ sparse matrix methods.
These include derivative free methods (Smith &
Graser 1986), first-order schemes such as the
Expectation-Maximization (EM) scheme (Dempster
et al. 1977) and the computationally efficient second-
order scheme known as the Average Information (AI)
algorithm (Gilmour et al. 1995). A thorough account
and comparison of these and related iterative schemes

is given in Cullis et al. (2004). The present authors
use the AI algorithm as implemented in the com-
mercial software ASReml (Gilmour et al. 2002),
GENSTAT (1998) and samm (Butler et al. 2003) (a
suite of functions written for S-language (Becker et al.
1988) environments). What follows is a summary of
the algorithm.
In derivative-based methods (including the AI

algorithm) the residual log-likelihood is maximized
using the score equations:

UR(ki)=x1
2{tr(P

_HHi)xykP _HHiPy}

where _HHi=@H=@ki . The REML estimate of k is ob-
tained as the solution to UR(k)=0. In general, this
must be solved iteratively. Given an estimate k=k(m),
an update can be obtained as

k(m+1)=k(m)+[I(m)]x1UR(k
(m))

where I(m) is an information matrix for k evaluated
at k(m). The type of information matrix used varies
between schemes. The FS algorithm uses the expected
information matrix, the Newton Raphson algorithm
uses the observed information matrix and the AI
algorithm uses the so-called average information
matrix that is given by

I=1
2QkPQ

where the columns of Q are working variables corre-
sponding to k and are given by

qki= _HHiPy

It should be noted that, for models in which
the variance structure is linear in the parameters (for
example in variance component models), elements
in the average information matrix are exact averages
of the corresponding elements in the observed and
expected information matrices.
All of the models described in the current paper

can be easily fitted using the AI algorithm. The key
information required for each model are the score
equations and working variables. The calculation of
the score and working variables for standard variance
component parameters is detailed in Gilmour et al.
(1995). Calculations for spatial variance parameters
can be found in Cullis et al. (1998) and Smith et al.
(2001b). In the following, specific issues are
considered for estimation of the VrE variance
parameters for all models presented earlier.
In the variance component model of Eqn (5) the

vector cg is given by cg=(sa
2 , sd

2 )k. In the model of
Eqn (6), cg=(sh

2 , sd
2)k. Thus, in both models the

parameters are standard variance components,
the scores and working variables for which are given
in Gilmour et al. (1995).
The regression model of Eqn (8) contains a single

variance component so that cg=sd
2 . In the regression

on the mean model of Eqn (10) we have
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cg=(sh
2 , b, sd

2 )k. First, it should be noted that the
model is over-parameterized. Gogel et al. (1995)
overcome this by reparameterizing the model in terms
of vi=bish (i=1 … m) with sh=�vv whereby bi=vi/�vv.
The multiplicative models described earlier are

the most complex of the models presented. The vector
cg for the model of Eqn (12) comprises sa

2 , the indi-
vidual elements of the loading matrix Le and the
diagonal elements (specific variances) of Ye. The
vector cg for the model of Eqn (13) is similar, com-
prising sh

2 , the individual elements of the loading
matrix Lv and sd

2 . Smith et al. (2001b) give details of
the scores and working variables for loadings and
specific variances and note the need for constraints
on the elements of the loading matrix when k>1 in
order to ensure uniqueness. The use of heterogeneous
VrE variance in Eqn (12) compared with a common
variance in Eqn (13) can lead to models with variance
structures of less than full rank. This may occur
when estimates of specific variances tend to zero.
In this situation standard algorithms (including AI)
for REML estimation are no longer applicable.
Thompson et al. (2003) present a sparse implemen-
tation of the AI algorithm for fitting Factor Analytic
and Reduced Rank (RR) variance models. This has
the advantages over the estimation approach de-
scribed in Smith et al. (2001b) in that convergence
for FA models is faster and estimation of RR
models is possible. It is noted that, in practice in the
analysis of Australian MET data, the occurrence of
zero specific variances is quite common.
There are now several statistical packages (includ-

ing ASReml, GENSTAT, S-language packages and
SAS; Littel et al. 1996) that allow REML estimation
of a range of mixed models. The present authors have
found the packages ASReml and GENSTAT and the
samm functions (through S-language environments)
to be the most suitable for the analysis of MET data,
both in terms of the generality of models that can be
fitted and the ease with which predictions and infer-
ence about varietal effects can be made. All models in
the current paper are easily fitted and summarized
using these software (code is available from the
authors on request). An additional advantage with
ASReml is the size of problem that can be handled.
MET data-sets often involve large numbers of data
points (often greater than 10 000) and require mixed
model analyses with large numbers of random effects
(often greater than 60 000). The present authors have
found this to be possible only using the AI algorithm
as implemented in ASReml.

Two-stage analyses

So far in the current paper, attention has been re-
stricted to mixed model analyses of individual plot
data. This is referred to as the ‘one-stage’ approach in
which the models for residual effects are estimated

simultaneously with models for VrE effects. Many
authors (Patterson & Silvey 1980; Talbot 1984;
Patterson & Nabugoomu 1992) use a two-stage
approach in which variety means are first obtained
from the analyses of individual trials and are then
combined to form the data for an overall mixed
model analysis. The two-stage approach is an ap-
proximation to the more efficient one-stage approach.
Historically the two-stage approach was required
due to the difficulty in obtaining individual plot data.
Often this was not stored electronically but this
should no longer be an issue. There may, however, be
computational issues with the one-stage approach
when complex VrE models are fitted to large data-
sets. For example, ASReml has been used to fit
the Smith et al. (2001b) model to individual plot
data from 250 trials that involved a total of 400
varieties. At present this represents an upper bound
to the size of problems that can be tackled, but work
is in progress to extend this. In general, use of the
more efficient one-stage approach is recommended.
If the two-stage approach is to be adopted readers
are referred to Smith et al. (2001a) who describe
techniques, in particular the use of appropriate
weights, aimed at more closely approximating the
one-stage analysis.

CONCLUDING REMARKS

In the current paper the most popular mixed model
approaches for the analysis of MET data have been
described. They range from ANOVA type models
(that is, models based on simple variance component
assumptions for the random effects) through to
models with more complex forms for modelling VrE
interaction and error variation. Despite the clear
benefits of the general mixed model approach, adop-
tion within plant breeding and crop variety evalu-
ation programmes has been very slow. In particular,
the use of the more complex (and informative)
models and the assumption of random rather than
fixed variety effects is not widespread. This is in stark
contrast to animal breeding programmes, in which
REML and BLUP have been used for many years
as the basis for selection and estimation of breeding
values and genetic parameters. The reasons for the
difference between disciplines are unclear but may
have historical foundations. Plant breeding data are
derived from field trials that were originally analysed
(as far back as the 1930s) using an ANOVA frame-
work where treatment (variety) effects were regarded
as fixed and block effects as random. The approach
was extended to MET data by regarding environ-
ments as blocks. This doctrine remained unchallenged
until relatively recently when statisticians began to
advocate the use of more general mixed models for
MET data. It has therefore required a major culture
change for plant breeding programmes to adopt the

Mixed model analyses of crop variety trials 459

https://doi.org/10.1017/S0021859605005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859605005587


more complex models and only a small number have
done so. The challenge therefore remains to improve
adoption worldwide.
An historical argument against the use of mixed

models for plant breeding data was the lack of suit-
able software. As discussed in the section ‘Estimation
and software’, this is no longer an issue as the tools to
fit complex mixed models to large MET data sets are
now available.
A further challenge is to encourage the use of

random rather than fixed variety effects. This is not
an easy task, particularly as this is still a controversial
topic among statisticians. As discussed earlier, the

present authors believe that variety effects should be
assumed to be random since this minimizes selection
errors when identifying the best varieties, it provides
more realistic predictions of genetic gain and allows
a valid analysis of data combined across stages of
selection.
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APPENDIX : KRONECKER PRODUCTS

Definition

Let A={aij} be an mrn matrix and B={bkl} be a
prqmatrix. Then the Kronecker product ofA and B,
denoted A�B, is given by the mprnq matrix

a11B a12B � � � a1nB

a21B a22B � � � a2nB

: : :

: : :

: : :

am1B am2B � � � amnB

2
666666664

3
777777775

Expansion of variance matrix for VrE effects

All the models considered in this paper have a vari-
ance matrix for the VrE effects of the form

var (g)=A�B

where A is a trt variance matrix for the environment
dimension and B is an mrm variance matrix for the

variety dimension. Consider m=4 varieties and t=2
environments. Then

var

g11

g21

g31

g41

g12

g22

g32

g42

2
666666666666664

3
777777777777775

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

=
a11 a12

a21 a22

� �
�

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

2
6664

3
7775

This means that the variance of the VrE effect for
variety i and environment j is given by

var (gij)=ajjbii

and the covariance between effects for variety i,
environment j and variety k, environment l is

cov (gij, gkl)=ajlbik

Expansion of model formulae

Consider the specific example of Eqn (4) and assume
m=4 varieties and t=2 environments. Then

g11

g21

g31

g41

g12

g22

g32

g42

2
66666666666664

3
77777777777775
=

1

1

1

1

1

1

1

1

2
66666666666664

3
77777777777775
m+

1

1

� �
�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

0
BBB@

1
CCCA

a1

a2

a3

a4

2
6664

3
7775+ 1 0

0 1

� �
�

1

1

1

1

2
6664
3
7775

0
BBB@

1
CCCA h1

h2

� �
+

d11

d21

d31

d41

d12

d22

d32

d42

2
66666666666664

3
77777777777775

=

1

1

1

1

1

1

1

1

2
66666666666664

3
77777777777775
m+

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
66666666666664

3
77777777777775

a1

a2

a3

a4

2
6664

3
7775+

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

2
66666666666664

3
77777777777775

h1

h2

� �
+

d11

d21

d31

d41

d12

d22

d32

d42

2
66666666666664

3
77777777777775
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