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Abstract
Resilient cropping systems are required to achieve food security in the presence of climate change, and so
several long-term conservation agriculture (CA) trials have been established in southern Africa – one of
them at the Chitedze Agriculture Research Station in Malawi in 2007. The present study focused on a
longitudinal analysis of 10 years of data from the trial to better understand the joint effects of variations
between the seasons and particular contrasts among treatments on yield of maize. Of further interest was
the variability of treatment responses in time and space and the implications for design of future trials with
adequate statistical power. The analysis shows treatment differences of the mean effect which vary accord-
ing to cropping season. There was a strong treatment effect between rotational treatments and other
treatments and a weak effect between intercropping and monocropping. There was no evidence for an
overall advantage of systems where residues are retained (in combination with direct seeding or planting
basins) over conventional management with respect to maize yield. A season effect was evident although
the strong benefit of rotation in El Niño season was also reduced, highlighting the strong interaction
between treatment and climatic conditions. The power analysis shows that treatment effects of practically
significant magnitude may be unlikely to be detected with just four replicates, as at Chitedze, under either a
simple randomised control trial or a factorial experiment. Given logistical and financial constraints, it is
important to design trials with fewer treatments but more replicates to gain enough statistical power and to
pay attention to the selection of treatments to given an informative outcome.
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Introduction
It is predicted that southern Africa will be substantially affected by increasing climate variability
and change (Lobell et al., 2008). Studies based on modelling of future climate effects suggest that
the main climate hazards to crop production in the region are a delayed onset of the cropping
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season, in-season droughts and dry spells, heat waves, erratic rainfall and early tailing-off of rain-
fall (Cairns et al., 2012; Steward et al., 2019), exacerbated by declining soil fertility (Kumwenda,
1998). The concept of climate-smart agriculture has been developed as an approach to cope with
climate change (McCarthy et al., 2011; Lipper et al., 2014). To be regarded as climate-smart,
a cropping system must adapt to negative effects of climate change, mitigate these effects
(e.g. through reductions in greenhouse gas emissions or increased carbon sequestration) and lead
to greater productivity and profitability (Thierfelder et al., 2017).

In Malawi, a land-locked country in south-eastern Africa, the effect of climate change,
population pressure and declining soil fertility has been felt for many years (Chinsinga and
Chasukwa, 2018). Periodic droughts and floods have become more frequent in Malawi and there
is great urgency to find viable solutions for farmers (Tesfaye et al., 2015). The predominant
land-use practice in Malawi is ridge tillage, where annual dug ridges of 20–50 cm height and
spaced 75–90 cm are prepared (Bunderson et al., 2017). Incorporation, burning or grazing of
surface crop residues are the most common residue management strategies (Ngwira et al.,
2013). Maize (Zea mays L.) is the predominant food crop grown on approximately 80% of the
smallholder land area with little diversification of the cereal with legumes (Smale, 1995).

Conservation agriculture (CA) is one of the climate-smart systems which has been heavily
promoted in recent years in southern Africa (Thierfelder et al., 2017). CA is a cropping system
based on minimum soil disturbance, the retentions of crop residues and crop diversification
(Kassam et al., 2009). In addition, it requires complementary good agriculture practices for it
to function (Thierfelder et al., 2018). However, despite its transformational effect in the
Americas and Australia in the past 40 years (Bolliger et al., 2006; Kirkegaard et al., 2011), mostly
on large commercial farms, it was not adopted to a large extent in southern Africa (Kassam et al.,
2015) despite some successes in Zambia, Malawi and Zimbabwe (Aagaard, 2011; Bunderson et al..,
2017; Marongwe et al., 2011). Currently CA-based systems are being practised on up to 10% of the
farm land in southern Africa (Kassam et al., 2015) with variable quality and duration of the practice.

Various benefits from CA have been reported (Thierfelder et al., 2015), including studies
that have shown yield benefits in Malawi (Ngwira et al., 2012; Setimela et al., 2018;
Thierfelder et al., 2016), which confirms that CA systems have the potential to increase produc-
tivity and profitability. Thierfelder and Wall (2009) suggest that this might result from improved
infiltration and retention of water under CA. However, CA systems may also lead to slightly
suppressed crop yields in the initial years (Giller et al., 2009), to nitrogen lock-up through reten-
tion of cereal crop residues with a large C:N ratio (Mupangwa et al., 2019) and to increase in
certain pest and diseases carried over through crop residues, which can affect crop performance
(Giller et al., 2015). Waterlogging may also be a greater risk under CA (Thierfelder andWall). The
lack of an immediate yield benefit seems to be a major deterrent to widespread adoption alongside
the culture and tradition of continued use of tillage practices (Thierfelder et al., 2018).

It was against this background that a CA long-term trial was established in 2007 at the Chitedze
Agriculture Research Centre in a randomised complete block design with seven treatments and
four replications. The principal aim of the trial was to identify cropping systems under CA that
would maintain or increase productivity over time and withstand soil moisture and fertility
decline. We were further interested to study pest and disease dynamics, to explore the
‘climate-smartness’ of CA cropping systems, and to generate reliable soil, water and plant data
in a controlled environment to calibrate crop simulation models (Ngwira et al., 2014). Several
studies of this trial have been published which address different agronomic questions about
the systems in the experiment (Ligowe et al., 2017; Ngwira et al., 2014; Thierfelder et al.,
2013). However, there is a need for a synoptic analysis of the multi-season data to address targeted
hypotheses about the treatments over the length of the trial, in particular, the joint effects of var-
iations between the seasons and particular contrasts among treatments and groups of treatments.
Furthermore, a long-term experiment such as this one offers the opportunity to address questions
about the variability of treatment responses and the implications for design of future trials.
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The objectives of the present study were therefore to: (a) assess the evidence provided by the
maize yield data from the first 10 seasons of the Chitedze experiment for differences between
treatments and seasons, examining specific hypotheses by means of orthogonal contrasts and
(b) to learn lessons from the experiment in terms of power and design requirements for future
long-term trials.

Materials and Methods
Study site description

The study was carried out at Chitedze Agriculture Research Station, located on the Lilongwe–
Kasungu plains (−13.973 S, 33.654 E, 1145 m above sea level). The soils are ferruginous
Latosols (WRB, 1998), (Alfisols – USDA Soil Taxonomy) which are deep and drain freely with
a well-developed structure. The top soil is dark, reddish brown with pH ranging from 4.5 to 6.0.
In the first year of establishment, baseline top soil analysis showed acid soil reaction (pH H2O
ranging from 5.1 to 5.2), medium SOM ranging from 3.2 to 3.5%, medium N ranging from
0.16 to 0.18%, low P ranging from 1.68 to 15.56 μg g−1 and medium K ranging from 0.33 to
0.56 cmolc kg−1 (Ligowe et al., 2017).

The average long-term rainfall in the whole rainy season at Chitedze is approximately 900 mm,
while the mean temperature ranges between 20 and 22°C. Rainfall measurements at the study site
varied considerably from the long-term record with increasing frequency of droughts and low and
erratic rainfalls in the last decade (Figure S1 in the supplementary material).

The cropping season usually started at the beginning of December and lasted until April in each
year. The last years have been heavily affected by climate abnormalities such as El Niño anomalies
in 2015/2016, a drought in 2014/2015 and high rainfalls in the La Niña year of 2016/2017.

The study site is dominated by maize-based farming systems cultivated on up to 80% of the
land area of the Lilongwe–Kasungu plains under the dominant land-use practice of ridge tillage.
Besides maize, a range of legumes (e.g. cowpea (Vigna unguiculata (L.) Walp), groundnuts
(Arachis hypogaea L.) are grown as rotational crops. Pigeonpea (Cajanus cajan Millsp.), which
features as a rotational crop in the Chitedze trial, is a common crop in many parts of Malawi
but not systematically grown in the Lilongwe–Kasungu plains.

Trial history and experimental design

Prior to trial establishment, the site was under fallow for more than 5 years. The dominant natural
fallow bush was Tithonia diversifolia (Deliya) and Acacia polyacantha (Mthethe). After land
clearing, the trial establishment started with a uniform maize crop in 2006 and then trial layout
and treatment implementation in 2007.

The trial was established in a completely randomised block design with four replications
on-site. The plots were 24 m × 13.5 in dimensions and separated from all neighbouring plots
by a passage of 1 m wide. The plots were laid out in four rows (the row extending in the direction
of the long side of the plot) and in eight columns. Each block in the experimental design
comprised two adjacent columns.

The treatments are described below. Note that by ‘direct seeding’, we mean that maize was
planted directly into undisturbed soil, a standard zero-till practice.

1. Conventional control practices (CPM); traditional farmers practice using the hand hoe
(ridge and furrow system), maize as a continuous sole crop, no residue retention, stubble
incorporated into the row for the following season.

2. Basin planting (BAM), planted in manually dug basins, maize as a continuous sole crop,
residues retained in situ on the soil surface.
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3. Direct seeding with a dibble stick (DSM), maize as a continuous sole crop, residues retained
in situ on the soil surface

4. Direct seeded crop rotation (DSRML), planted with dibble stick, maize-legume rotation,
residues retained in situ on the soil surface (both phases of the rotation were individ-
ual plots).

5. Direct seeded maize intercropping (DSIMP): direct seeding with dibble stick, maize with
pigeonpea intercropping, residues retained in situ on the soil surface.

6. Direct seeded maize intercropping (DSIMC): direct seeding with dibble stick, maize with
cowpea intercropping, residues retained in situ on the soil surface.

7. Direct seeded maize intercropping (DSIMM): direct seeding with dibble stick, maize with
velvet bean intercropping (seeded 3 weeks after the maize), residues retained in situ on the
soil surface.

Ridge tillage (75 cm ridge spacing and approximately 20–30 cm in high) and basin digging
(of the size 15 cm × 15 cm × 15 cm) were dug each year during the dry winter season (usually
in October) and then planted after the first effective rains. Note that basins were re-dug each year
in the same positions to minimise disturbance. All dibble-stick planted direct seeding treatments
(Treatment 3–7) were seeded on the same day as the CPM and BAM treatments.

Medium maturing commercial maize hybrids with yield potential of >10 t ha−1 were used as
test crops in the trial (Table S1 in the supplementary material).

The maize was seeded at a target population of 53,000 plant ha−1 in all experimental maize
plots including intercropping treatments. All maize crops were fertilised uniformly at the site
following national recommendations for the agro-ecology. A recommended fertiliser rate of
69 kg ha−1 N, 21 kg ha−1 P2O5 and 4 kg ha−1 S ha−1 was applied to all the treatments. The appli-
cation comprised 23 kg ha−1 N, 21 ha−1 kg P2O5 and 4 kg ha−1 S as a basal fertiliser dressing at
planting and 46 kg ha−1 N in the form of urea 21 days after planting.

Weed control was carried out with an initial herbicide control of glyphosate (N-(phosphono-
methyl) glycine) at seeding at a rate of 2.5 l ha−1 and manual weed control with hand hoes. Manual
weeding was undertaken 3 to 4 weeks after planting, and again three to four weeks after the first
weeding. A third manual weeding was undertaken after a further 3 to 4 weeks in wetter seasons
when weeds achieved appreciable densities after the second weeding. Residues were applied in the
first year of practices at a rate of 2.5–3 t ha−1 and maintained in situ after the first crop harvest.

It is important to note that, while seven treatments are listed above, there are eight plots in each
block with two plots allocated to the rotation treatment DSRML. In any one season, one of these
plots is in maize and the other under the legume. Legumes in the DSRML were initially only
cowpea. From 2011 onwards, the rotational plot was split and both cowpeas and groundnuts
were used in the rotation, but separate maize yields were not recorded for the two subplots.
The rotational legume crops were seeded at 37.5 cm row spacing by 25 cm in-row spacing
(106,666 plants ha−1). Intercrops were planted 50 cm between planting stations (two seeds per
station) except for the pigeonpeas which was seeded at 60 cm between planting stations in the
same maize rows to avoid it being weeded out (two seeds per station and later thinned one).
Both pigeonpea and cowpeas were planted at the same time as the maize. Velvet beans were
planted 3 weeks after the maize to avoid competition between maize and the cover crop.

Harvesting procedures

Harvesting followed standard harvesting procedures taking 10 crop cuts from randomly selected
quadrats (10 × 7.5 m2) in each treatment. Maize was harvested after physiological maturity. Both
cobs and biomass were weighed fresh and a cob and biomass subsample dried for moisture
determination. The final above-ground biomass and grain were calculated in kg ha−1 based on
a moisture content of 12.5%. Cowpea and groundnuts in rotation with maize as well as
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intercropped cowpea, pigeonpea and velvet beans were also harvested at physiological maturity.
Yields of velvet beans and pigeonpea were very low due to competition for light, moisture stress
and pest attacks, respectively.

Statistical analysis

Exploratory analysis
The primary objective of exploratory analysis of data is to evaluate the plausibility of key assump-
tions in the planned analysis and to decide whether certain actions (e.g. data transformations) are
required (Webster and Lark, 2019). To this end, a simple linear model was fitted to the data with
blocks and a factorial combination of season and treatment, and the residuals (differences between
fitted and observed values) were extracted. Summary statistics were computed for the residuals,
and summary plots (histogram and box plots, and the plot of empirical quantiles against theoreti-
cal normal equivalents, the QQ plot). Among the summary statistics, we computed was the octile
skewness (Brys, et al., 2003). This is a measure of the apparent asymmetry of the distribution of
data which is robust to a small number of outlying values. A plot of the residuals against fitted
values was also examined to indicate whether there was evidence that the residuals were not
homogeneous in their variance (Webster and Lark, 2019).

The residuals were examined for evidence of outlying observations. To do this, we used Tukey’s
(1977) ‘outer fences’ as thresholds. The lower outer fence is a threshold value set at three times the
interquartile range below the first quartile of the data, and the upper outer fence is set at the same
distance above the third quartile.

One issue in the analysis of any data set with repeated observations on the same units over
time is the temporal correlation of the residuals. This is discussed further below, but the empirical
variogram is a useful exploratory tool (Diggle, 1990). If zi,t is the residual in the ith plot at time t,
then the marginal temporal variogram for time lag interval τ is estimated by:

γT�τ� �
1

2Nτ

X
i � 1;m; t � 1; T � τ

�
Zi;t � Zi;t�τ

�2; (1)

where Nτ is the total number of pair comparisons between observations within one plot over a
time interval τ, and there are m plots and T= 10 seasons. This formula shows that the temporal
variogram is computed only from comparisons between residuals for the same plot. A plot of the
variogram against the lag interval indicates the magnitude of any temporal correlation in the
residuals. If this is present, then the variogram is expected to increase with increasing lag time.

The longitudinal model and its fitting
We considered two linear mixed models. Both have the same fixed effects structure that reflects
the experimental design. There are additive effects of blocking (four blocks) and then main effects
of treatments, seasons and their interaction. Because repeated measurements are made on the
same units (plots), the variance of repeated observations on the units, σ21, must be estimated
separately from the residual variance σ22, and this is done in both models. The models differ
in how the covariance of the repeated observations within the same plot is treated. In the first
model, we assume that the variance of the difference between any two observations on the same
plot is constant (sphericity assumption). In the second model, it is assumed that the variance of
this difference depends on the interval in time between the two observations. The two models may
therefore be written, respectively, as (assuming sphericity)

y � Xβ� Zα� ε; (2)

where y is the length-n vector of observations, X is a design matrix which represents the fixed
effects and β is a vector of fixed effects coefficients, representing block, treatment and season
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effects and the interaction of the latter two. The matrix Z is a design matrix, with n rows and
m columns where m is the number of plots. The elements of this design matrix are zeroes, with
a 1 in element {i,j} if and only if the ith observation is in the jth plot. The term is therefore a
random variate of unit mean and covariance matrix σ2

1ZZ
T. The final term is an independently

and identifically distributed random variable of variance σ22.
The second model may be written as in Eq (2), and the difference is the definition of the

covariance matrix for the term α which now takes the form σ2
1R where R is an n × n correlation

matrix such that elements for the ith and jth observation are

Rfi; jg � 1; if i � j;
� 0; if observations i and j are in different plots;
� ρ�τ� otherwise;

(3)

where ρ (τ) is the absolute difference in time between the ith and jth observations and ρ is a
correlation function. In this case, we used the Matérn correlation function (Stein, 1999) which
has a smoothness parameter, κ, which determines the nature of variation over short-time intervals
and a time parameter, ϕ, which controls the time interval over which the correlation decays. The
models were fitted by minimising the negative log residual likelihood, following Diggle and
Ribeiro (2007) using profiling over a few discrete values to find κ.

Note that the second model is more complex than the first, with two additional parameters
(those of the correlation function). It will therefore always have a minimised negative log residual
likelihood at least as small as that of the simpler model. To select between the models, it is neces-
sary to account for this difference in complexity, and this can be done by comparing the values of
Akaike’s information criterion (AIC). A strategy of selecting the model for which AIC is smallest
will minimise the expected Kullback–Leibler divergence between the estimated model and the
process that generates the data over the set of models considered (Buckland et al., 1997).

Inference
Inferences about the fixed effects in the model can be made based on the Wald statistic which
may be compared with the F-distribution with specified numerator and denominator degrees
of freedom. The latter degrees of freedom were found using the method of Kenward and
Roger (1997, 2009) which accounts for the dependency within a linear mixed model. Models were
fitted in this study using the lme4 package in R for estimation (Bates et al., 2015), the afex package
(Singmann et al., 2018) and the pbkrtest package Halekoh and Højsgaard (2014) for inference and
the emmeans package (Lenth, 2018) for estimation of effects.

While an overall effect of treatments can be examined by the methods described above, this is
rarely of direct practical interest. Rather, particular treatments, or groups of treatments, may be
compared to test particular hypotheses. These hypotheses should be determined in advance of the
analysis, and, ideally, should be structured so that they map on to orthogonal contrasts among the
treatments, that is to say into contrasts which constitute a partition of the overall treatment effect
into independent components. The hypotheses identified for this analysis are now set out.

The first three hypotheses concern comparisons among broader groups of cropping systems.
These are (H1): the mean yield under methods based on residue retention (either with direct seed-
ing or with basins) exceeds that under conventional practices, (H2): mixed systems (intercropping
or rotations) will have larger yields than monocropping systems (all with direct seeding) and (H3):
the rotations will lead to larger maize yields than intercropping systems. The second three hypoth-
eses concern specific comparisons within these groups which may provide a basis for specific
advice about the choice of systems. These are (H4): basin planting will lead to larger yields than
will direct seeding without this disturbance, (H5): yields will differ under intercropping with the
late sown intercrop (velvet bean, sown 3 weeks after the maize) relative to cowpea and pigeon pea
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sown with the maize and (H6): maize yields in intercropping systems will differ depending on
whether the intercropped legume is cowpea or pigeon pea.

These hypotheses correspond to six orthogonal contrasts. These were as follows:

H1: Contrast C1. Control (CPM) plot versus the rest (comparing conventional treatment with
various options which use zero-till and direct seeding with a dibble stick).

H2: Contrast C2. Within the direct seeding treatments: monocrop — BAM (basins) and DSM
(dibble stick) versus mixed (rotations or intercrop)

H3: Contrast C3. DSRML (Rotation) versus DSIMC, DSIMP and DSIMM (intercrop)

H4: Contrast C4. BAM versus DSM

H5: Contrast C5. Late sown intercrop (DSIMM, Velvet bean) versus intercrop sown with maize –
DSIMC (cowpea) or DSIMP (pigeon pea)

H6: Contrast C6. DSIMC versus DSIMP

Contrasts between the seasons were examined with prior orthogonal contrasts, but not a complete
set (there are 9 degrees of freedom for season differences). Rather, we focused on hypothesised
differences between seasons according to the NOAA Oceanic Niño Index (ONI). The value of
El Niño Southern Oscillation as a predictor of crop yield in southern Africa has been reported
previously (e.g. Cane et al., 1994, Iizumi et al., 2014). We identified as El Niño seasons those
in which a strong positive ONI was recorded in at least one of the 3-month running averages
from November to April prior to harvest. If there was a strong negative ONI in the same period,
then the season was identified as La Niña (note that there was no conflict between these criteria in
this period). Otherwise, a season was identified as neutral. This approach is comparable to that of
Iizumi et al. (2014) who considered ONI in the 3 months prior to harvest as indicative of climatic
conditions during the key reproductive phases of crop development. We hypothesised that yields
would be smaller in El Niño seasons by this criterion, and that yields would be smaller in La Niña
seasons than in neutral ones. These two hypotheses are encoded in the following two orthogonal
contrasts:

Contrast S1: differences between El Niño seasons and La Niña or neutral seasons.

Contrast S2: differences between the La Niña and neutral seasons.

In order to better understand the season by treatment interaction, we considered the three 1-df
components of the interaction: C1●S1, C2●S1 and C3●S2.

We treated the treatment contrasts, season contrasts and interaction terms as three separate
families of tests for purposes of controlling family-wise error rate (FWER), which was done
by the method of Holm (1979). We focused on the interactions of the first three treatment con-
trasts with the El Niño effect to limit the number of interaction terms for which the null hypothesis
was tested and so to maintain the statistical power with which this particular family of tests was
examined with FWER control.

Statistical power

One objective of this study is to use the Chitedze trial, a unique resource, to identify general les-
sons for the design of other experiments in the region. A key question is how much replication
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such experiments require. The statistical power of a particular experiment and analysis is an
important practical measure of its efficiency. Power is computed for a particular effect size
(e.g. difference in means among treatments). The statistical power is the probability that a true
effect of this size would be detected as significant (with a p-value below a specified threshold).
Other things being equal, the power of an experiment can be increased by increasing replication
or adopting blocking (Lawson, 2014) or by incorporating covariates into the data analysis that
account for some of the residual variation (Rudolph et al., 2016). The power for an experiment
with a specified effect size and number of replicates can be computed from the non-centrality
parameter of the variance ratio with the specified effect size and from the magnitude of the
expected residual mean square (RMS). The daewr package for the R platform (Lawson, 2014)
provides functions for doing this.

We computed single-season analyses of variance for the Chitedze trial and extracted the values
of RMS. We then considered the problem of designing an experiment with just two treatments, a
control and an intervention, with a specified effect size. This effect size was set at an increase of
25% on the mean yield of the experimental control plots over all seasons. This is equal to a yield
increase of 1.16 t ha−1. We computed the power to detect such an effect, for each season’s RMS.

In fact, as at Chitedze, the power of an experiment must be evaluated over multiple seasons, and
the effect of this on power will be one consideration when planning an experiment and in the
interpretation of its outputs as it progresses. To this end, we considered an extension of the case
above in which the experiment is run for 2, 3, 4 or 5 seasons. The power analysis was done by
simulation, based on the random effects for the mixed model fitted for the Chitedze data. A data
set was simulated with number of replicates set to 4, and number of seasons to 2 and the treatment
means differing by 1.16 t ha−1. The simulated data were analysed by a linear mixed model, and the
p-value for the treatment effect extracted. This was repeated 2000 times and the proportion of
cases in which p< 0.05 was computed as an estimate of power. This was repeated for all combi-
nations of 2, 3, 4 or 5 seasons with 2, 4, 6, : : : , 16 blocks.

Finally, we conducted a second power analysis by simulation for a factorial experiment in
which two factors – diversification (with levels ‘monocrop’ or ‘rotation’) and cultivation (with
levels ‘conventional with residues removed’ and ‘zero till with residues retained’) – were applied
in full factorial combination. Such an experimental design includes one treatment which corre-
sponds to a conventional cropping system (‘monocrop’ with ‘conventional cultivation’) and one
which corresponds to full CA management (‘rotation’ with ‘zero till’). The factorial structure
allows the contributions of the two components of the CA system to be evaluated along with their
interaction. In the simulation, we considered completely randomised blocks (four plots per block)
and the same number of seasons and blocks used in the previous power analysis. Power analysis
requires the specification of an effect size, and so this is somewhat speculative. For consistency
with the previous power analyses, we assumed an overall effect size for the CA treatment over
against conventional management of 1.16 t ha−1. We assumed that each factor contributed an
additive component of 0.5 t ha−1 to this effect, with the additional 0.16 t ha−1 the result of the
interaction.

Note that all these power analyses are conditional on the variance components estimated from
the Chitedze experiment, and so are conditional on the plot size used, as well as local conditions.

Results
Maize yields: treatment and season effects and interactions

The mean yields of maize in this experiment show variations between treatments and seasons
(Figure 1). Plots of the residuals of the first exploratory model were examined (Figure 2), and
their summary statistics are presented in Table S2 in the supplementary material (row 1).
Note that one observation appears to be an outlier. The corresponding datum was removed,
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and the exploratory model was refitted. Summary plots for the second set of residuals were
examined again (Figure S2 in the supplementary material) along with their summary statistics
(Table S2 in the supplementary material, row 2). The absolute value of the skewness of the resid-
uals after removal of the outlier is less than 0.5, smaller than the threshold value of 1 at which
transformations are commonly considered (Webster and Oliver, 2013), and the absolute octile
skewness is smaller than 0.2, an equivalent threshold (Rawlins et al., 2005). These statistics,
and the histogram, boxplot and QQ plot in Figure 2, suggest that the residuals may plausibly
be regarded as normally distributed. The plot of the residuals against the fitted values in
Figure S2 in the supplementary material suggests that the errors in the model can plausibly be
treated as homogeneous in variance. On this basis, further analysis was done with the data in their
original units (t ha−1). The outlying observation was in plot 5 in block 1 (rotation) in the 2017
harvest year. The recorded yield was an order of magnitude smaller than for any other plots in the
block, or plots in the same treatment, and Figure 2 shows how markedly different the correspond-
ing residual for the fitted model is from those for the remaining observations. The experiment
manager revisited the records for the season and concluded that the entry was likely to be an error
of transcription, possibly through confusion with legume yield records for the associated plot in
the rotation treatment. That single datum was therefore removed before all further analysis.

The empirical temporal variogram of the residuals in Figure S3 in the supplementary material
shows no evidence for temporal dependence of the residuals within the experimental plots, with
the variogram values at different time lags fluctuating around a value of approximately 0.5, and no
evidence of an overall increase with time lag. The results from fitting the alternative linear mixed
models to the data (Table 1) show that the negative residual log likelihood for the model with
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Figure 2. (A) Histogram for residuals from an exploratory model with a box-and-whisker plot. The vertical dashed
line shows the threshold (lower) for probable outliers following Tukey (1977). (B) Plot of empirical and normal quantiles
for residuals with normal line, and the solid disc shows a probable outlier according to the criteria of Tukey (1977). (C) Plot
of residuals versus fitted values.

Table 1. Fitted random effects parameters for alternative linear mixed models with negative log-likelihood (NLL) and AIC

Model κ ϕ σ21 σ22 NLL AIC

Exponential 2.0 5.34 0.376 0.688 –48.74 56.51
Sphericity – – 0.322 0.735 –47.77 54.47

σ21 variance of repeated measurements on the same plot.
σ22 residual variance.
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exponential temporal dependence is only slightly smaller than that for the model assuming
sphericity, and the AIC of the latter model is the smaller of the two. This is consistent with
the empirical temporal variogram. On this basis, the model assuming sphericity was selected
for subsequent analyses.

The Wald statistics for the main effects and their interaction (Table 2) provide strong evidence
to reject the null hypothesis for both main effects (differences between seasons and between treat-
ments) and their interaction, indicating that treatment effects differ between the seasons. Note
that the denominator degrees of freedom computed by the method of Kenward and Roger (which
is why they are not, in general, whole numbers).

The main effects and interactions are elucidated in more depth on the basis of the specific
planned contrasts among levels of these factors (Table 3). The first orthogonal contrast, C1,
between the conventionally managed check plots and the treatments with residue retention
and direct seeding or basins considered together, is not significant. The mean effect size of the
contrast is 0.46 t ha−1 (smaller yields on the conventional management), but the uncertainty
of this estimate is large and the 95% confidence interval for the effect ranges from −1.17 to
0.23 t ha−1. In summary, the experiment provides no evidence for an overall mean increase in
maize yield with residue retention as a whole in comparison to conventional management.

Contrast C2 compares monocrop CA and mixed cropping systems. The estimated mean yield
for the monocrop treatments was smaller than for the intercropping treatments by 0.67 t ha−1, but,
although the 95% confidence interval for this effect does not include zero, our evidence to reject
the null hypothesis that the contrast (C2) is zero is weak when FWER is controlled at 0.05 within
the group of contrasts among treatments (see the p-value with Holm adjustment in Table 3).

There is strong evidence for a difference in mean yield between the rotation plots and those
with intercropping (contrast C3). The estimated effect sizes (Table 4) show that, averaged over
seasons, the rotation treatment yielded 1.2 t ha−1 more than the intercropping treatments, and
the null hypothesis of no effect can be rejected with p= 0.003 under FWER control.

Table 3. Planned orthogonal contrasts among treatment means and three components of the treatment● season
interaction

Numerator Df Denominator Df Wald statistic p p Holm adjustment

C1 Check plots vs rest 1 19.44 1.88 0.1862 0.7447
C2 Monocrop vs mixed 1 19.69 6.18 0.0220 0.1100
C3 Rotation vs intercrop 1 24.25 15.75 0.0006 0.0034
C4 Basin vs DS 1 19.35 0.01 0.9063 1.0
C5 (CP and PP) vs VB 1 19.35 0.52 0.4783 1.0
C6 CP vs PP 1 19.35 0.77 0.3911 1.0
S1 El Niño vs (La Niña/neutral) 1 191.65 432.50 <0.0001 <0.0001
S2 La Niña vs neutral 1 186.01 3.03 0.0840 0.0836
C1●S1 1 184.46 1.20 0.2749 0.5498
C2●S1 1 184.46 0.52 0.4698 0.5498
C3●S1 1 202.63 13.01 0.0004 0.0012

Table 2. Analysis of variance table (Kenward–Roger-adjusted Wald statistics with adjusted
denominator degrees of freedom)

Numerator Df Denominator Df Wald statistic p

Block 3 20.83
Season 9 191.86 87.85 <2.2×10–16

Treatment 6 20.18 4.72 0.0037
Season● treatment 54 178.11 2.01 0.0003
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The remaining contrasts comprising the treatment main effect all have small effect sizes with
confidence intervals including zero, and the p-values are all large, indicating an absence of evi-
dence to reject the null hypothesis. The treatment means, over all blocks and seasons, with their
confidence intervals based on the random effects in the combined model are shown in Figure 3.
Note that the mean yields for the check plots and monocrop CA plots are all very similar. The
plots with CA and crop rotation for diversification clearly have the largest mean yield. There is
strong evidence to reject the null hypothesis that overall mean yield does not differ between the El
Niño seasons (harvest in 2010, 2015 and 2016) and the rest (Table 3 contrast S1), and Table 4
shows that, on average across treatments, the yield in the El Niño seasons is 3.52 t ha−1 less than
the others. There is no evidence for an overall difference between La Niña and neutral seasons.
Seasonal climate is expected to be an important factor in crop yield. Note also that there were
infestations of wireworm (Gonocephalum spp) and white grub (Heteronychus arator) in the trial
in the 2014/2015 and 2015/2016 seasons, which coincided with very dry years.

Table 4. Estimated effect sizes for 1-df contrasts and their confidence intervals

Contrasta Effects/t ha–1 Df SE/ t ha–1 95% CI

C1 Check plots vs rest –0.46 19.44 0.337 –1.17, 0.23
C2 Monocrop vs mixed –0.67 19.69 0.268 –1.22, –0.11
C3 Rotation vs intercrop 1.21 24.25 0.304 0.58, 1.83
C4 Basin vs DS –0.05 19.35 0.445 –0.98, 0.88
C5 (CP and PP) vs VB –0.28 19.35 0.385 –1.08, 0.53
C6 CP vs PP –0.39 19.35 0.445 –1.32, 0.54
S1 El Niño vs (La Niña/neutral) –3.52 191.65 0.169 –3.85, –3.18
S2 La Niña vs neutral –0.23 186.01 0.136 –0.50, 0.03

aNB first-named treatment has positive weight.
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Figure 3. Estimated mean yields by treatment over all seasons, with 95% confidence interval.
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The overall treatment means, shown in Figure 3, obscure differences among seasons, which, as
seen in Table 4, and the overall significant season by treatment interaction, can be substantial. The
treatment main effects are of considerable practical relevance because they represent the mean
yield that farmers can expect over a period of inter-season variation comparable to that for this
experiment. That said, it is important to consider the interactions with season effects, because
they may show, for example, that a particular treatment is most vulnerable to adverse seasonal
conditions, or conversely, particularly robust in those conditions.

The interaction of C1 (conventional management vs all practices with residue retention) with
the S1 season effect was not significant (p= 0.55, Table 3). The contrast C1 was not significant,
and this component of the interaction shows that the experiment provides no evidence that, for
example, the checkplots are at a particular disadvantage in the El Niño seasons.

Of the components of the interaction examined in more detail, only the difference between the
rotational and intercropping treatments appears to differ between El Niño and other seasons. On
examination of the raw treatment means in Figure 1, it would appear that the advantage of the
rotational management is, in general, larger in La Niña and neutral seasons.

Statistical power

The values of RMS for successive one-season analyses of the trial data vary from year to year
(Figure S4 in the supplementary material). Note that the smallest RMS was in the first season.
This may reflect the effect of the varied treatments accumulating over time with the impact of
direct seeding and residue incorporation, as well as rotations and intercropping on soil physical
and chemical properties. The largest RMS is for the 2017 harvest. Note that this was a La Niña
season in which there were also notable infestations of fall armyworm (Spodoptera frugiperda).
Fall armyworm, a new invasive lepidopteran pest, reached Malawi in late 2016 and started affect-
ing general crop yields. This had an unforeseen treatment effect on the longer-term maize yields.

The results for single-season power analysis (Figure S5 in the supplementary material) show
that, with just four blocks, the power to detect the target effect never exceeds 0.8 (a common target
power) and is more typically around 0.2. With 16 blocks, the 0.8 target is met or exceeded for all
seasons apart from the 2017 harvest. Note the implication of our observation that the RMS was
smallest in the first (2008) harvest season: the target power was exceeded for all cases with eight or
more blocks. However, this is in the first season only, when treatment effects may be very limited.

Turning to the more realistic case, of multiple-season analyses, Figure 4 shows the power
estimates obtained by simulation for the simple two-treatment experiment. Note that with
10 or more blocks and 2 or more seasons, the target power (0.8) is achieved. Six or fewer blocks
are insufficient to achieve the target power with five or fewer seasons, but with eight blocks the
target power is achieved if the experiment runs for four seasons or longer. The general point to
note is that increasing replication by one block has a larger effect on power than extending
the experiment by one season. When we ran this simulation to emulate the Chitedze experiment
(10 seasons with four blocks), the power to detect the 1.16 t ha−1 target effect was 0.42.

Figure 5 shows the power estimates obtained by simulation for a simple factorial experiment
with two factors each with two levels (diversification – monocrop or rotation; cultivation –
conventional or zero till with retention of residues). In this analysis, we assumed that the overall
treatment effect in the two-treatment power analysis was partitioned between two equal main
effects and an interaction. Greater replication is necessary to detect these more complex effects.
The main effect can be detected with target power with 16 blocks, or 12 blocks over 5 or more
seasons. Detection of the interaction with target power, in these simulations, required 14 blocks
and 4 or more seasons or 16 blocks and 3 or more seasons. When we ran this simulation to emu-
late the Chitedze experiment (10 seasons with 4 blocks), the power to detect the target main effect
was 0.37, and the power to detect an interaction was the same.
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Discussion
Treatments and their effects

In this study, we focused on a long-term trial of CA systems to assess their effects on crop yield in
10 contrasting seasons. We set out to do this in a rigorous statistical framework to avoid the trap of
focusing on interesting comparisons between particular treatments in particular seasons, which
the human eye and brain are effective at detecting. Such effects may be real and may merit further
investigation. For example, we note the apparent yield advantage of planting in basins in the 2015
El Niño harvest season, but the aim of any statistical analysis is to identify effects for which there
is robust evidence against a background of natural variation. This requires the explicit control of
the rate of false discovery in large and complex experiments, which is essential to avoid drawing
optimistic but misleading conclusions.

There is a significant difference between yields from the treatments over the first 10 seasons
(Table 2). The treatment means (Figure 3) represent the main effects of the treatments over all
seasons. The interpretation of these requires some caution because of the interaction of treatment
effects with seasonal differences (below), but nonetheless, the mean yield of a treatment over a
decade is of considerable interest because it represents the long-term benefit to farmers of inves-
ting in a change of farming practice.

The specific contrasts between treatment means (Table 3) show some results of particular
interest.

First, there is no evidence from this experiment for an average yield difference between
conventional management and the plots with residue retention and direct seeding or basins,
considered as a whole. The estimated mean yield advantage of the plots with residue retention
is 0.46 t ha−1 but the confidence interval for this is wide including zero, and the evidence provided
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by the p-value for contrast C1 does not allow us to reject the null hypothesis of no effect (p= 0.74
on adjustment to control FWER).

Second, there is strong evidence for a difference in maize yield between the rotational treatment
and intercropping (contrast C3), and there is weak evidence (particularly when the FWER is con-
trolled) for an overall difference between the monocropping and mixed treatments (contrast C2).
The mean yield under rotations is the largest of all treatments (Figure 3), consistent with the
inference about contrast C3. This result is of interest as many smallholder farmer fields in
Malawi practice intercropping. Other findings have suggested that yield benefits due to reduction
of pests and diseases and the accumulation of residual nitrogen are larger under rotation than
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Figure 5. Power estimates obtained by simulation using random effect parameters from the Chitedze experiment for
a 2 × 2 factorial experiment over two or more seasons. The additive effects of the two factors (rotation as opposed to
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(C) for the interaction.
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intercropping (Thierfelder et al., 2012). It should be noted, however, that the yield advantage of
rotation is not so large that a producer could produce the same amount of maize from a given area
of land with half of it in the non-maize phase of the rotation as under intercropping

It is notable that over these 10 seasons, the mean yields from the control treatments and from
the monocropping treatments with direct seeding (basin sowing and direct seeding) are very
similar (Figure 3). The difference between treatment means for the basins and direct seeding
monocrop (DSM) is very small (−0.05 t ha−1), and the corresponding contrast in the analysis
of variance (C4) shows that there is no evidence for any difference between these treatments
(p = 0.91). While soil disturbance through yearly ridge and basin making might be expected
to influence water retention and also nutrient dynamics in the soil, the Chitedze trial provides
no evidence for effects on maize yield when basins were used, other factors (monocropping
and direct seeding) held constant. This is consistent with the study by Thierfelder et al.
(2018), who argue that zero tillage with retention of residues without crop diversification will
not give benefits in southern African conditions.

Not surprisingly, there is a marked effect of season (Table 2) on maize yield. This main effect
may incorporate various factors, such as differences among the maize varieties (Table S1),
although all varieties used were in the same maturity group and such a strong effect is not
expected from a change from one commercial hybrid to the another. However, there is very
strong evidence (Table 3) for a contrast between the El Niño seasons (defined in the Methods
section with respect to 3-month running mean anomalies) and the ‘normal’ cropping seasons.
This contrast is particularly marked in the low yields for the 2015 and 2016 harvest years,
which corresponds with the build-up and the full El Niño years. As noted in the results section,
the 2015 and 2016 harvest seasons also showed wire worm and white grub infestations.
Interestingly, there is no evidence for a difference in yield between the La Niña seasons and
neutral ones.

There is evidence for an interaction of season and treatment effects (Table 2), indicating that
differences among the treatments depend on seasonal conditions. Some such effect is expected,
because there will be long-term changes in soil conditions on the plots after conversion from
fallow, and carry-over effects of treatments are expected between seasons. Note, for example,
the marked increase in the difference between the rotational and intercropping yields from season
1 (when the rotational plots did not have a preceding legume crop) and season 2 (when they did).
The family of interactions among the treatment and season contrasts (Table 3) show that the
difference between the rotational and intercropping treatments itself differs between El Niño
seasons and the rest (the C3●S1 component of the interaction with p = 0.0012). There is no
evidence that the other treatment contrasts considered (control plots vs the rest, or monocropping
vs mixed treatments) differ between El Niño and non-El Niño seasons.

Previous analyses (Steward et al., 2018) have shown that there may be larger benefits from CA
systems relative to alternatives under conditions of drought and heat than under more evenly
distributed rainfall. However, the Chitedze trial provides no evidence that the C1 contrast
(CPM vs systems with residue retention) interacts with the El Nino component of the season effect
(S1), p= 0.27 (Table 3). Furthermore, season and treatment interactions are likely to be complex,
and here the key component of the interaction is (C3●S1). Inspection of Figure 1 shows that in 8 of
the 10 seasons, the mean yield for rotational plots exceeded the mean yields of the intercropping
treatments. However, this difference was much reduced in the El Niño predecessor year 2014/2015,
and in 2015/2016 El Niño season. In both years, the rotational plots had smaller mean yields than all
intercropping treatments, an effect which persisted in 2016/2017.

The Chitedze experiment fails to show a general advantage of systems with residue retention as
a whole over conventional management. This may, in part, reflect local conditions. For example,
Thierfelder and Wall (2012) have previously shown that decline of fertility under conventional
management may be buffered at sites which are initially very fertile, and that could apply here
particularly as the experimental plots were under fallow immediately prior to the experiment.
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The use of recommended rates of fertiliser on all plots may also reduce differences between con-
ventional management and CA practices.

The findings of this analysis may also point to additional lessons which should be learned about
experimental design for cropping systems in the region. Note that the post hoc power analysis
for a proposed effect size of 1.16 t ha−1 in a simple two-treatment trial with the same number
of blocks and seasons was small (0.42). The amount of replication in the experiment is probably
insufficient. We therefore consider next the findings of this study that are relevant to design of
future experiments

Variability of the experimental material in space and time

A key focus of this study is on the statistical model used for the longitudinal analysis of the whole
10-harvest data set, and its implications for experimental design in CA research. One key feature
of the statistical model is the lack of evidence for pronounced temporal correlation of the within-
plot random effect, suggested by the empirical temporal variogram in Figure S3, and corroborated
by the selection of the model assuming sphericity (Table 1). This implies that the interaction
of seasonal variation with spatial variations across the site is sufficiently complex to mask any
carry-over of effects that lead, for example, for a large positive within-plot random effect in
one season into subsequent seasons. Note also that the variance for repeated measures on the same
plot is somewhat less than half the residual variance.

The RMS for single-season analysis (Figure S4) is smallest in the first season and somewhat
erratic in subsequent seasons with the largest residual variance in the 2017 harvest (which might
reflect the new impact of Fall armyworm on crop yields which started in cropping season 2016/
2017). A topic for further work is whether there is generally an increase in residual variance after
the introduction of contrasting treatments on a site, previously under fallow (as at Chitedze) or
uniform cultivation. This could arise from non-linearities in the effects of treatments and their
interaction with within-site variation. If this is so, then it implies that experiments on interven-
tions where such interactions with inherent variation of the site are expected might require more
replication than other experiments under conventional management (e.g. fertiliser or variety
trials), and that data from the latter should be treated with caution in power analysis for CA trials.
An important task for further research is therefore to identify available data specifically from CA
trials and to analyse these appropriately to develop robust guidelines for experimental design.

The power analyses in Figure S5 show that, for single-season trials, the probability of detecting
an increase of 25% over the mean conventional yield (an increase of 1.16 t ha−1), based on the
RMS for each season in turn, is small with fewer than 16 replicates (with the exception of
season one). The relationship between power and the RMS for some effect size is not linear,
and the difference between the first season and subsequent ones with respect to power is quite
pronounced, underlining the point above that CA trials, once established, might not be very
sensitive at conventional levels of replication.

Of course, single-season power analysis is not a direct guide to practice as most agronomic
trials run over several seasons concurrently. The power results in Figure 4, for the same effect
size of 1.16 t ha−1, are based on variance components from the model in Table 1. Other things
being equal, the lack of temporal correlation of the repeated measures on plots should mean that
adding seasons to a designed trial has a larger effect on power than if the correlation was large.
However, because the variance of repeated measures is smaller than the residual, it is notable in
Figure 4 that the effect of adding one season to the trial is notably smaller than the effect of adding
one additional block. A target power of 0.8 can be achieved with eight replicates if the trial runs for
at least four seasons. This information could be used when planning trials. Costs entailed in added
replicates (more land requirement, more inputs and labour) must be balanced with respect to the
costs of increasing the length of the trial (land rental, opportunity costs). It is also necessary to
consider the time taken for effects of any treatments which are manifested through changes in soil
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conditions, which may take 2 to 5 years (Thierfelder et al., 2015). Nonetheless, the benefits of a
longer trial (to capture a range of climatic conditions) will be limited if there is not sufficient
replication of the experiment in space.

Similar conclusions were reached from the power analysis for a factorial experiment. While
such an experiment might be more effective than a randomised control trial for gaining insight
into interventions like CA with several components, the power to detect main effects and inter-
actions in our example was somewhat less than to detect a difference between two treatments with
the same amount of replication. It is important to identify an informative set of treatments for an
experiment, but they must also be adequately replicated.

Implications

Given the importance of understanding the impacts of CA practices and their potential role for
food security under climate change, these analyses suggest that experimenters should pay careful
attention to questions of experimental design, including power. It is better to have adequately
replicated experiments with a small number of carefully focused treatments than to spread resour-
ces too thinly. We propose further in-depth meta-analysis of CA trials in southern Africa. Rather
than focusing on understanding CA systems per se, they should be focused specifically on the
spatial and temporal variability of responses and their implication for the statistical power of
experiments as a function of length (number of seasons) and replication.

It is also important to pay attention to the treatments selected for experimentation. While
ostensibly an experiment with a control and a range of proposed interventions allows these to
be tested, it should be recalled that a set of comparisons between treatments and a single control
do not constitute orthogonal contrasts (Dunnett, 1955). Special treatment is needed for such tests,
with a cost in statistical power. Furthermore, such simple contrasts may not be very informative
about how components of a CA system contribute to its outcomes. For example, the Chitedze
experiment does not allow us to separate out the effects of direct seeding (with residue retention)
and of diversification. This is because these two components are not studied in full factorial com-
bination (we have no plots which use rotations, for example, under conventional cultivation).
Fisher (1926) observed that factorial experiments, in which treatments consist of combinations
of levels of distinct factors, may be very informative. That is the motivation for the power analyses
undertaken in this study on a notional 2 × 2 factorial design which would allow the disentangling
of cultivation and diversification effects. In our proposed example, however, rather more replica-
tion again would be needed to achieve a target power of 0.8.

We therefore suggest that further thought is given to the treatment structure in CA experiments.
As discussed above, a factorial experiment may be more informative about the components of a
CA response than a set of comparisons between treatments and a control. We have proposed
one factorial experiment, based on the observation in this study that yields under rotation are larger
than any of the other treatments. As is often noted, CA is neither simply zero till with mulching nor
it is simply the diversification of cropping systems. Factorial experiments would allow the main
effects and their interactions to be teased out in more detail. First attempts in this regards have been
reported from Thierfelder et al. (2013) and Ngwira et al. (2014).

A new generation of CA experiments, with adequate replication and careful selection of
treatments based on past and recent work, would be very informative. Other issues raised
by the Chitedze experiment include the question of prior landuse on experimental sites
(at Chitedze it was fallow, which is not generally representative) and the management of the plots
(at Chitedze, they are kept free of weeds, and fertiliser is applied in accordance with standard
recommendations). Consideration should be given as to whether such good agronomic practice
is sufficiently representative for smallholder farmers’ conditions which are more cash and input
constrained to reap the full benefits of CA in their own field fields. However, as this was not the

Experimental Agriculture 523

https://doi.org/10.1017/S0014479720000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479720000125


objective of this study but to understand processes and statistical designs, these considerations
may be secondary for this particular case.

Conclusions
The analyses presented in this paper provide a synoptic account of the differences among agro-
nomic systems in one of the few long-term experiments on CA systems in Southern Africa. The
experiment does not provide evidence that there is an overall advantage with respect to maize yield
for strategies with residue retention as a whole by comparison to conventional management. The
clearest effect is the benefit of using rotation rather than intercropping as a diversification strategy
with beneficial effects on reductions in pests and diseases expected. The mean maize yield over the
whole trial under direct seeding with rotation was notably larger than under direct seeding with
intercropping. There is a need to investigate further the potential for crop rotation as a strategy for
diversification within intercropping systems. Maize yield alone is not the only consideration, given
that land is taken out of production for the staple crop. Yields of alternative legume break crops
require further investigation, and the place that different crops might have in providing liveli-
hoods and food security for producers.

As would be expected, the effects of drought seasons on crop yield are substantial, and the
specific contrasts among seasons confirm previous work on El Niño impacts. However, there
was no evidence of difference between La Niña and neutral seasons, drought seasons have a more
pronounced effect than wet seasons, highlighting the importance of adaptation to drought and
heat limitations for long-term food security.

The effects of season and agronomic system are not simply additive, but interact. In the
Chitedze experiment, the most pronounced component of the interaction among those we exam-
ined was the effect of El Niño conditions in reducing the benefits of rotations. This underlines the
complexity of the joint effects of components of CA systems. If drought effects are very strong,
then the benefit of rotation is reduced. The interaction points to the ongoing, continued risk from
extreme weather conditions.

The longitudinal analysis of this experiment provides information on the variation of treatment
responses in space and time, and a trial of this length under a consistent design over a decade is a
nearly unique resource to be exploited for information and statistical analysis. This might be of
less interest to smallholder farmers than the treatment effects, but is of considerable importance to
the experimenter, considering how to design cost-effective but sensitive trials for further research.
The yields of maize in this experiment show complex variation in time and space, the variance
of repeated measures within plots is substantial, but the modelling suggests that the effect is not
temporally correlated, and carry-over effects at plot-within-block scale are limited. Analysis of
single seasons and the longitudinal analysis both show that the amount of replication to achieve
adequate power, as evidenced by this long-term trial, is substantial, and larger than in the original
experiment. The results presented in Figures 4 and 5 should, we suggest, be carefully considered by
workers planning comparable long-term trials elsewhere in the region. The response to adding a
replicate to the experiment with respect to power is larger than the effect of extending the trial by a
season (given an established experiment).

The experiment at Chitedze considered a large number of treatments in addition to the conven-
tional control. We suggest that further experiments, as well as increasing replication, also require
careful attention to the treatment structure. A factorial design would allow greater insight into
how components of a CA system contribute to its overall behaviour. Power analysis, based on
the random effects model from our analysis, suggested that replication requirement for factorial
designs would be somewhat larger than for simple comparisons between a treatment and a control.

In a situation where available land and resources to fund trials are limited, one should therefore
give careful thought to how many experimental treatments are examined and how they are
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structured. It is better to have a focused experiment with sufficient replication of a few carefully
chosen treatments than to examine many treatments in a wide-ranging but inadequately repli-
cated trial.

Supplementary Materials. To view supplementary material for this article, please visit https://doi.org/10.1017/S00144797
20000125.
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