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Abstract

In this paper we study categorical compactness with respect to a class of objects & being motivated by
examples arising from modules, abelian groups, and various classes of non-abelian groups. This theory
is then applied to the category of not necessarily associative rings. In particular, we study the example
arising from the class of all torsion-free rings. This work extends some recent results of B. J. Gardner for
associative rings and radical classes.
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In this paper we study categorical compactness with respect to a class & in the category
of not necessarily associative rings, denoted NRng. In doing so, we also obtain results
for other categories: alternative rings, AlRng; associative rings, ARng; groups, Grp;
R-modules, R-Mod; and, of course, abelian groups, AB. We mention these categories
in particular, as these are the categories in which the interesting examples arise. Our
preliminary results are quite general and hold in a wide variety of settings and one
could assume to be working in a finitely complete, finitely cocomplete, quasi-additive
category <&.

If & is an isomorphism closed class of objects, containing the zero object, and if
A is a subobject of B, we define the ^-closure of A in B by Cl@(A) = Ht^l^ - I*
I is normal in B and B/I G &\. In the case that & is closed under subobjects,
this closure becomes an idempotent closure operator. We say A is ^-closed (in B)
provided A is normal in B, and B/A belongs to &. A drawback to the definition
of ^"-closure given above is that Clgg(A) need not be ^"-closed. However, in the
case that & is closed under subdirect products, CLg(A) is ^"-closed. In ring theory,
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semisimple classes and torsion-free classes are closed under subdirect products as are
quotient-reflective classes, and it is these classes that lead to interesting examples.

In our first section, we study our more general notion of ^-closure, developing
the necessary preliminary results. Naturally, the strongest results occur when the
J5"-closure becomes an idempotent closure operator. We also investigate various
notions of denseness and separatedness (the categorical analogue of Hausdorffness),
in particular, examining the class of objects X having a closed diagonal in X x X.
Section 2 is devoted to the notion of H& -closed which is a generalization of the notion
of absolutely closed developed in [4]. Categorical compactness with respect to the
class & is developed in Section 3. Here we show that many of the basic results for
categorically compact objects hold despite Cl^(—) not being a closure operator.

The main Section 4 concerns applying this theory in the categories NRng and
ARng. We improve slightly the results of Gardner [11]. For any class &', if R
has an identity, then R is ^"-compact. For ARng, if & is semisimple and consists
solely of semiprime rings and is closed under ideals, then every ring is ^"-compact.
More interestingly, we consider the example arising from taking # r to be the class
of all rings whose underlying additive group is torsion-free. The class &x is closed
under subrings, products, and extensions. This gives rise to a non-trivial class of
^-compact rings with interesting properties. There are rings which are ^-compact,
but whose additive groups are not categorically compact with respect to torsion-free
groups in the category of abelian groups. However, any ring whose additive group
is ^r-compact as a group turns out to be J^r-compact as a ring. The analogues
of compact subspaces of Hausdorff spaces being closed, and closed subspaces of
compact spaces being compact, both fail here. These analogues do hold, however,
for categorical compactness relative to a hereditary torsion theory for modules [5].
Furthermore, these examples show that while //^-closed objects are always &-
compact, the converse is false.

1. Closure, denseness, and separatedness

Throughout this paper, we let & denote an isomorphically closed class of ^-objects
containing 0. We call a subobject A of B &-closedprovided A is normal in B and B/A
belongs to &. Similarly, we define the &'-closure of a subobject A in B by setting
Cl&(A) to be the intersection of all ^-closed subobjects of B containing A. We use
the notation z&B, or more simply xB when the class & is understood, to denote
ClB(0). If / : B -> C is a morphism enjoying the property that C1C ( /(#)) = C, then
/ is called & -dense. This approach is similar to that taken in [2, 3] and [5]. where
a closure operator on subobjects was obtained. However, we have here a slightly
more general situation which sheds light on a number of results concerning closure

https://doi.org/10.1017/S1446788700037228 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037228


[3] Categorical compactness for rings 315

operators of this type, as is seen by our first result. If B is an arbitrary object and A is
a subobject, we write A < B.

THEOREM 1.1. For any class &', if A is a subobject ofB, then:

(i) A < ClB(A) < B;
(ii) for A, < A2 < B, 0 , 0 4 0 < ClB(A2);

(iii) C1B(C1B(A)) = ClB(A) (idempotency);
(iv) for every object B, X(B/TB) = 0.

PROOF. The verifications of (i), (ii), and (iii) follow routinely from the definition
of ^"-closure. To verify (iv), let <p : B —> B/xB be the natural map, let srf = {I\I
is ^"-closed in B], and let 38 = \K\K is ^"-closed in B/xB}. For each K e dS, the
inverse image (p*~(K) e si', and if / e si', then <p*~<p(I) — I. Using the fact that
inverse image and intersections commute, we have <p^(x(B/xB)) = f]{<p^(K)\K e
%\ = f |{/ |/ e ^ ) = xB. Thus0 = <p(xB) = x(B/xB).

It is a trivial observation that for any subobject A of an object B, C\B{A) =
C1B((A)), where (A) denotes the smallest normal subobject of B containing A. By
analogy with the terminology from universal algebra, a mapping which assigns to
each object B an ideal xB is called a Hoehnke radical [14] provided for each onto
homomorphism / : B —> C, f{xB) c x(f(B)) and moreover, x(B/xB) = 0 for all
B. It is clear that for any class ^, z>(—) defines a Hoehnke radical which determines
the ^-closure via the following lemma whose proof is similar to the proof of part (iv)
just given.

LEMMA 1.2. If A < B, then (p^x(B/{A)) = ClB(A).

The next result shows that under the relatively weak assumption of & being closed
under subobjects, we have an idempotent closure operator in the usual sense (see
[3, 2]). This subsumes [11, Proposition 1.2].

THEOREM 1.3. If & is closed under formation of subobjects, then for a morphism
f : B -+ C, /(C1B(A)) C C1C(/(A)) (continuity condition); hence Cl(-) is an
idempotent closure operator. Moreover, the composition of & -dense maps is &-
dense.

PROOF. Let K be an ^-closed subobject of C containing f(A). It follows that
B/f*~K is a subobject of C/K and hence f^K is an ^"-closed subobject of B
containing A. Letting 88 = {K\f(A) C K, and K is ^"-closed in C], it is clear that
C\B(A) c f | { / " W e m = / ^ ( n ^ ) , and thus/(C1B(A)) c n ^ = C1C(/(A)).

Assume that A A- B and B -U C are J^-dense. If K e srf = {K\fe(A) c K,
and K is ^-closed in C}, then as B/f"~K is a subobject of C/K as above, f^K is
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^"-closed in B and hence equals B from the ^"-denseness of e. Thus f(B) c K and
so C = C1C(/(B)) c K, that is, .«/ = {C}. This means that C1C(/V(A)) = C, and
that fe is ^"-dense.

There are several classes of objects determined by the class & that are useful. We
define Sfh(&) = {A\Homv(A, F) = 0, for all F e &}, &r(&) = [A\ A has no
non-zero images belonging to &}, and &„(&) = [A\f : A -»• F, f{A) normal in F,
F e # , implies / = 0}. We shall delete the reference to the class & when there is
little likelihood of confusion and refer, for example, simply to ZTh. Recall that a class
& is called h-regular (respectively n-regular) provided that for 0 ^ G < F e &
(respectively, 0 ^ G normal in F), there exists a B ^ 0, B € &, with B an image
of G. In particular, any class closed under subobjects is both h -regular and n -regular.
Semisimple and torsion-free classes of rings are n-regular. The following proposition
has a routine proof which is omitted.

PROPOSITION 1.4. For any class &', the following hold:

(i) # C # C # = {A\x?A = A};
(ii) 9~h = S?r if and only if' & is h-regular ;

(iii) £fn = 2Tr if and only if' & is n-regular.

We call a map a : A —>• B &-cancellable (sometimes called &-epic), provided
that for every F e & and f,g:B—> F, fa = ga implies f — g. We denote
the smallest class containing & which is closed under formation of subobjects and
products by &, and note that this is the quotient-reflective hull of &.

PROPOSITION 1.5. For any class & and any object A, r~?A < xA and A e & if
and only if x-gA = 0. If & is closed under subobjects, then A e & if and only if
xA = 0.

PROPOSITION 1.6. For any class &, the following hold:

(i) the composition of' & -cancellable maps is & -cancellable;
(ii) a map a is 3-dense if and only j/Coker(a) € S?r\

(iii) every & -cancellable map is & -dense;
(iv) if & is h-regular, then &-dense and &-dense coincide;
(v) if *& is additive and if & is closed under submodules, then & -dense and

& -cancellable coincide.

PROOF, (i) This follows directly from the definitions.
(ii) Let a : A -> B have cokernel C e ^ . If a (A) < K and K is ^"-closed in

B, then there is an epimorphism g : C ->• B/K. But B/K e & and C € S?r imply
B = K and a is ^"-dense.
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Conversely, if a is J?"-dense and g : C —> D is a quotient map, then there is a
normal subobject K of B containing a(A) with B/K = D. Thus if B/K e &,
K = B by the denseness of a and D = 0. Hence C e ^ .

(iii) If a is ^"-cancellable, <p : B ->• C is the cokemel of a, and if / : C -*• F is a
quotient map with F e &, then 0a = /#>«. Since a is ^"-cancellable, 0 = f<p, and
since <p is surjective, / = 0. Consequently C e ^ .

(iv) By (ii) and (iii) of Proposition 1.5, X{&) = &h(&) = %(&) and the result
follows from (ii) above.

(v) If a is & -dense, F e &, and f,g:B—>F with fa = got, then £ =
ker( / — g) contains a(A) and B/K, being a subobject of F, belongs to &. Denseness
implies K = B and so / = g.

We call an object X &-separated provided that for every j£"-dense map a : A —>• B
and pair f, g : B —*• X, fa = ga implies / = g. Call X categorically-separated
provided that for every ^"-cancellable map a : A —> B and pair / , g : B —> X,
fa = ga implies / = g. We denote the class of all ^"-separated objects by & -Sep
and the class of all categorically-separated objects by Cat-Sep. Let Diag^ denote the
class of all objects A for which the diagonal map AA : A -+ A x A is ^"-closed.

PROPOSITION 1.7. For any class & the following hold:

(i) the classes Cat-Sep and & -Sep are closed under formation of subobjects and
products, hence are quotient-reflective;

(ii) ^ C ^ C ^ -Sep C Cat-Sep;
(iii) if & is closed under subobjects, then Diag^ C & -Sep;
(iv) j/Cl(—) is weakly hereditary, then & — & -Sep C Diag^;
(v) if & is closed under subobjects and Cl(—) is weakly hereditary, then (2Th, J£")

is a generalized torsion theory. In particular, for every object A, r&{A) e &h

andX e& if and only ifUomv(A, X) = Ofor all A e &h.

PROOF, (i) and (ii) are proved straight forwardly from the definitions.
(iii) Let a : A —> B be j£"-dense and f,g : B —> X with fa = ga and X € Diagjf.

The map {/, g] : B —> X x X enjoys n^fa = 7t2ga and consequently there exists
a unique map h : A —> X satisfying Axh = {/, g}a. From the continuity condition
and the fact that a is ^"-dense, we have

{/, 8KB) = {/, g}(ClB(a(A)) c aXxX({f, g}a(A)) c X.

Hence there is a unique map k : B —>• X with Axk = {/, g}. From this it follows that

f = 8-
(iv) If X € & -Sep and C l ( - ) is weakly hereditary, then the map 9 : 0 - • rX is

& -dense. Thus if /x : xX —>• X is the inclusion, then 09 = fi9. Hence \i = 0 and
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X € &. Consider the map Ax : X ->• X x X which is the equalizer of the projections
7Ti and 7r2. The map X -4 ClXxX(X) is ^"-dense and if m : ClXxAr(X) - • X x X is
the inclusion, ^wie = Tt\ AX = KiAx = n^me implies Jixm = nitn. Thus m factors
through Ax and X = ClXxX(X).

(v) This follows from Section 8 of [1].

This result should be contrasted with the Hausdorff Characterization Theorem [13,
Theorem 2.4] which shows that Diagj? = & -Sep whenever & induces a weakly
hereditary closure operator. Castellini [2] defines & -Sep this way for regular closure
operators, but the following examples show that the diagonal closed objects are not
the correct separated objects if the closure operator is not weakly hereditary.

EXAMPLE 1.8. In the category of nilpotent groups, the class &x of all torsion-free
groups determines an idempotent closure operator for which &x -Sep = &T while

r is precisely the class of torsion-free abelian groups.

EXAMPLE 1.9. In the category of rings, either NRng, AlRng or ARng, a ring R is
an ideal in R x R if and only if R is a zero ring.

2. //-closedness

Being motivated by the notion of //-closed topological space which generalizes the
notion of topological compactness, we call an object G H (^F)-closed, or more simply
H-closed, provided that for every F e & and homomorphism / : G —> F with
/(G) normal in F, it follows that F/f(G) belongs to &. This notion differs from
what Dikranjan and Giuli [4] call absolutely C-closed for a closure operator C, and in
the same way differs from the notion of absolute r -purity for a torsion theory r (see
Golan [12]). However, the definitions are related. The important thing here is that the
notion of //-closed encapsulates an important aspect of categorical compactness to
be delineated in the next section, //-closed objects are always categorically compact,
and it is not surprising that much of the effort in [5] and in [4] was to find conditions
that forced the reverse implication, thus characterizing the categorically compacts as
the //-closed objects. We will see that the //-closed objects behave in a very nice
way under relatively weak assumptions on the class &.

PROPOSITION 2.1. For any class &', the homomorphic image of an H-closed object
is H-closed.

The next theorem shows that in the case of & being a torsion-free class of rings,
the //-closed rings G are determined by the //-closedness of G/rG.
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THEOREM 2.2. For any class Ĵ " and object G, consider the following state-
ments:

(a) G is H-closed;
(b) G/TG is H-closed;
(c) for every ^-closed subobject C ofG, G/C is H-closed.

Then:

(i) (a) implies (b) implies (c);
(ii) ifG/xG e & (for instance if ^ is closed under subdirectproducts), then (b)

and (c) are equivalent;
(iii) if & is closed under normal subobjects, then (a) and (c) and hence (a), (b)

and (c) are equivalent.

PROOF, (i) and (ii) are evident, and when & is closed under normal subobjects, (c)
implies (a) directly from the definition and Proposition 2.1.

PROPOSITION 2.3. If ^ is closed under normal subobjects and normality is transit-
ive for & objects, the class of H-closed objects is closed under formation of extensions
and finite products.

PROOF. Let 0—> A —> B —>• C —• 0 be a short exact sequence with both A and C
being //-closed. L e t F e ^ a n d / i B - ^ F have f(B) normal in F. Then f(A)
is normal in f(B), and hence, by hypothesis, each belongs to & and f(A) is normal
in F. There is a commutative diagram with exact rows and columns and naturally
induced maps:

• B ^ - ^ C • 0

I
7(

I
F/f(B) • D

I
0 0

Clearly, there is an induced map g : C - • F/f(A) andg(C) = g(B(B)) = f(f(B)).
Since f is onto and f(B) is normal, it follows that g(C) is normal in F/f(A); let D
denote the quotient. The induced map a is necessarily onto. It is a routine diagram
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chase to see that a is also monic. Now, A being //-closed implies that F/f(A) € &
and so C being //-closed, implies D € J2". Thus F/f(B) e & and B is //-closed.

The module case is important enough to single out in the following.

COROLLARY 2.4. In R-Mod, if & is closed under subobjects, then the class of
H-closed modules is closed under images, extensions and finite products.

PROPOSITION 2.5. In R-Mod, if & is closed under extensions, then the class of
H-closed modules is & -closed hereditary.

PROOF. Let 0 - > - A — > - i ? - > - C - > - 0 b e a short exact sequence with C e ^ and
let B be //-closed. Let F e & and / : A -*• F be a homomorphism. Consider the
pushout diagram

0

PO

B

I
0

F/f(A) £ P/g(B)

1

where g : B -*• P. By hypothesis, F,C € & imply P e
implies P/g{B) e &. Thus A is //-closed.

and B being //-closed

In R-Mod, if & = &, then & is closed under extensions if and only if & is the
torsion-free class for a torsion theory, and in this case Cl(—) is weakly hereditary.
For these classes then, the class of //-closed modules is ^"-closed hereditary (see
Proposition 3.1 of [4]).

In [15,4.16], a conjecture related to rings was raised concerning ^"-closedness.
We partially answer this conjecture with the following observation.

THEOREM 2.6. IfG is H-closed and f : G -* F with f(G) normal in F, and if
there exists an &-closed subobject C in F with C < f(G), then F/ f(G) e &.
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PROOF. Consider the following commutative diagram with short exact rows and
first two columns.

c —
I

f(G) —

1
J —

1
0

— c
I

—• F —

1
—> F/C —

1
0

- • F/f(G)

{
- * F/C/J

1
0

Since G is //-closed, so are / (C) and J. Thus F/C e J5" implies F/C/J e &'.
A routine diagram chase (or application of an isomorphism theorem) shows that the
map F/f(G) —> F/C/J in the diagram is actually an isomorphism.

The following is a pleasing density theorem.

THEOREM 2.7. If & is closed under normal subobjects, A is an H-closed normal
subobject of an object B, and if B/A e tf- , then B is H-closed.

PROOF. We apply Theorem 2.2 by showing for every ^"-closed subobject C of B,
B/C is //-closed. Let / : B -> B/C be the natural map and note that f(A) is normal
in B/C. Since A is //-closed, D = B/C/f(A) belongs to &. There is a naturally
induced map <p : B/A ->• D, which forces D = 0 since B/A e X- So f(A) = B/C
and hence B/C is //-closed.

The last result of this section is the routine:

PROPOSITION 2.8. For any class &', every object is H -closed if and only if ^ is
closed under homomorphic images.

EXAMPLE 2.9. In the category of abelian groups, multiplication by an integer n
determines a cohereditary non-hereditary radical. The class &{n) — {A\nA = 0} is
a variety, closed under subgroups, products, and homomorphic images (which are the
only varieties of abelian groups). Thus every abelian group is //(^"(n))-closed.
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3. ^"-compactness

Being motivated by the Kuratowski-Mrowka Theorem characterizing compactness
for topological spaces, we say an object G is &-compact provided that for every
object H and ^"-closed subobject A of G x H, n2(A) is an ^"-closed subobject of
H. This notion of categorical compactness was first studied by Manes [17] and later
generalized by Herrlich, Salicrup, and Strecker [13] for factorization structures for
morphisms. Castellini [2] developed the notion relative to a closure operator. Our
results here are even a bit more general in that we do not require & to determine a
closure operator.

PROPOSITION 3.1. For any class &', the class of ^-compact objects is closed under
formation of homomorphic images and finite products.

PROOF. Let B be ^-compact and / : B —> C be a cokernel map. Let H be
arbitrary and A be ^"-closed in C x H. If D is the inverse image of A in B x H,
then B x H/D = C x H/A and D is ^-closed. The uniqueness of the (surjective,
injective) factorization structure yields n2(D) = n2(A). The ^"-compactness of B
yields n2(A) ^"-closed in H as desired.

The proof for finite products is even more straight forward and is omitted.

The key observation which makes the study of categorical compactness in these
algebraic categories different from the study in topological categories is that the testing
of the j£"-closedness of n2(A) in H is aided by the existence of a very natural short
exact sequence which arises from the following commutative diagram with indicated
pullback square having short exact rows and columns.

0 0 0

0 —

0 —

0 —

—• c >

i PB

- • G •

1
—>• G/C >

[
0

A

1
GxH —

1
G x H/A —

1
0

- • n2(A) —

1
—• H —

1
—> H/n2(A) —

1
0

—>• 0

—»• 0

—»• 0
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If A is ^"-closed in G x H, the short exact sequence

0 > G/C > G x H/A • H/JT2(A) > 0

has G x H/A e & and thus the properties of G/C can be used to force H/n2(A) to
belong to & as well.

THEOREM 3.2. For a«_y c/ass J^ and object G, consider the following state-
ments:

(a) G is ^-compact;
(b) G/rG is ^-compact;
(c) for every &-closed subobject CofG,G/Cis^

Then:

(i) (a) implies (b) implies (c);
(ii) ifG/xG e ^ (/or instance if'& is closed under subdirectproducts), then (b)

a«d (c) are equivalent;
(iii) //"^ (s closed under normal subobjects, then (a) and (c) and hence (a), (b)

(c) are equivalent.

PROOF, (i) and (ii) are clear. If & is closed under normal subobjects, then, referring
to the diagram above, G/C belongs to & and so G/C is ^"-compact. Let cp : G —>•
G/C be the natural map and observe that the image D = <p x 1(A) in G/C x H is
^"-closed (one needs only to observe that the quotients are isomorphic). It follows
that 7t2(D) = 7T2(A) and the ^"-compactness of G/C implies 7t2(A) is ^"-closed in
H.

The next result is immediate and was the motivation behind the notion of //-closed.

THEOREM 3.3. For any class &

(i) an H-closed object is & -compact;
(ii) if for every homomorphism f : G —> F with f(G) normal in F and F e / ,

the graph morphism {1, / } : G —> G x F is ^-closed, then G being In-
compact implies G is H-closed.

PROOF. The proof of (i) follows directly from the above diagram and the exactness
of 0 - • G/C -+ G x H/A -+ H/n2{A) -> 0. Statement (ii) follows from the
definition of ^"-compactness and the fact that G being ^"-closed in G x F implies
that f(G) is ^"-closed in F.

The next two results shed light on [5, Proposition 4.5] and [4, Corollary 5.8].
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COROLLARY 3.4. If & is quotient-reflective and Cl(-) is weakly hereditary, then
G is ^-compact if and only ifG is H -closed.

PROOF. The hypothesis on & implies that & = & = ^"-Sep = Diag^. By
Proposition 1.13 of [2], Y e Diagj? if and only if for every X and map / : X -> Y,
the graph map {1, / } : X -> X x y is ^"-closed. Thus the hypothesis of Theorem
3.3 (ii) is satisfied.

COROLLARY 3.5. In R-Mod, G is H-closed if and only ifG is &-compact.

The following proposition is a slight restatement of [4, Corollary 5.5 (b)] and [2,
Theorem 1.8]. Recall that if Cl(—) is a weakly hereditary idempotent closure operator,
then the composition of ^"-closed maps is ^"-closed.

PROPOSITION 3.6. If the composition of'&-closed maps is &-closed, then the class
of' &-compact objects is closed under formation of' &-closed subobjects.

The following is an immediate consequence of Proposition 2.8 and Theorem 3.3.

PROPOSITION 3.7. If & is closed under images, then every object is & -compact.

EXAMPLE 3.8. The following examples are from group theory. Examples involving
rings will be given in the next section.

(a) In the category of all groups, if & is the class of all groups, then Cl(—) is simply
the normal closure and all groups are ^-compact.

(b) In the category of abelian groups, the class J^r of all torsion-free groups
determines a weakly hereditary idempotent closure operator. A group G is &x-
compact if and only if G is //-closed if and only if G/xG is divisible. Here xG
denotes the maximal torsion subgroup of G. See [5] and [4].

(c) In the category of locally nilpotent groups, the class &T of all torsion-free locally
nilpotent groups determines an idempotent closure operator which is not weakly
hereditary. However, a locally nilpotent group G is J^r-compact if and only if G is
//-closed if and only if G/xG is radicable. (A group is radicable provided that for
every element g and n > 0, there is a solution to the equation g = xn.) See [6].

(d) Example 2.9 shows every abelian group to be &(n)-compact.
(e) In the category of nilpotent groups, let & be the class of all reduced groups.

Every nilpotent group G contains a maximal normal complete subgroup dG, and
G e & if and only if dG = 0. A nilpotent group G is ^"-compact if and only if G is
//-closed, if and only if G/dG is cotorsion [9].

(f) In the category of abelian groups, let &p — {G\pwG = 0}. A group G is
&p-compact if and only if G/pwG is topologically compact in its p-adic topology
[7].
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(g) In the category of nilpotent groups, let & be the class of all torsion-free p-
reduced groups. A group G is ^"-compact if and only if G/zG is /^-divisible [7].

4. Categorical compactness for rings

In this section we apply the preceding development to the category of not necessarily
associative rings NRng and to the category of associative rings ARng. In doing so, we
extend some results of Gardner [11] for associative rings. As has been already noted,
the //-closed objects and the ̂ -compact objects are well-behaved when the class & is
closed under subdirect products and normal subobjects. Semisimple and torsion-free
classes of rings are closed under subdirect products and torsion-free classes are closed
under ideals. Perhaps most interestingly, the class of usual torsion-free rings (that is,
the underlying abelian group is torsion-free in the usual sense) is a torsion-free class
closed under subrings, products, and extensions which gives rise to an idempotent
closure operator which is not weakly hereditary. The categorically compact rings
with respect to this class behave in a degenerate way in the sense that the analogues
of the well-known topological theorems — closed subspaces of compact spaces are
compact and compact subspaces of Hausdorff spaces are closed — both fail. The
analogues do hold for the group theoretic examples given in the previous section.
Unless stated otherwise, all rings will be considered to be objects of NRng.

THEOREM 4.1. For any class & closed under direct summands, if R contains a left
(or right) identity, then R is & -compact.

PROOF. Let R and H be arbitrary rings and A be an ideal in R x H. If (a, b) e A,
then since 1 e R, (l,0)(a,b) = (a,0) e A and so (0,b) e A. Hence A =
nx(A) x TT2(A) and R x H/A = R/nx(A) X H/n2{A).

Modifying slightly the approach of Dikranjan and Giuli [4], if si and SB are classes
of rings, a ring G is called (si, 38)-compact provided that for every ring H € S8
and ^-closed ideal A < G x H, H/n2(A) e si. The proof of Theorem 4.1 can be
trivially adapted to show:

THEOREM 4.2. For any class & closed under direct summands, all rings are
(&, Rng1) -compact, where Rng1 denotes the class of all rings with a right or left
identity.

Recall that a semisimple class of rings is an n -regular class closed under formation
of subdirect products and extensions. A torsion-free class is a semisimple class that is
closed under ideals. Examples distinguishing between these concepts are well-known;
see for example [16].
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Results 4.1 and 4.2 can be generalized for associative rings, showing that many rings
are always ^-compact. Following Roos [18], we can produce various regularities for
associative rings as follows. Let G — {gu g2, • • • , gn} be a set of at least two integral
polynomials. For each ring R define GR(r) = g\(r)Rg2(r)R • • • Rgn{r), for every
element r e R. Then {Gn : R is an associative ring} is a regularity ([18, Theorem
5]), called a polynomial regularity or p-regularity. The ring R is called G-regular if
r e GR{r) for each r e R. If at least one of the g, e G has zero constant term, then
the G-regularity is called nullic. Let SR{r) = ^{G^ir) : / e /} where each G'R is a
p-regularity chosen in such a way that SR(r) is an ideal of R for each r e R. Then
S«(/") determines a regularity, called a summable p-regularity or sp-regularity and ./?
is called S-regular if r € 5(r) for each r e R. Roos gives a list of eleven well-known
regularities, all of which are p- or sp-regularities, and these include D-regularity, von
Neumann regularity, A.-regularity, left quasi-regularity, left pseudo-regularity, strongly
regular rings, and Brown-McCoy radical rings.

THEOREM 4.3. In ARng let & be any class which is closed under direct summands.
For any ring R let SR(r) = ^,[GR(r) : i e 1} where each G'R is a nullic p-regularity
chosen in such a way that SR(r) is an ideal of R for each r e R. If R is S-regular,
then R is ^-compact.

PROOF. Let R be S-regular, H be arbitrary, and A be an ideal in R x H. lf(a,b) € A,
then a € SR(a), and so for some k e Z, j = 1, • • • ,k, we have a = Yljsiati> w n e r e

(for each j) either sj and tj e R or sj = 1 e Z and f, e R or Sj e R and t}• = 1 e Z.
Now identify (1, 0)(a, b) or (a, b){\, 0) with (a, ft) where necessary and observe that

£(*;, 0)(a, &)(*,-, 0) = (]T>,tfO , 0)

= (a,0) € A.

It follows that (0, b) e A. Thus A = itx{A) x 7r2(A) and R x / / /A = /?/7Ti(A) X
H/n2(A).

The following result is proved in a similar way.

THEOREM 4.4. In ARng, for any class & which is closed under direct summands,
all rings are {&, S-Reg)-compact, where 5-Reg denotes the class of all S-regular
rings described in Theorem 4.3.

The next result for associative rings extends [11, Proposition 3.1] and shows that
most of the well-known semisimple classes (for example, rings with trivial Jacobsen
radical, nil-radical, or prime radical) do not yield interesting compact classes.
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THEOREM 4.5. In ARng, if ^ is semisimple and consists solely of semiprime rings,
then every ring is & -compact.

PROOF. Gardner [11] showed that for a semisimple class & associated with a
radical class 0ft, the ^"-closed maps are closed under composition if and only if 0ft is
supernilpotent. This occurs if and only if & consists of semiprime rings.

In this case, the ring of integers Z belongs to & and hence if R[ denotes the ring
with identity obtained from the ring R be adjoining 1 in the usual fashion, then R is an
^"-closed ideal in /?' . If H is an arbitrary ring, then R x H is ^"-closed in Rl x H.
Thus if A is an ^"-closed ideal in R x H, A is also ^"-closed in /?' x H, and the
^"-compactness of Rx implies that n2(A) is ^-closed in H.

There is an interesting situation for the class of (usual) torsion-free rings discussed
in [15] and [16]. For any ring R, the set of torsion elements vR form an ideal,
and R/TR is torsion-free. We let ^ and &z denote the classes of all torsion and
torsion-free rings respectively.

LEMMA 4.6. [16] The pair {^x, &T) is a hereditary torsion theory for the category
NRng.

Thus &x is a torsion-free class of rings for NRng. The class of ^ -compac t
rings is non-trivial and behaves degenerately as mentioned in the introduction to this
section. Since &T is closed under direct summands, Theorems 4.3 and 4.4 apply,
showing that for associative rings ARng, G-regular rings are ^ -compac t for nullic
G -regularities. Our next observation is that the idempotent closure operator induced
by &T is not weakly hereditary; for if it were, then it would also be when restricted to
associative rings. By Gardner's results, this would force J^rn ARng to consist solely
of semiprime rings which is false.

By Theorem 4.1, the ring of integers 1 is ^ -compact . However, the zero ring
over the integers Z° is not ^-compact . Our next result explains this behavior.

THEOREM 4.7. Let R be a ring.

(i) If R+/TR+ is divisible as an abelian group, then R is ^-compact; con-
sequently, every Artinian ring and every regular ring is ^-compact.

(ii) IfR is a zero ring, then R is ^-compact if and only if R+/rR+ is divisible
as an abelian group. Thus not all rings are ^-compact.

PROOF, (i) is clear. The statements about artinian and regular rings follow from the
description of their underlying groups ([10, Vol. II]).

(ii) If R is a zero ring which is ^ -compact , then without loss of generality, assume
R is torsion-free (see 3.2). If R+, the additive group of R, is not divisible, let R denote
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the divisible hull of R considered as a zero ring. Then R is an ideal in R and R/R is
torsion. This contradicts the J^r-compactness of R as R is ^-closed in R x R.

PROPOSITION 4.8. IfR is an ideal in a ring with identity S and S/R is torsion, then
R is J?T-compact.

PROOF. For arbitrary H, let A be an ^-closed ideal in R x H and let (a,b) G A.
Since n e R for some n e Z, (n, 0) e R x H and so (na, 0) e A. But (na, 0) =
n(a, 0), and the torsion-freeness of R x H/A implies (a, 0) e A. Hence (0, b) € A,
so A = n\(A) x 7r2(A) and it follows that H/n2(A) is torsion-free.

The following examples show that the topological analogues discussed in the
introduction fail to hold despite the class ^x being closed under subrings, products,
and extensions.

EXAMPLE 4.9. (a) Let Z° be the zero ring on the integers and let Z1 be the ring
obtained from Z° by adjoining an identity in the usual fashion. Then Z° is an ideal
in Z1 and I1/!0 = Z. Thus Z1 is ^-compact and Z° is #r-closed in Z1, but is not
^.-compact.

(b) As a ring itself, ni is jFr-compact by Proposition 4.8 and it is an ideal in Z.
The ring Z belongs to &x c &z -Sep, but Z/nZ being torsion shows that nl is not
^.-closed in Z. Hence nl is not //-closed, so that the class of //-closed rings is
properly contained in the class of ^-compact rings. This also answers in the negative
the second part of [15, Conjecture 4.16].
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