
640 Journal of Glaciology, Vol. 55, No. 192, 2009

Numerical analysis of rapid water transfer beneath Antarctica
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ABSTRACT. We use a simple energy-conservation model and a model based on Röthlisberger’s theory for
steady-state water flow in a subglacial conduit to model water movement between lakes in the Adventure
subglacial trench region of East Antarctica during a 1996–98 jökulhlaup. Using available field evidence
to constrain the models suggests that water flow would likely be accommodated in a tunnel with a cross-
sectional area of 36m2 and a value for k (the reciprocal of Manning’s roughness parameter) larger than
the 12.5m1/3 s−1 previously calculated. We also use Nye’s theory for time-dependent conduit water
flow to model the temporal evolution of conduit discharge, cross-sectional area, water pressure and
lake draining and filling during the flood. We initially assume one source and one sink lake. We perform
sensitivity tests on the input parameter set, matching modeled source- and sink-lake depth changes with
measured surface elevation data. Using a simple function for vertical ice deformation in which surface
deformation scales linearly to the lake depth change, we find the scaling factor is of the order 4× 10−3
of the ice thickness. The most likely value of k lies in the range 55–68m1/3 s−1, and the ratio of source
to sink-lake radii is approximately 1 : 1.4. Finally, we experiment using Nye’s theory to model water
movement between one source and three sink lakes. The model fails to produce the observed patterns
of water movement as indicated by the surface deformation data.

1. INTRODUCTION
Glacial floods, often known by their Icelandic name of jökul-
hlaups, occur when large volumes of water drain cata-
strophically beneath an ice mass from either ice-marginal
or subglacial ice-dammed lakes (Tweed and Russell, 1999).
The best-studied jökulhlaups are those from the subglacial
caldera lake Grı́msvötn, beneath Vatnajökull, Iceland
(Björnsson, 2003). The high geothermal heat flux causes
enhanced subglacial melting, and subglacial hydraulic gradi-
ents direct water to Grı́msvötn where it collects. Jökulhlaups
are triggered when the lake level rises to within 60–70m of
ice overburden near the lake outlet (Björnsson, 1988, 1992).
Water is released from the lake and flows subglacially to
the ice-cap margin (Björnsson and Guðmundsson, 1993). A
positive feedback results during the rising limb of the flood
hydrograph, as the frictional heat of flowing water enlarges
the ice-walled conduits by melting faster than they can
close down by ice deformation. This is primarily controlled
by the effective pressure, the difference between the ice
overburden pressure and the conduit water pressure. After
peak discharges have been reached, water pressure drops
rapidly in the conduit which closes down and eventually
terminates the flood before all the water in the lake has
emptied. Consequently, the flood hydrographs are typically
asymmetrical, with a gradual but accelerating rise to peak
followed by a rapid fall to zero discharge. Jökulhlaups from
Grı́msvötn have occurred with a periodicity of about 5 years.
Many of the theories used to describe jökulhlaups

have been developed and tested using data gathered at
Vatnajökull. The starting point for most theories is that
developed by Röthlisberger (1972). Based on the Gauckler–
Manning–Strickler formula of turbulent flow, it models
steady-state water flow in a single conduit. The theory
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accounts for the equilibrium between frictional melting of
the conduit walls and the closing of the conduit due to the
effective pressure. Since jökulhlaups are only in steady state
momentarily (at their peak), the theory has limited use.
Nye’s (1976) theory introduces time dependence. The

result is a series of five coupled partial differential equations
which can be solved numerically for the key parameters of
a jökulhlaup: conduit area, discharge, water pressure, melt
rate and water temperature. Nye’s theory assumes the water
in the conduit is at a uniform temperature, except for a thin
boundary layer where heat is transferred to the surrounding
ice. Heat transfer is assumed to be instantaneous; advection
of energy along the conduit is not accounted for. Despite
this simplification, Nye’s theory is extremely successful in
many cases. In his own words: ‘the excellence of the fit
between observation and theory up to the flood peak is rather
astonishing’ (Nye, 1976, p. 194), although the theory does
tend to overestimate peak and total discharge.
Spring and Hutter’s (1982) theory is more complex than

Nye’s. Derived from first principles of continuum physics
it is a general theory, which can be reduced to Nye’s with
certain assumptions. The key advance over Nye’s theory is
that it accounts for the advective heat transfer along the
conduit; released frictional energy leads to an increase in
water temperature, which leads to melting. In practice, it
is found that many of the improvements over Nye’s theory
are relatively small. The lack of experimental data associated
with jökulhlaups means that the full generality of the Spring
and Hutter theory can rarely be applied. However, it does
provide a slightly better fit with experimental data from
Grı́msvötn compared to Nye’s theory.
Clarke (1982) added to Nye’s theory by including the

effects of reservoir geometry and lake temperature. A major
advance was made by Clarke (2003) who modified the
advective treatment of heat transfer in the Spring and Hutter
theory, allowing frictional energy release to be directly
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Fig. 1. Surface and bed topography of Adventure subglacial trench region of East Antarctica. Subglacial lakes (from Siegert and others, 2005)
are denoted by triangles. Approximate locations of the source lake (L) and sink lakes (U1, U2 and U3) from Wingham and others (2006)
are shown as circles. The black lines are the predicted locations of the main drainage pathways across the subglacial hydraulic potential
surface. The position of U3 is different to that shown in Wingham and others (2006) since the location of our predicted subglacial pathway
is different in this region. It is the same distance down-hydraulic potential as Wingham and others’ (2006).

converted to conduit wall melting. The theory predicts
smaller values for conduit roughness compared to earlier
theories, values that are comparable to those for natural
streams and rivers. It also predicts that the locations of flow
constrictions, which control flood magnitude, can migrate
along the conduit through time and are not restricted to the
upper end where the conduit leaves the lake as in earlier
theories.
Other theoretical developments have included work by

Fowler (1999) who added to Nye’s theory, considered
the flood release mechanism more explicitly and was
able to reproduce the periodic behavior of the Grı́msvötn
jökulhlaups. Fowler and Ng (1996) substantially modified
Nye’s theory to deal with broad low-sediment floored canals
rather than the circular or semicircular ice-walled conduit
of earlier theories. Further complexity has been added by
considering flow in a basal sheet coupled to a system of
conduits (Flowers and others, 2004). Flow begins as a wide
sheet across the base of the glacier, which then rapidly feeds
the growing conduit system. Compared to earlier theories,
where conduits take days to weeks to enlarge, conduits in
the coupled model enlarge over a few hours as the source
water is spread along the length of the conduits. The model
is able to reproduce the main features associated with the
atypical 1996 Grı́msvötn jökulhlaup.
A substantial amount of work has been carried out in

applying the above theories to jökulhlaups from subglacial
lakes such as Grı́msvötn, where lake areas are 5–40 km2,
drainage distances are about 50 km, ice thicknesses are
typically 300–600m (e.g. see cross-section in Björnsson,
1998) and water exits the glacier margin where pressures are
atmospheric. However, recent findings suggest it is possible
for jökulhlaups to occur beneath Antarctica from lakes that

are up to 600 km2 in area, where water flow extends for
hundreds of kilometers, ice thicknesses are up to 4 km and
the system is completely closed with water being transferred
between pressurized lakes (Wingham and others, 2006;
Fricker and others, 2007).
Wingham and others (2006) analyzed European Remote-

sensing Satellite-2 ERS-2) satellite altimeter data from the
Adventure subglacial trench region in East Antarctica
between 1995 and 2003 (Fig. 1). In one region (inferred to
be a ∼600 km2 lake and known as lake L), surface elevation
dropped by∼3m over a 16 month period between late 1996
and early 1998. Approximately 290km away, three areas
(known to overlie subglacial lakes from an independent ice
radar survey and referred to as lakes U1, U2 and U3) rose by
a comparable amount over the same time period. All lakes
lie on a subglacial drainage pathway as determined from
subglacial hydraulic potentials, with lake L lying upstream
(i.e. up-potential, but at a lower elevation) from lakes U1,
U2 and U3 (Fig. 1).

2. METHODOLOGY
In this paper, we use a numerical modeling strategy
to estimate steady-state and time-dependent water flow
between the subglacial lakes in the Adventure subglacial
trench, as identified by Wingham and others (2006). We
begin with a simple energy-conservation model and a model
based on Röthlisberger’s (1972) theory, which allow us to
estimate the steady-state behavior of the system. We then
introduce time dependency with a model based on an
implementation of Nye’s (1976) theory for non-steady flow
in a subglacial conduit.
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Fig. 2. Simplified schematic diagram of the two subglacial lakes, L
and U, joined by a single conduit. Water flow is from the lower lake
to the upper lake as the ice surface slope and subglacial hydraulic
potential gradient both trend in that direction.

One of the key assumptions throughout this paper is that
the ice at the base of the ice sheet in the Adventure subglacial
trench is at the pressure-melting point. Output from a three-
dimensional (3-D) balanced ice-flux flow model (personal
communication from R. Hindmarsh, 2007) suggests this is a
valid assumption. For realistic boundary conditions of bed
and surface geometry and geothermal heat flux, the model
calculates spatial patterns in the basal shear strain rate by
multiplying the balance velocity by the driving stress. It
also accounts for horizontal advection of heat. It predicts
temperate basal ice throughout the Adventure subglacial
trench region and a basal temperature gradient of the order of
0.01Km−1. Application of our simple energy-conservation
model (section 3) and Röthlisberger’s theory (section 4)
shows that the flood between the lakes is accommodated
in a semicircular conduit with a steady-state cross-sectional
area of 36m2, equivalent to a radius of <5m. Application
of Nye’s theory (section 5) shows that the flood is likely
to be accommodated in a semicircular conduit with a
maximum cross-sectional area (at maximum discharge) of
250m2, equivalent to a radius of 13m. Even at maximum
discharge, the conduit is therefore likely to extend no more
than 13m above the bed. With a temperature gradient of
0.01Km−1, the ice temperature at the top of the conduit
will be just −0.14◦C. This will increase the viscosity at the
top of the conduit by less than 3% compared to its value in
our implementation of the Röthlisberger and Nye theories,
where we assume ice is temperate throughout. Given other
uncertainties in the boundary conditions for the Adventure
subglacial trench, we feel we are justified in assuming ice is
temperate throughout the depth of the conduit.

3. CALCULATIONS USING A SIMPLE ENERGY-
CONSERVATION MODEL
Before launching into the full time-dependent theory of
Nye, it is instructive to analyze water transfer using a more
simplistic approach. This provides an estimate of the results
we might expect to obtain from Nye’s theory, and also places
some constraints on the input parameters. Figure 2 depicts
a system schematic. To simplify the problem, we assume
water transfer occurs between two lakes. Furthermore, we
assume the source lake L and the sink lake U are joined by
a single conduit, an assumption often made when dealing
with jökulhlaups. It is justified by considering the pressures
in a multi-conduit system. If one conduit in the system
is enlarged, then the water pressure in that conduit will

Fig. 3. Predicted values of conduit cross-sectional area in the energy-
conservation model for different values of ΔH and Δz.

decrease. The resulting pressure gradient will drive water
from the small conduits into the large conduit. Increased
water flux will result in further enlargement of the conduit
through frictional melting. The pressure gradient is therefore
maintained and the large conduit grows at the expense of
the smaller ones. As a consequence, drainage is likely to be
dominated by one conduit.
A simple energy-conservation model can be used to

estimate the size of the conduit produced during the flood.
Treating the ice-bounded lakes as pistons, the net energy
associated with the flood (ET) is the change in gravitational
potential energy of the system minus the energy required
to keep the water at the pressure-melting point as it flows
from an area of thicker ice to one of thinner ice. This can
be related to the energy required to melt a conduit through
the ice (EM) to obtain an expression for conduit size S. The
detailed derivation of the simple energy-conservation model
can be found in Appendix A.
To solve the energy-conservation equations, values are

required for the total volume of water discharged V , the
length of the conduit l and the change in surface elevation
of the source lake ΔhL. Wingham and others (2006) were
able to constrain values for these parameters based on
observational evidence to V = 1.8km3, l = 290 km and
ΔhL = 3m. The values of ΔH (difference in bed height)
and Δz (zL − zU, i.e. change in ice thickness) are less well
constrained by available data. Errors in excess of ±30m are
possible (Lythe and others, 2001).
Figure 3 shows how the predicted conduit cross-sectional

area S varies with ΔH and Δz, using values for the other
parameters as specified by Wingham and others (2006). For
ΔH = 262m and Δz = 449m, a cross-sectional area of
36m2 is predicted. This is in fairly good agreement with
the 28m2 calculated by Wingham and others (2006) using
a different energy-conservation model with the same values.
Figure 3 shows that there is a cut-off beyond which a conduit
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Fig. 4. Areas of ΔH and Δz space, in which a semicircular conduit
can exist for the energy-conservation model, and the Röthlisberger
model where k = 12.5m1/3 s−1 and k = 30m1/3 s−1. A conduit
can only exist for values above the plotted lines.

cannot exist. Within the energy-conservation model, this
occurs when the total energy released ET becomes negative.
We can therefore constrain conduit creation to a region in
theΔH–Δz plane (Fig. 4). Given the simplicity of the energy-
conservation model, particularly its exclusion of dissipative
effects such as friction, it is expected to overestimate the
cross-sectional area of the conduit.

4. CALCULATIONS USING RÖTHLISBERGER’S
THEORY
Based on the Gauckler–Manning–Strickler formula for the
mean velocity of turbulent flow, Röthlisberger’s theory
describes steady-state flow through an ice-walled conduit.
Steady-state flow occurs when the rate of conduit enlarge-
ment due to flowing water equals the rate of closure due
to ice deformation and discharge is constant. During a
jökulhlaup, this condition is met only at peak discharge.
Röthlisberger’s theory therefore provides an alternative to the
energy model for predicting the maximum cross-sectional
area of the conduit. For a conduit of circular cross-section,
we have

S =

(
Qk−1

(
2
√

π
) 2
3

(
1

ρwg
dΦ
dx

)− 1
2

) 3
4

(1)

and for a conduit of semicircular cross-section, we have

S =

[
Qk−1

(√
2(π + 2)√

π

) 2
3
(
1

ρwg
dΦ
dx

)− 1
2

] 3
4

(2)

where Q is the discharge through the conduit, k is the
inverse of the Manning roughness parameter M, Φ is the
hydraulic potential in the conduit, x is the distance along
the conduit (x = 0 at lake L) and ρw is the density of
water. The detailed derivation of Equations (1) and (2) is
provided in Appendix B. It should be noted that Equation (2)
differs from the equations used by Wingham and others
(2006; supplementary methods 2, equation (4)) due to what
we believe are two mistakes in their equation. First, their
relationship seems to be based on the hydraulic radius of
a circular (rather than semicircular) conduit and, second,
they have made a numerical error in the factoring out
of the hydraulic radius in the Gauckler–Manning–Strickler

Fig. 5. Predicted values of conduit cross-sectional area in the
Röthlisberger model for different values of ΔH and Δz.

equation. These errors result in estimates of conduit cross-
sectional area that are a factor of approximately 4 too small.
Wingham and others (2006) predicted a cross-sectional

area of 26m2 for a semicircular conduit. This was based
on ΔH = 262m , Δz = 449m, Q = 50m3 s−1 and k =
12.5m1/3 s−1 (i.e.M = 0.08m−1/3 s, a value appropriate for
a relatively rough-walled conduit). Using the same values in
the corrected equation gives a cross-sectional area of 98m2

for a semicircular conduit and 91m2 for a circular conduit.
Figure 5 shows how the predicted value of S changes with
ΔH andΔz. The values are much larger than those predicted
using the energy-conservation model for the same values
of ΔH and Δz (cf. Fig. 3). Since it was expected that the
energy model would overestimate the size of the conduit,
it seems unlikely that these results are correct. However, by
choosing a higher value for k (corresponding to a smoother
conduit), the Röthlisberger model can be made to produce
lower estimates of conduit area than the energy model. A
value of k = 47m1/3 s−1 (M = 0.02m−1/3 s) produces a
conduit area of 36m2, the value calculated by the energy-
conservation model.
The values of ΔH and Δz can be better constrained

using the energy-conservation model in conjunction with
the Röthlisberger model. Since the energy model should
overestimate the cross-section of the conduit, we can
stipulate that allowed values of ΔH and Δz must give
smaller areas for the Röthlisberger model than for the energy
model. Figure 4 depicts the constraints on ΔH and Δz for
k = 12.5m1/3 s−1 and the much larger region of allowed
values for k = 30m1/3 s−1.

5. CALCULATIONS USING NYE’S THEORY
While Röthlisberger’s theory is useful for estimating some of
the flow parameters for a steady-state discharge, it cannot
be used to study the time evolution of the jökulhlaup.
Furthermore, it can only be used to predict the cross-
sectional area of the conduit, which cannot be measured
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Fig. 6. Surface and bed profiles and subglacial hydraulic potential for
the proposed path of the jökulhlaup along the Adventure subglacial
trench shown in Figure 1. Also shown is the smoothed bed used in
the Nye model.

directly. To address these limitations, we now turn to Nye’s
theory. We begin by defining some notation. A[x, t ] refers
to the value of a parameter (which we arbitrarily refer to
as A) at position x and time t , where x is the distance
from lake L; t = 0 corresponds to the initialization of the
parameters. x = L and x = U are the positions of lakes L
and U, respectively. A particular value of a parameter which
has only spatial dependence (which we arbitrarily call B) is
referred to as B[x]. For the purposes of numerical analysis,
the conduit is divided into a finite number of segments of
length δx. The parameters are calculated at each gridpoint
(integer numbers of δx). Each gridpoint is referred to by an
index n, where x = L+nδx. A similar scaling is used for the
time coordinate.

5.1. Solving Nye’s equations
Nye derives five coupled partial differential equations to
describe non-steady flow in a conduit, which account for the
geometry and flow of ice, continuity of water, flow of water
and energy and heat transfer (Nye, 1976, equations (16–20)).
For reasons outlined in section 2 above, the temperatures

of the lake water and the ice are likely to be similar
(at or close to the pressure-melting point) and so we
neglect the heat transfer equation (Nye, 1976, equation (20)).
We are also able to simplify the energy equation (Nye,
1976, equation (19)) by neglecting the final term. As the
specific heat capacity of water is ∼4000 J K−1 kg−1 and the
latent heat of melting for ice is 3.3 × 105 J kg−1, this is a
reasonable assumption. In order to remove all temperature
dependencies, we also assume that the internal energy
is constant. Under these conditions, Nye’s equation (19)
reduces to:

mL = Q
(

ρwg− ∂P
∂x

)
, (3)

where m is the melting rate (kgm−1 s−1). Spring and
Hutter (1982) found that neglecting the changes in internal
energy leads to the overestimation of peak discharge and
total discharge volume. We must keep this in mind when
analyzing and interpreting our results.
Solving the four remaining differential equations (Nye’s

equations (16–18) and Equation (3)) allows the time
evolution of S,Q and m to be modeled given initial values
and the pressure. All that remains is to determine how the
pressure behaves. Ordinarily, jökulhlaups drain to a sink of
constant atmospheric pressure. In this case, however, the

pressure of the sink lake changes with time. Nye’s equations
solve the discharge parameters iteratively from source to sink.
We overcome the problem of variable sink pressure by re-
scaling the pressure of the source lake at each time-step,
based on the pressure in the sink lake. The same is done
with the ice overburden pressure, i.e.

Pi s[x, t ] = Pi[x, t ]− Pi[U, t ] (4)

Ps[L, t] = P [L, t ]− P [U, t ] (5)

where Pi s[x, t ] is the ice overburden pressure at distance x
from lake L and at time t , scaled to equal zero at lake U.
Ps[L, t ] is the scaled water pressure at lake L at time t scaled
to equal zero at lake U.
The pressures at the lakes P can be calculated by

considering the change in hydraulic head as the lake fills
or empties:

P [L, t ] = P [L, t − δt ]− δt
(

ρwgQ [L, t − δt ]
AL

)
(6)

P [U, t ] = P [U, t − δt ] + δt
(

ρwgQ [U, t − δt ]
AU

)
, (7)

where AL and AU are the areas of lake L and lake U,
respectively. Using Equations (5–7), it is possible to calculate
the scaled pressure at lake L at any time. The scaled pressure
along the conduit can then be found by rearranging Nye’s
(1976) equation (18):

∂Ps
∂x

= ρwgs − NQ2

S
8
3

, (8)

where gs is the component of gravitational acceleration
parallel to the conduit, and N is a constant for any conduit
shape; N = (iR−2)2/3ρwgk−2, where i is the conduit
hydraulic gradient and R is the conduit hydraulic radius,
defined as the cross-sectional area divided by the wetted
perimeter.
Evaluating Equation (8) midway between gridpoints allows

the scaled pressure at each gridpoint to be calculated by
linear interpolation. The remaining difficulty is that Nye’s
model cannot be used to calculate water flow along sections
of conduit where the potential hydraulic gradient is positive,
since this would require taking the square root of a negative
number.
Analysis of the surface, bed and derived hydraulic poten-

tial gradients along the Adventure subglacial trench shows
that sections of positive potential gradient exist as water flows
out of bedrock overdeepenings (Fig. 6). However, the overall
hydraulic potential gradient between the two lakes is nega-
tive and we therefore model flow along a conduit of constant
bed elevation gradient (ensuring potential hydraulic gradient
is always negative) between the lakes (Fig. 6). The time
evolution of S,Q ,m and P along the conduit can then be
found using a finite-difference time domain (FDTD) method.

5.2. Sensitivity analysis using Nye’s theory
Specifying values for the input parameters is difficult since
they are poorly constrained by observational data. It is crucial
to understand how this uncertainty may affect the results.
Here we examine the sensitivity of the model to four key
parameters: 1. k , the inverse of the Manning roughness
parameter; 2. S0, the initial conduit cross-sectional area;
3. the conduit geometry; and 4. the ratio of the source- to
sink-lake radii.
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Fig. 7. (a) Discharge and (b) change in lake depth for different values
of k using Nye’s model.

For the purposes of this sensitivity analysis, we assumed
that the discharge occur between lakes L1 and U3, a distance
of 267 km. (Note that this is slightly shorter than the distance
of 290 km calculated by Wingham and others (2006) and
used in our analysis so far. This figure is based on our
own analysis of the ice-sheet surface, bed and hydraulic
potential; see Fig. 6.) A single conduit of constant elevation
gradient is assumed to link the two lakes. A time-step
size of 48 hours and a segment size of 500m are used.
Unless otherwise stated, k is assumed to be 30m1/3 s−1, the
initial cross-sectional area is set to 1m2, the default conduit
geometry is semicircular and both lakes are assumed to have
a radius of 14 km and a cylindrical geometry. A radius of
14 km is consistent with an area of 600km2, the area of
lake L estimated by Wingham and others (2006) from their
observational data.
Wingham and others (2006) estimated that k could lie

anywhere in the range 10–100m1/3 s−1. Figure 7 shows how
the predicted discharge hydrograph and change in lake depth
vary with k . As k increases from 20 to 80m1/3 s−1, peak
discharge increases from ∼100 to 1000m3 s−1 and the time
to peak drops from>20 to∼5 years. Similarly, thewater-level
drop (rise) in the source (sink) lake alters from∼25 to>40m.
The increase in peak discharges is associated with a doubling
of conduit cross-sectional area from ∼150 to ∼300m2 (not
shown in Fig. 7). Thus, k affects not only the magnitude of
the peak discharge, but also the time taken for the flood to
initiate and the lifetime of the flood. This is to be expected
since k represents the smoothness of the conduit (a higher
value of k is indicative of a smoother conduit). A smoother
conduit will provide less resistance to the flow, allowing the
discharge to increase more rapidly and allowing a conduit
of smaller cross-section to support a larger discharge.

s
s
s

s

Fig. 8.Discharge in Nye’s model: effect of (a) initial conduit area S0;
(b) conduit geometry, and (c) ratio of lake L radius to lake U radius.

Since Nye’s theory does not model the triggering of the
jökulhlaup, it is necessary to specify an initial conduit area,
S0. Figure 8a shows how the choice of this value affects the
predicted discharge. Peak discharges are not significantly
affected, but the peak discharge timing falls from ∼15 to
∼7 years as S0 increases from 1 to 7m2. The initial cross-
sectional area of the conduit affects the time taken for
the flood to initiate, as would be expected. It affects the
magnitude of the peak discharge only slightly; a longer lag
time before the peak discharge allows a greater amount of
water to have transferred between the lakes, lowering the
peak discharge.
The geometry of the conduit affects the value of the

hydraulic radius R. Figure 8b shows the difference in flood
hydrographs for a semicircular conduit (which we assume
is most likely at the bed) and a circular conduit. The latter
would be relevant if the conduit were surrounded by ice,
which may be applicable if it did not everywhere follow
the bed. A circular conduit has a smaller value of N, which
results in a faster onset of the jökulhlaup and a higher peak
discharge.
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Fig. 9. (a,b) Optimized modeled and measured ice-surface deform-
ation at (a) lake L and (b) lake U3. Error bars on the observed
data were determined empirically by analyzing errors in nearby
stationary ice (Wingham and others, 2006). (c) Discharge for the
optimized model.

Our model assumes that the source lake has an infinite
capacity. The jökulhlaup therefore terminates when the
hydraulic potentials of the lakes are equal, rather than when
the source lake empties. The flood termination requires the
cumulative change in depth of the two lakes to reach a
certain value. For a given discharge, a lake with a smaller
radius will change depth more rapidly, requiring a smaller
total discharge to reach the critical value for termination.
The ratio of the lake radii therefore has an important effect on
the flood hydrograph (Fig. 8c). The timing of peak discharge
drops by∼1 year and its magnitude declines eight-fold as the
ratio of source-lake to sink-lake radii changes from 1 : 1.5 to
1 : 0.5. A larger sink lake will change depth less for a given
discharge, therefore requiring a greater depth change of the
source lake to reach termination. This results in a larger total
flood discharge.

5.3. Optimizing the parameter set
It is also possible to begin to optimize values of the
main parameters discussed above by comparing model
calculations with observations. The key (indeed, only)
observational data are the ice-sheet elevation changes
observed using ERS-2 altimetry data by Wingham and others
(2006); these data can be compared with modeled change
in lake depth through time.
In the modeling work discussed so far, we found the

change in lake depth with time by integrating the discharge
and dividing by the lake area. An assumption made by

Wingham and others (2006) (and also in our simple
energy-conservation model and our steady-state model
discussed above) is that the observed ice-surface deformation
corresponds directly to the change in lake depth. However,
our time-dependent modeling work shows that the changes
in lake depths predicted by Nye’s theory (Fig. 7b) are
approximately ten times larger than the observed surface
deformations (Fig. 9).
Little is known about how vertical deformations at the base

of an ice sheet manifest themselves at the surface. Three
factors that must influence this are:

1. the lateral extent of the basal deformation anomaly
compared to the ice thickness;

2. the time over which the vertical deformation occurs (the
deformation rate); and

3. the ice viscosity, represented by the rate factor in the flow
law.

These will control the importance of horizontal stress
gradients and the ability of lateral ice flow to offset the effect
of the initial vertical basal deformation anomaly (Jarosch and
Guðmundsson, 2007). To allow for these effects, the surface
deformation is assumed to scale linearly with the basal
deformation. An additional parameter (the ice-thickness
scaling factor A) is introduced to model this relationship,
i.e.

Δhsurface =
Δhbed
Az

, (9)

where z is the ice thickness.
It should be noted that the value of Awill be relevant to our

particular case study, but will not necessarily be universally
applicable.
Linear scaling is supported on the basis of empirical

observations of water level and ice-surface elevation changes
around Grı́msvötn (Björnsson, 1988, 1992), although we
recognize that the Adventure subglacial trench system is
an order of magnitude greater than the Grı́msvötn system.
Theoretical considerations also suggest that linear scaling
is appropriate; Guðmundsson (2008) has derived analytical
solutions for the ice-surface response to perturbations in
basal conditions using a shallow ice-stream approximation.
The magnitude of surface vertical motion is dependent on the
size and shape of the basal perturbation, the surface slope
and the slip ratio, but the important point is that surface ver-
tical movement scales linearly with the basal perturbation.
This theory is applicable for basal perturbations of more than
four ice thicknesses, which is the scale of the lakes beneath
the Adventure subglacial trench. However, we recognize the
theory might be more relevant to ice streams (with their high
slip ratios) than the inner part of the East Antarctic ice sheet.
We can now optimize the main parameters in Nye’s

model together with the ice-thickness scaling factor by
matching modeled to observed ice surface deformations.
A rigorous approach to determining the parameters would
use Bayes’ theorem to find the posterior probability function
for each parameter set (e.g. MacKay, 2003). However,
the large number of parameters makes calculation of the
likelihood function problematic. A Monte Carlo technique is
required, and this demands large computational resources.
In this investigation we use a simpler, less computer-intensive
approach. The mean square difference between the observed
altimetric data and the surface deformations predicted by
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Table 1. Initial and final values of the parameters used in the optimization scheme, together with the associated degree of fit (minima
between observed and predicted ice surface deformation). Lake offset is the difference between the bed height of the lake used in the model
and that predicted by the BEDMAP data

Initial parameters Calculated values

k Radius ratio Lake L offset Lake U offset k Radius ratio Lake L offset Lake U offset Scaling factor Fit

30 1 : 1 0 0 20 1:1 0 0 2.56× 10−3 0.912
60 1 : 1 0 0 55 1:1.44 0 4 4.16× 10−3 0.161
60 1 : 1.375 0 0 59 1:1.375 0 0 3.42× 10−3 0.226
70 1 : 1.375 0 0 68 1:1.395 0 0 3.62× 10−3 0.190
70 1 : 1.25 0 2 62 1:1.39 0 0 3.64× 10−3 0.200
70 1 : 0.8 0 0 65 1:1.42 0 0 4.14× 10−3 0.167
70 1 : 1.4 0 0 68 1:1.42 0 0 3.84× 10−3 0.166
60 1 : 1.4 0 0 59 1:1.4 0 0 3.62× 10−3 0.190

Nye’s theory (with the ice-thickness scaling factor) is used as
a measure of model success. It is assumed that the parameter
set that minimizes the difference between observations
and predictions represents the most likely values of the
parameters. Hence the inference problem is reduced to one
of minimization.
The minimization is achieved using a Simplex-type

approach (Vanderbei, 2001). Starting from an initial set of
model parameters, each parameter is varied in turn by a fixed
amount and the fit is calculated. If varying the parameter
improves the fit, then the parameter’s value is updated and
the iteration continues. If varying any of the parameters does
not improve the fit, then a minimum difference has been
reached. The resolution of the method is determined by the
step size for each parameter. While this method requires
significantly less computation than the Bayesian method,
it cannot distinguish between local and global minima.
Realistic starting values for the parameters are therefore
critical to the success of the method. The ice-thickness
scaling factor was not included as a parameter in the Simplex
optimization. Instead, for each Simplex iteration, its optimal
value is found by considering all of its possible values and
finding the best fit. This decreases the number of Simplex
iterations required, reducing run time.
Using the same system of lakes and step sizes as in

section 5.2 and assuming a semicircular tunnel with an
initial cross-sectional area of 1m2, the minimization was
carried out over five different parameters: k ; the ratio of
the source- to sink-lake radii rL/rU; error in the bed height
for both the source and sink lakes; and the ice-thickness
scaling factor A. Each run was carried out for a total time of
30 years. The parameters were able to vary by the following
resolutions: ±1m1/3 s−1 for k ; ±0.01 for rL/rU; ±1m for
each of the lake bed height errors; and 2×10−5 for A.
The first four parameters were allowed to vary over any
range necessary to achieve a good fit; A was allowed to
vary between 1×10−4 and 1×10−2. For the lake bed
height errors, each of the lake heights was allowed to vary
separately above and below the heights taken from the
BEDMAP data (Lythe and others, 2001).
Eight different sets of initial values were tested, leading to

eight different minima being located with a range of 0.161–
0.912 (Table 1). The smallest of these minima (a difference
of 0.161) corresponds to a value of k of 55m1/3 s−1, a rL/rU
of 1 : 1.44, an error of +4m in the height of lake U and 0m
for lake L and an ice-thickness scaling factor of 4.16×10−3.

Figure 9 depicts the associated fit with the altimetric data for
the two lakes and the associated flood hydrograph.
Nye’s theory combined with the bed-to-surface scaling

function tends to underestimate the maximum surface
deformation (Fig. 9). This is because the lake U data show
a decrease in ground deformation after the peak at 3 years
(Fig. 9b). Nye’s theory provides no mechanism for this to
occur, and the optimization instead fits a line through the
middle of the points. Since it is the cumulative fit of both
lakes that is used to optimize the parameters, this error has
carried through into the lake L data (Fig. 9a). While it is not
absolutely certain that these values correspond to a global
minimum in the fit, many of the parameters took similar
values at the other minima that were located (Table 1). All
runs that gave a fit of less than 0.2 (five of the eight) had a
value of k in the range 55–68m1/3 s−1, rL/rU in the range
1.38–1.44, an error in the height of lake U in the range
0–4m and of 0m for lake L and an ice-thickness scaling
factor of (3.62× 10−3)− (4.16×10−3). The absolute size of
the lakes determines the total volume of water released in the
jökulhlaup (as discussed in section 5.2). This is independent
of the surface deformation, so it is not possible to infer the
lake sizes from the available data.

5.4. A multi-lake model
So far, the investigation has modeled the discharge through a
single conduit between two lakes. The altimetric data show
the existence of four connected lakes: one source lake and
three sink lakes (Fig. 1). The deformation above the three
sink lakes is very similar, which is why we have so far
simply modeled them as one lake. However, we now turn
our attention to modeling this four-lake system using Nye’s
theory. The extension of the theory to a multi-lake system
is relatively straightforward. The depth of each lake is found
for a particular time-step by solving the equations for the
conduits feeding and draining the lake. The entire system
of lakes and conduits is solved for each time-step, and the
results are used to solve for the next time-step. The same
time-steps are used as in the two-lake model above. We
assume all conduits are semicircular, with an initial cross-
sectional area of 1m2 and k = 60m1/3 s−1. Figure 10 shows
the results for four lakes of equal radius (14 km) at distances
of 0, 205, 246 and 267 km along the Adventure subglacial
trench from the source lake.
One of the most striking results of introducing multiple

lakes is the second discharge peak between lake L and lake
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Fig. 10. Discharge between lakes for the four-lake model: (a) lake
radii = 1 km, S0 = 1m2; (b) lake radii = 14 km, S0 = 40m2 for the
conduit between U1 and U2 and 1m2 for the other two conduits;
(c) lake U1 radius = 8 km, other lake radii = 14 km, S0 = 40m2

for the conduit between U1 and U2 and 1m2 for the other two
conduits.

U1 (Fig. 10a). The first discharge from lake L triggers a
discharge from lake U1. This then empties lake U1 suffi-
ciently to allow a second discharge from lake L. The
altimetric data show no evidence for multiple stages of
surface deformation above lake L and therefore no evidence
of multiple discharges (Fig. 9). This may be because the
conduit closes completely after the first discharge (which is
prevented in the implementation of Nye’s theory). If there
was insufficient pressure in lake L to reopen a conduit, only a
single discharge would be observed. If this happened, lakes L
and U1 would remain in a meta-stable state with a potential
difference between them until the lake L water level rose
sufficiently to trigger another flood.
A second interesting feature of the multi-lake model is the

time lag of a few years between the discharge from lake L
and the discharge from lake U1 (Fig. 10a). Again, this is not
supported by the altimetric data, which show no obvious
evidence of surface lowering of lake U1 after the initial rise
(Fig. 9). More importantly, the surface uplift at U2 occurs at

the same time as that above U1 (Wingham and others, 2006,
fig. 2). This apparent time lag is most likely a failing of the
model. The size of the conduit draining out of lake U1 does
not respond rapidly enough to changes in the depth of the
lake. This may be explained by considering the triggering
of the jökulhlaup. On a superficial level, the triggering is
caused by the flotation of the ice dam. The initial size of the
conduit is therefore related to the amount by which the ice
dam is lifted. If the flotation occurs on a rapid timescale,
then flotation effects will dominate frictional melting effects.
This is not accounted for in Nye’s theory, where the initial
conduit size is taken to have a fixed value. The likely effect
of incorporating flotation effects can be seen by setting the
initial size of the conduit leaving lake U1 to a much higher
value than that of the conduit between lakes L and U1.
Compared to Figure 10a, Figure 10b shows how the lag
time is reduced when the initial size of the second conduit
is set to 40m2 instead of 1m2.
A third feature of the multi-lake model is the broad width

of the hydrograph from lake U1 lasting around 5 years
(Fig. 10a and b). As mentioned above, this is not evident in
the altimetric data, which show no surface lowering above
U1 after the initial uplift (Fig. 9). Furthermore, the uplift at U2
lasts for around 2 years, not 5 years (Wingham and others,
2006, fig. 2). The hydrograph width is strongly affected by
the radii of the lakes, as can be seen in Figure 10c, showing
the results when the radius of lake U1 is set to 8 km rather
than 14 km. A fourth feature of the multi-lake model is that
no discharge occurs between lakes U2 and U3 (Fig. 10). The
reasons for this are not entirely clear, although it could be
due to errors in the lake-height or ice-thickness values (i.e.
errors in the BEDMAP data), which do not produce a large
enough hydraulic potential gradient between U2 (when
full) and U3 (when empty) to trigger a discharge. Further
investigation is needed to confirm this.

6. CONCLUSIONS
We have used a simple energy-conservation model and
a model based on Röthlisberger’s (1972) theory to model
steady-state water flow between two subglacial lakes in the
Adventure subglacial trench, East Antarctica (sections 3 and
4). Constraining the models with available field evidence
suggests that water flow could be accommodated in a
tunnel with a cross-sectional area of ∼36m2, comparable
to that calculated by Wingham and others (2006). Our
results suggest, however, that the value for k (reciprocal
of Manning’s roughness parameter) must be larger than the
12.5m1/3 s−1 calculated by Wingham and others (2006).
We have also used Nye’s (1976) theory to analyze the

time-dependent transfer of water between the subglacial
lakes (section 5). Our primary focus was to: (1) model
water transfer between two lakes; (2) analyze the sensitivity
of Nye’s theory to input parameters; and (3) use the
theory in combination with a simple linear bed-to-surface
ice deformation function to predict the values of these
parameters, given observed surface elevation change data
for the region. The main findings are summarized as follows.

1. The results are highly sensitive to assumed values of k
(Fig. 7). As k increases from 20 to 80m1/3 s−1, peak
discharges increase from ∼100 to 1000m3 s−1 and the
time to peak drops from >20 years to ∼5 years. Similarly,
the water-level drop (rise) in the source (sink) lake
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changes from∼25m to>40m and the peak conduit area
doubles from ∼150 to ∼300m2.

2. Results are also sensitive to assumed values of the
initial conduit area (Fig. 8a). Peak discharges are not
significantly affected, but the peak discharge timing
drops from ∼15 to ∼7 years as initial conduit area
increases from 1 to 7m2.

3. A circular conduit reduces the timing of and increases
the magnitude of peak discharge by ∼2 years and
∼50m3 s−1, respectively, compared to a semicircular
conduit (Fig. 8b).

4. Similarly, the timing of peak discharge drops by ∼1 year
and its magnitude declines eight-fold as the ratio of
source-lake to sink-lake radii changes from 1 : 1.5 to
1 : 0.5 (Fig. 8c).

5. A Simplex-type approach is used to optimize the main
parameters in Nye’s theory coupled to a simple vertical
ice deformation function by matching model output
to observed surface deformation data (Fig. 9). An ice-
thickness scaling parameter is introduced to convert
lake-level change to ice-surface elevation change. The
best matches between modeled and observed data for
a semicircular conduit of initial size 1m2 are obtained
for values of k of 55–68m1/3 s−1, an error of 0–4m in
the height of the sink lake and 0m for the source lake,
a ratio of lake radii (source/sink) of between 1 : 1.38 and
1 : 1.44 and an ice-thickness scaling factor of between
3.62× 10−3 and 4.16× 10−3.

6. The range of values for k supports the findings of the
energy-conservation and Röthlisberger models, which
predicted a value greater than that found by Wingham
and others (2006) of 12.5m1/3 s−1. This range represents
smooth to medium roughness ice-walled tunnels (Röthlis-
berger and Lang, 1987) and compares with slightly
lower values (representing slightly rougher conduits)
required to model typical summer water flow beneath
Haut Glacier d’Arolla, Switzerland, (k = 20m1/3 s−1;
Arnold and others, 1998) or jökulhlaups from Grı́msvötn
(k = 31m1/3 s−1; Clarke, 2003; Flowers and others,
2004).

7. Systems of more than two lakes are poorly modeled by
Nye’s theory compared with observational evidence.
Discharge between the first sink lake and the second
sink lake occurs a long time after the initial flood from
the source lake to the first sink lake. This suggests that
the conduit from the second sink lake opens more
rapidly than Nye’s theory predicts, which may be due
to mechanical ice-flotation effects rather than thermal
enlargement processes.
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APPENDIX A. ENERGY-CONSERVATION
DERIVATION
Assuming a cylindrical geometry for both the lakes and the
ice that moves above them, the energy released by the system
shown in Figure 2 can be written as the sum of the following
four terms.

1. Energy released by the lowering of lake L:

E 2
L = πrL tLρigΔhL. (A1)

2. Energy used to raise lake U:

EU = πr2UtUρigΔhU. (A2)

Assuming that the volume of water is conserved, it follows
that:

πr2UΔhU =
2πrL ΔhL (A3)

and therefore

EL − EU = πr2L ΔhLρig(tL − tU). (A4)

3. Energy used to raise the water by ΔH:

EH = VρwgΔH. (A5)

4. Energy used to maintain water at the pressure-melting
point:

T 1 1
EW = −cvV ρiΔtL

(
ρw

−
ρi

)
. (A6)

Subscripts L and U refer to the lower and upper lakes,
respectively, r is lake radius, t is ice thickness, Δh is surface
elevation change, ρi = 917 kgm−3 is the density of ice,
ρw = 1000 kgm−3 is the density of water, g = 9.81m s−2

is gravitational acceleration, ΔH is bed height difference,
cv = 4.2kJ kg−1 is the specific heat capacity of water,
T = 273K is the melting point, L = 3.3 × 105 J kg−1 is
the latent heat of melting for ice and V is the total volume of
water discharged, estimated to be 1.8km3 by Wingham and
others (2006). V neglects the contribution from the melted
walls of the conduit, as the volume of a 290 km long conduit
of cross-sectional area 36m2 is 10.44×10−3 km3 (or 0.58%
of the total discharge).
The total energy released is then:

ET = EL − EU − EH − EW. (A7)

For temperate ice, the energy required to melt a conduit of
cross-sectional area S is

EM = SlρiL,

where l is the length of the conduit (290 km in this case).
Rearranging gives:

E
S = M . (A9)

lρiL

(A8)

APPENDIX B. RÖTHLISBERGER DERIVATION
The idealized geometry of the lakes and conduit is shown in
Figure 2. Röthlisberger’s theory is based on the Gauckler–
Manning–Strickler formula for the mean velocity of a
turbulent flow:

v =
Q
S
= kR

2
3

(
1
gρw

dΦ
dx

) 1
2

, (B1)

where Q is the discharge (m3 s−1), k is the inverse of the
Manning roughness parameter, Φ is the hydraulic potential
and R is the hydraulic radius, defined as cross-sectional area
over wetted perimeter.
Assuming a constant hydraulic potential gradient along the

conduit,
dΦ
dx

=
ΦU − ΦL

l
. (B2)

The hydraulic potential in each lake can be expressed as:

ΦL = [tLρi + (wL + zL)ρw]g (B3)

ΦU = [tUρi + (wU + zU)ρw]g (B4)

where t is ice thickness above the lake, w is the head of
water in the lake and z is the elevation of the lake bed.
Assuming the lakes are the same depth and substituting

Equations (B3) and (B4) into Equation (B2), the gradient may
be written:

dΦ
dx

=
(Δtρi −ΔHρw)g

l
, (B5)

where Δt is the difference in ice thickness between the lakes
and ΔH is the difference in bed height between the lakes.
For a conduit of circular cross-section,

S = πr2 → r =
(
S
π

) 1
2

(B6)

R =
πr2

2πr
=
1
2

(
S
π

) 1
2

. (B7)

Substituting Equation (B7) into Equation (B1) then gives

S =

[
Qk−1

(
2
√

π
) 2
3

(
1

ρwg
dΦ
dx

)− 1
2

] 3
4

. (B8)

For a conduit of semicircular cross-section,

S =
πr2

2
→ r =

(
2S
π

) 1
2

(B9)

R =
S

πr + 2r
=

S

π
( 2S

π

) 1
2 + 2

( 2S
π

) 1
2

. (B10)

Substituting Equation (B10) into Equation (B1) then gives

S =

[
Qk−1

(√
2 (π + 2)√

π

) 2
3
(
1

ρwg
dΦ
dx

)− 1
2

] 3
4

. (B11)

Equations (B8) and (B11) correspond to Equations (1) and
(2) in the main part of the text.
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