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SINGULAR HERMITIAN METRICS WITH ISOLATED
SINGULARITIES

TAKAHIRO INAYAMA

Abstract. In this paper, we study the coherence of a higher rank analogue

of a multiplier ideal sheaf. Key tools of the study are Hörmander’s L2-estimate

and a singular version of a Demailly–Skoda-type result.

§1. Introduction

Multiplier ideal sheaves for singular Hermitian metrics on line bundles are very important

and have many applications in many fields. Indeed, Nadel introduced a notion of multiplier

ideal sheaves and applied it to show the existence of Kähler–Einstein metrics of positive

scalar curvature on certain compact complex manifolds in [19]. As another example, Siu

established the invariance of plurigenera by using this notion [23]. Nadel also proved a

cohomology vanishing theorem with coefficients in multiplier ideal sheaves, which is one

generalization of the Kawamata–Viehweg vanishing theorem. This vanishing theorem has

been applied in algebraic and complex geometry.

In his paper, Nadel showed the following celebrated result: a multiplier ideal sheaf

associated with a plurisubharmonic function is coherent. An important technique of the

proof is an L2-estimate of the ∂-equation of Hörmander type [9].

A higher rank analogue of a multiplier ideal sheaf associated with a singular Hermitian

metric on a vector bundle has been also studied. This notion has been recognized as

important. However, the coherence of it is only known in few cases (cf. [4, Prop. 4.1.3],

[10, Th. 1.1]). If a metric has some strong positivity like Nakano positivity, it is known

that the higher rank analogue of the multiplier ideal sheaf is coherent ([11, Th. 1.4], [14,

Prop. 4.4], [15, Th. 1.2]). Hence, it is natural to ask whether the higher rank analogue of

the multiplier ideal sheaf is coherent if the associated metric has only Griffiths positivity,

which is a strictly weaker notion than Nakano positivity.

Conjecture 1.1. Let (E,h) be a holomorphic vector bundle over an n-dimensional

complex manifold X with a singular Hermitian metric h. If h is Griffiths semipositive, the

higher rank analogue of the multiplier ideal sheaf E(h) is coherent.

This conjecture seems a tough problem due to the following reasons. First, we cannot

apply an L2-estimate of the ∂-equation directly even if h is smooth. That is because a kind

of the solvability of the ∂-equation with L2-estimates in the optimal setting is equivalent

to the Nakano positivity of the metric [8, Th. 1.1]. Second, it might be useful to get an

approximating sequence {hν} of h such that the Chern curvature of hν is uniformly bounded

below in the sense of Nakano. However, it is known that this procedure cannot be done

simply by using the standard approximation defined by convolution [10, Th. 1.2].
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In order to use the technique of Hörmander’s L2-estimate, we need to devise some

settings. By imposing conditions on the singularity of h, we can give a partial answer

to the conjecture.

Theorem 1.2. Let (E,h) be a holomorphic vector bundle over an n-dimensional

complex manifold X with a Griffiths semipositive singular Hermitian metric h. If the

unbounded locus L(deth) of deth is discrete, the higher rank analogue of the multiplier ideal

sheaf SmE(Smh) is coherent for every m ∈ N. Here, SmE(Smh) is the sheaf of germs of

local holomorphic sections of the mth symmetric power SmE of E, which is square integrable

with respect to Smh (see Definition 2.5 for the precise definition).

The condition on h in the main theorem appears naturally when h has some kind of

symmetry. Indeed, as an application of the main theorem, we get the following result.

Corollary 1.3. Let E be the trivial vector bundle E =B
n×C

r over the unit ball Bn :=

{(z1, . . . , zn)∈C
n | |z|2 < 1}, and let h be a Griffiths seminegative singular Hermitian metric

on E. If deth is a radial function, that is, depending only on the radius |z|, SmE�(Smh�)

is coherent for every m ∈ N. Especially, if h is spherically symmetric (see Definition 2.6),

SmE�(Smh�) is coherent for every m ∈ N.

§2. Preliminaries

In this section, we give properties of singular Hermitian metrics on holomorphic vector

bundles. First, let us recall positivity notions for smooth Hermitian vector bundles. Let

(E,h) be a smooth Hermitian vector bundle over a complex manifold X. We denote by ΘE,h

the Chern curvature of (E,h) and by Θ̃E,h the associated Hermitian form on TX ⊗E. Then

(E,h) is said to be Nakano positive if Θ̃E,h(τ,τ)> 0 for all nonzero elements τ ∈ TX ⊗E. If

Θ̃E,h(v⊗s,v⊗s)> 0 for all nonzero elements v ∈ TX and s∈E, (E,h) is said to be Griffiths

positive. Corresponding negativity is defined similarly. It is clear that Nakano positivity is

a stronger positivity notion than Griffiths positivity. It is also known that these notions do

not coincide [6, Chap. VII, Exam. 8.4]. For Hermitian forms A and B on TX ⊗E, we write

A≥Nak. B (resp., A≥Grif. B) if A(τ,τ)≥B(τ,τ) (resp., A(v⊗s,v⊗s)≥B(v⊗s,v⊗s)) for

any τ ∈ TX ⊗E ( resp., v ∈ TX and s ∈ E).

Next, we show positivity notions for singular Hermitian metrics. For the definition of

singular Hermitian metrics, see [3, §3] or [21, Def. 1.1].

Definition 2.1 ([3, Defs. 3.1 and 3.2], [21, §2]). Let (E,h) be a singular Hermitian

bundle over a complex manifold X. Then (E,h) is said to be:

1. Griffiths seminegative if log |s|2h (or |s|2h) is plurisubharmonic for any local holomorphic

section s of E.

2. Griffiths semipositive if the dual metric h� on E� is Griffiths seminegative.

Then we introduce the definition of unbounded loci. Let ϕ be a plurisubharmonic function

on a complex manifold X. It is known that the unbounded locus of ϕ is defined to be the

set of points x ∈ X such that ϕ is unbounded on every neighborhood of x. We denote it

by L(ϕ). For a general singular Hermitian metric on a line bundle, the unbounded locus is

defined similarly.

Definition 2.2 (cf. [17, Def. 3.3]). Let (L,g) be a singular Hermitian line bundle over

a complex manifold X. Suppose that g is seminegative. The unbounded locus L(g) of g is
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defined as follows: x ∈ X is in L(g) if and only if for an open coordinate Uα of x which

trivializes (L|Uα
∼= C,g|Uα = eϕα), x ∈ L(ϕα).

Similarly, if g is semipositive, the unbounded locus L(g) of g is defined by L(g) := L(g�).

Note that if (L,g) has seminegative curvature, the above ϕα is a plurisubharmonic

function. Thus, L(ϕα) is well defined. For another trivialization Uβ, we have that ϕα =

log |gαβ|2 + ϕβ, where gαβ is a transition function of L on Uα ∩Uβ. Since log |gαβ|2 is

locally bounded, for any point x ∈ Uα ∩Uβ, x ∈ L(ϕα) if and only if x ∈ L(ϕβ). Hence,

the unbounded locus of g can be defined globally.

We have another description of L(g). We take an open trivializing covering {Uα}α∈Λ

of X and set h|Uα =: eϕα . Then L(g) = ∪α∈ΛL(ϕα). This definition is independent of the

choice of open coverings for the same reason as above. Set B(ϕα) := Uα \L(ϕα), where ϕα

is locally bounded, and B(g) = ∪α∈ΛB(ϕα). We clearly see that L(g)∩B(g) = ∅. Indeed, if
there is an element x ∈ L(g)∩B(g), there exist α ∈ Λ and β ∈ Λ such that x ∈ L(ϕα) and

x ∈B(ϕβ). Note that x ∈ Uα∩Uβ. The above argument implies that x ∈ L(ϕβ) as well, but

this contradicts the fact that L(ϕβ)∩B(ϕβ) = ∅. Hence, X = L(g)
⊔
B(g). It is clear that

B(g) is an open subset. Therefore, we see that L(g) is a closed subset. If E is a vector bundle

with a Griffiths semipositive singular Hermitian metric h, (detE,deth) is semipositive as

well. Thus, we can define the unbounded locus L(deth) as in Definition 2.2.

Next, we introduce an L2-estimate of Hörmander type. In this paper, we use the following

form.

Theorem 2.3 ([5], [6, Chap. VIII, Th. 6.1]). Let (X,ω̂) be a complete Kähler manifold,

let ω be another Kähler metric which is not necessarily complete, and let (E,h) → X be

a Nakano semipositive vector bundle. Then, for any ∂-closed E-valued (n,q)-form u with

q > 0 and
∫
X
〈[
√
−1ΘE,h,Λω]

−1u,u〉dVω <+∞, there exists a solution of ∂α= u satisfying∫
X

|α|2ω,hdVω ≤
∫
X

〈[
√
−1ΘE,h,Λω]

−1u,u〉ω,hdVω,

where 〈·, ·〉ω,h denotes the pointwise metric with respect to ω and h, [·, ·] denotes the graded

Lie bracket, and dVω = ωn/n!.

Then we recall the following result, which clarifies the relationship between Griffiths

positivity and Nakano positivity.

Theorem 2.4 ([7], [1], [18]). Let (E,h) be a smooth Hermitian vector bundle. If (E,h) is

Griffiths semipositive, (SmE⊗detE,Smh⊗deth) is Nakano semipositive for every m ∈N,

where SmE is the mth symmetric power of E.

In this paper, we call this theorem a Demaill–Skoda-type result since this type of theorem

was initially found by Demailly and Skoda [7]. This result plays a crucial role in the article.

Then we introduce a notion of a higher rank analogue of a multiplier ideal sheaf.

Definition 2.5 ([4, Def. 2.3.1]). Let (E,h) be a singular Hermitian vector bundle over

a complex manifold X. Then we define the higher rank analogue of the multiplier ideal sheaf

E(h) by

E(h)x = {s ∈ OX(E)x | |s|2h is locally integrable around x ∈X},
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where OX(E) is the locally free sheaf associated to E. Similarly, we define SmE(Smh) by

SmE(Smh)x = {s ∈ OX(SmE)x | |s|2Smh is locally integrable around x ∈X}.

At the last of this section, we introduce a notion of spherically symmetric singular

Hermitian metrics on the trivial vector bundle over the unit ball. This is one generalization

of S1-invariant singular Hermitian metrics over the disk, which was introduced by

Berndtsson [2].

Definition 2.6. Let E be the trivial vector bundle E = B
n×C

r over the unit ball Bn,

and let h be a Griffiths seminegative singular Hermitian metric. We say that h is spherically

symmetric if for any u ∈ C
r, |u|h(z) = |u|h(|z|) for z ∈Δn. In other words, |u|h(z) is a radial

function for any u ∈ V .

Berndtsson studied Lelong numbers and integrability indices for S1-invariant singular

metrics and obtained many applications in [2]. In this sense, a symmetric singular Hermitian

metric is an important notion. We also have another generalization such as Tn-invariant or

S1-invariant singular Hermitian metrics, where Tn is the unit torus in C
n. However, since

they do not fit the setting of the main theorem, we do not consider them in this article.

§3. L2-estimates for singular Hermitian metrics

In this section, we show an L2-estimate for singular Hermitian metrics on holomorphic

vector bundles and give a proof of the main theorem. First, we prove the following result.

Theorem 3.1. Let (M,ω) be a Stein manifold with a Kähler metric ω. We also let

(E = M ×C
r,h) be the trivial holomorphic vector bundle with a Griffiths semipositive

singular Hermitian metric h, and let ψ be a smooth strictly plurisubharmonic function

with
√
−1∂∂ψ ≥ εω for a positive constant ε > 0. Then, for any ∂-closed SmE ⊗ detE-

valued (n,q)-form u with finite L2-norm, there exists an SmE⊗detE-valued (n,q−1)-form

α such that ∂α= u and∫
M

|α|2ω,Smh⊗dethe
−ψdVω ≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω.

This type of result was obtained by Inayama (see [13, Th. 1.3] or [14, Th. 1.4]). Since

the situation is a little bit different, we give a proof for the sake of completeness.

Proof of Theorem 3.1. Fix m ∈ N. Since M is Stein, M can be embedded into C
N for

some N > 0. We may regard M as a closed submanifold in C
N . Let ι : M → C

N be an

inclusion map. Thanks to Siu’s theorem [22], there exist an open neighborhood U of M in

C
N and a holomorphic retraction p : U →M such that p◦ ι= idM . Note that (p�E,p�h) is

the trivial vector bundle with a Griffiths semipositive metric p�h as well. From the results

of [3, Prop. 3.1] and [21, Prop. 6.2], we obtain a sequence of smooth Hermitian metrics

{gν}∞ν=1 with Griffiths semipositive curvature increasing to p�h on any relatively compact

subset in U. Take an exhaustion {Mj}∞j=1 of M, where each Mj is a relatively compact

Stein subdomain in M, Mj � Mj+1, and ∪Mj = M . Set {hν := ι�gν}∞ν=1. Then {hν}∞ν=1

is an approximate sequence with Griffiths semipositive curvature increasing to h on any

relatively compact subset. Note that each hν is Griffiths semipositive. Due to Theorem

2.4, Smhν ⊗ dethν is Nakano semipositive. The Chern curvature of Smhν ⊗ dethνe
−ψ is
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calculated as

√
−1ΘSmhν⊗dethνe−ψ =

√
−1ΘSmhν⊗dethν +

√
−1∂∂ψ⊗ idSmE⊗detE

≥Nak. εω⊗ idSmE⊗detE .

We have that for any SmE⊗detE-valued (n,q)-form u,

〈[
√
−1ΘSmhν⊗dethνe−ψ ,Λω]u,u〉ω,Smhν⊗dethνe−ψ ≥ qε|u|2ω,Smhν⊗dethνe−ψ .

Now, we fix Mj . By using Theorem 2.3 and [6, Chap. VIII, Rem. 4.8], we get a solution αν

of the ∂-equation satisfying∫
Mj

|αν |2ω,Smhν⊗dethν
e−ψdVω ≤ 1

qε

∫
Mj

|u|2ω,Smhν⊗dethν
e−ψdVω

≤ 1

qε

∫
Mj

|u|2ω,Smh⊗dethe
−ψdVω

≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω <+∞

for sufficiently large ν. Here, we use the argument from [16, Lem. 2.2]. It holds that the

metric on SmE induced from E is the same as the metric induced by an orthogonal

projection from E⊗m. Hence, by the monotonicity of hν , it follows that dethν ≤ dethν+1,

h⊗m
ν ≤ h⊗m

ν+1, and Smhν ≤ Smhν+1 as a metric.

Fix sufficiently large ν0. We have that, for ν ≥ ν0,∫
Mj

|αν |2ω,Smhν0⊗dethν0
e−ψdVω ≤

∫
Mj

|αν |2ω,Smhν⊗dethν
e−ψdVω <+∞

≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω <+∞.

Then {αν}ν≥ν0 forms a bounded sequence with respect to the norm
∫
Mj

| · |2ω,Smhν0⊗dethν0

e−ψdVω. We can get a weakly convergent subsequence {αν0,k}k. Thus, the weak limit αj

satisfies ∫
Mj

|αj |2ω,Smhν0⊗dethν0
e−ψdVω ≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω <+∞.

Next, we fix ν1 > ν0. Repeating the above argument, we can choose a weakly convergent

subsequence {αν1,k}k ⊂ {αν0,k}k with respect to
∫
Mj

| · |2ω,Smhν1⊗dethν1
e−ψdVω. Then, by

taking a sequence {νn}n increasing to +∞ and a diagonal sequence, we obtain a weakly

convergent sequence {ανk,k}k with respect to
∫
Mj

| · |2ω,Smhν�
⊗dethν�

e−ψdVω for all �. Hence,

αj satisfies ∫
Mj

|αj |2ω,Smh⊗dethe
−ψdVω ≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω

thanks to the monotone convergence theorem. Since the right-hand side of the above

inequality is independent of j, by using the exactly same argument, we can get an

SmE⊗detE-valued (n,q−1)-form α satisfying ∂α= u and
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M

|α|2ω,Smh⊗dethe
−ψdVω ≤ 1

qε

∫
M

|u|2ω,Smh⊗dethe
−ψdVω,

which completes the proof.

We call this theorem a singular version of a Demailly–Skoda-type result. Indeed, Smh⊗
deth behaves like a Nakano semipositive metric (cf. Theorem 2.4). Applying this estimate,

we can prove the main theorem.

Proof of Theorem 1.2. We use the same notation as in the previous section and fix

m ∈ N. Since the coherence is a local property, we may assume that X =Δn
r is a polydisc

in C
n
{z1,...,zn}, E = Δn

r ×C
r, and (E = Δn

r ×C
r,h) is defined over a larger polydisc Δn

r′ .

Here, r and r′ are positive constants satisfying r < r′, and Δn
r = {(z1, . . . , zn) ∈ C

n | |zi|< r

for all i ∈ {1, . . . ,n}}. We also assume that SmE is trivial over Δn
r′ . We regard logdeth�

as a function on Δn
r′ which is the local weight of deth�, that is, deth�|Δn

r′
= elogdeth

�

. We

can also assume that, on this trivializing coordinate, L(logdeth�) = o since the unbounded

locus is the set of isolated points.

Let H0
2,Smh(Δ

n
r ,S

mE) be the space of holomorphic sections s of SmE on Δn
r such that∫

Δn
r
|s|2Smhdλ < +∞, where dλ is the standard Lebesgue measure on C

n. We consider

the natural evaluation map ev : H0
2,Smh(Δ

n
r ,S

mE)⊗COΔn
r
→ OΔn

r
(SmE). We know that

Im(ev) =: E is coherent. We now prove that Ex = SmE(Smh)x for all x ∈ Δn
r . Since

E⊂ SmE(Smh), it is enough to show that SmE(Smh)x ⊂ Ex.

Take an arbitrary element f ∈ SmE(Smh)x. When x �= o, we take a cutoff function θ

around x. Here, θ is a smooth function with compact support such that 0 ≤ θ ≤ 1 and

θ ≡ 1 on an open neighborhood of x. We may assume that f is defined on a small open

neighborhood U �Δn
r \{o} of x such that

∫
U
|f |2Smhdλ <+∞ and supp(θ)� U . Hence, θf

is defined globally. Set u := ∂(θfdz), where dz = dz1∧· · ·∧dzn. Note that∫
Δn

r

|u|2Smhdλ=

∫
U

|∂θ|2|f |2Smhdλ <+∞.

Moreover, we have that∫
Δn

r

|u|2Smhdethe
−(n+k) log |z−x|2−|z|2dλ=

∫
U

|∂θ|2|f |2Smhe
− logdeth�−(n+k) log |z−x|2−|z|2dλ <+∞

for any k ∈N since logdeth� is bounded on U and ∂θ is identically zero around x. Set ηδ :=

log(|z−x|2+δ2) and η= log |z−x|2. We have that
√
−1∂∂((n+k)ηδ+ |z|2)≥

√
−1

∑
idzi∧

dz̄i. Applying Theorem 2.3, we get a solution αδ of ∂(αδdz) = u satisfying∫
Δn

r

|αδ|2Smhdethe
−(n+k)ηδ−|z|2dλ≤

∫
Δn

r

|u|2Smhdethe
−(n+k)ηδ−|z|2dλ

≤
∫
Δn

r

|u|2Smhdethe
−(n+k)η−|z|2dλ <+∞.

Since the upper bound is independent of δ, thanks to the standard L2 theory of the ∂-

equation (cf. the proof of Theorem 3.1 or [11, Th. 2.3]), we get a sequence {δj}j∈N decreasing

to 0, a sequence {αδj}j∈N converging weakly with respect to Smhdethe−(n+k)ηδj
−|z|2 for
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all j ∈ N and the limit α satisfying ∂(αdz) = u and∫
Δn

r

|α|2Smhdethe
−(n+k)η−|z|2dλ≤

∫
Δn

r

|u|2Smhdethe
−(n+k)η−|z|2dλ.

Note that logdeth�, η, and |z|2 are bounded above on Δn
r . Thus,∫

Δn
r

|α|2Smhdλ <+∞ and

∫
Δn

r

|α|2Smh

|z−x|2(n+k)
dλ <+∞.

Then αx ∈ SmE(Smh)x. Since S
mh is Griffiths semipositive, there exists a positive constant

C > 0 such that |α|2Smh ≥ C|α|2 = C(|α1|2+ · · ·+ |αrm |2) on Δn
r , where rm = rank(SmE)

and α= t(α1, · · · ,αrm). Thus, ∫
Δn

r

|αi|2
|z−x|2(n+k)

dλ <+∞,

for each i. Set F := α− θf . Then F ∈H0
2,Smh(Δ

n
r ,S

mE) and αi,x ∈mk+1
x , where mx is the

maximal ideal of OΔn
r ,x.

When x = o, the situation changes. Let θ be a cutoff function around the origin, which

is identically 1 around o. Take f ∈ SmE(Smh)o, U, and u in the same way. We only need

to verify that the following integral is finite:∫
U

|∂θ|2|f |2Smhe
− logdeth�−(n+k) log |z|2−|z|2dλ,

since logdeth� is not bounded on U. Note that the support of ∂θ is a compact subset in

U \{o}. We also see that logdeth� and log |z|2 are bounded on the support of ∂θ. Hence,

the above integral is finite. Then, repeating the above argument, we get a solution α of

∂(αdz) = u satisfying∫
Δn

r

|α|2Smhdethe
−(n+k) log |z|2−|z|2dλ≤

∫
Δn

r

|u|2Smhdethe
−(n+k) log |z|2−|z|2dλ.

The rest is the same.

Eventually, in both cases, we obtain that θf =α−F , that is, fx =αx−Fx for x∈Δn
r . The

above argument implies that αx ∈mk+1
x ·OΔn

r
(SmE)x∩SmE(Smh)x for all k ∈ N. Hence,

SmE(Smh)x =mk+1
x ·OΔn

r
(SmE)x∩SmE(Smh)x+Ex.

Thanks to the Artin–Rees lemma, there exists a positive integer � such that, for any k≥ �−1,

mk+1
x ·OΔn

r
(SmE)x∩SmE(Smh)x =mk−�+1

x (m�
x ·OΔn

r
(SmE)x∩SmE(Smh)x).

Thus, for k ≥ �,

SmE(Smh)x =mk+1
x ·OΔn

r
(SmE)x∩SmE(Smh)x+Ex

=mk−�+1
x (m�

x ·OΔn
r
(SmE)x∩SmE(Smh)x)+Ex

⊂mx · SmE(Smh)x+Ex

⊂ SmE(Smh)x.

Nakayama’s lemma says that SmE(Smh)x = Ex, which completes the proof.

We then give a proof of Corollary 1.3 as an application of the main theorem.

https://doi.org/10.1017/nmj.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.16


SINGULAR HERMITIAN METRICS WITH ISOLATED SINGULARITIES 987

Proof of Corollary 1.3. First, we prove that deth is radial if h is spherically symmetric.

Since E = B
n×C

r is trivial, taking a global holomorphic frame, we write h= (hij̄)1≤i,j≤r.

Akin to [20], we compute each element hij̄ . For v1 = t(1,0, . . . ,0), |v1|2h = h11̄ is a radial

plurisubharmonic function with h11̄(z) ∈ [0,+∞). We also have that |v2|h = h22̄ is a

radial plurisubharmonic function for v2 = t(0,1,0, . . . ,0). For v = t(1,1,0, . . . ,0) and v′ =
t(1,

√
−1,0, . . . ,0), we get |v|2h = h11̄ + h22̄ + 2Re(h12̄) and |v′|2h = h11̄ + h22̄ − 2Im(h12̄),

respectively. We have that |v|2h and |v′|2h are also radial due to the assumption of h. Thus,

h12̄ is spherically symmetric. Consequently, we can say that every element hij̄ is spherically

symmetric, and so is logdeth.

Therefore, it is enough to give a proof in the case that logdeth is a radial plurisub-

harmonic function. The rest part follows due to the standard argument below (cf. [6,

Chap. I, §5]). Set H := {w ∈ C | Re(w) < 0}. Define the map exp : H → B
n \ {o} by

w �→ (ew,0, . . . ,0). Then logdeth ◦ exp is a plurisubharmonic function on H, which is

independent of Im(w). Thus, x ∈ (−∞,0) �→ logdeth(ex,0, . . . ,0) is a convex function.

We denote this map by μ. We then have that logdeth(z) = μ(log |z|) for z ∈ B
n \ {o}.

We can conclude that L(logdeth) ⊂ {o}. Since the unbounded locus L(deth) of deth is

isolated or empty, this corollary holds.

At the last of this section, we introduce an example satisfying the condition in

Corollary 1.3. This type of example was introduced in [12].

Example 3.2. Let h be a singular Hermitian metric on E = B
n×C

2 defined by

h=

(
|z1|2+ |z|N z1

z1 1

)

for sufficiently large N > 0. Then h is Griffiths seminegative since for any local holomorphic

section u= t(u1,u2),

|u|2h = |u1z1+u2|2+ |u1|2|z|N .

We have that deth = |z|N . Thus, SmE�(Smh�) is coherent for every m ∈ N thanks to

Corollary 1.3. Note that E�(h�) �=OB2(E�) due to the assumption of N.

Acknowledgment. Takahiro Inayama would like to thank Prof. Shin-ichi Matsumura and

Dr. Genki Hosono for valuable discussions and helpful comments.

Appendix. On Riemann surfaces

In this appendix, we discuss singular Hermitian metrics on a holomorphic vector bundle

over a Riemann surface. If dimX = 1, the situation is quite different. Actually, on Riemann

surfaces, Griffiths positivity is equivalent to Nakano positivity by definition. Repeating the

argument in the proof of Theorem 3.1, we have the following result.

Theorem A.1 (cf. [14, Prop. 5.2]). Let (M,ω) be a noncompact Riemann surface.

We also let (E = M ×C
r,h) be the trivial vector bundle with a Griffiths semipositive

singular Hermitian metric, and let ψ be a smooth strictly plurisubharmonic function with
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√
−1∂∂ψ ≥ εω for some positive constant ε > 0. Then, for any E-valued (1,1)-form u with

finite L2-norm, there exists an E-valued (1,0)-form α such that ∂α= u and∫
M

|α|2ω,he
−ψdVω ≤ 1

ε

∫
M

|u|2ω,he
−ψdVω.

This L2-estimate immediately implies the following theorem.

Theorem A.2. Let (E,h) → S be a holomorphic vector bundle with a Griffiths

semipositive singular Hermitian metric h over a Riemann surface S. Then E(h) is coherent.

This theorem may be already known for some experts. However, to emphasize the case

that dimX = 1 is special, we want to note the above result explicitly.
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