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Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, leading to
the loss of functional capacity and an increased risk for developing chronic metabolic diseases
such as diabetes. The age-related loss of skeletal muscle mass results from a chronic disruption
in the balance between muscle protein synthesis and degradation. As basal muscle protein
synthesis rates are likely not different between healthy young and elderly human subjects, it
was proposed that muscles from older adults lack the ability to regulate the protein synthetic
response to anabolic stimuli, such as food intake and physical activity. Indeed, the dose–
response relationship between myofibrillar protein synthesis and the availability of essential
amino acids and/or resistance exercise intensity is shifted down and to the right in elderly
human subjects. This so-called ‘anabolic resistance’ represents a key factor responsible for the
age-related decline in skeletal muscle mass. Interestingly, long-term resistance exercise training
is effective as a therapeutic intervention to augment skeletal muscle mass, and improves func-
tional performance in the elderly. The consumption of different types of proteins, i.e. protein
hydrolysates, can have different stimulatory effects on muscle protein synthesis in the elderly,
which may be due to their higher rate of digestion and absorption. Current research aims to
elucidate the interactions between nutrition, exercise and the skeletal muscle adaptive response
that will define more effective strategies to maximise the therapeutic benefits of lifestyle
interventions in the elderly.

Sarcopenia: Nutrition: Exercise training: Muscle hypertrophy

The preservation of muscle function is crucial for
maintaining an independent lifestyle and the capacity to
perform the activities of daily living in the elderly. One
of the important factors in the loss of functional perfor-
mance is the progressive loss of skeletal muscle mass with
ageing, called ‘sarcopenia’(1–3). This apparent muscle
wasting in elderly human subjects occurs at a rate of about
0.5–1.0% per year starting at about 40 years of age. Lean
muscle mass contributes up to about 50% of the total body
mass of young adults but can decline to 25% by 75–80
years of age(4,5). The loss of muscle mass is most notable
in the lower limb muscles, with the cross-sectional area of
the vastus lateralis reduced by as much as 40% at the age

of 80 years(6). Sarcopenia is associated with a three- to
fourfold increased likelihood of disabilities and the loss of
muscle mass especially in the lower limbs is associated
with an increased risk of falls and impairment in the ability
to perform routine activities.

The loss of muscle mass is viewed as a largely
inevitable and undesirable consequence of ageing(7), with
muscle loss estimated to affect 30% of people older than
60 years and >50% of those older than 80 years(1). Demo-
graphic studies indicate that the world’s population aged
60 years and above will triple within the next 50 years,
and the subpopulation of older adults aged 80 years and
above represents the fastest-growing subpopulation in the
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Corresponding author: Dr René Koopman, fax + 61 3 8344 5818, email rkoopman@unimelb.edu.au

Proceedings of the Nutrition Society (2011), 70, 104–113 doi:10.1017/S0029665110003927
g The Author 2010 First published online 22 November 2010

https://doi.org/10.1017/S0029665110003927 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665110003927


P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

developed world(8). It is therefore not surprising that the
global ageing will have a major impact on our health-care
system, as the number of frail elderly requiring hospitali-
sation and/or institutionalisation increases. Good health is
essential for maintaining independence and to continue to
actively enjoy family and community life. As such, life-
long health promotion is warranted to prevent or delay the
onset of non-communicable and chronic (metabolic) dis-
eases such as heart disease and stroke, cancer and diabetes.
Preventing, attenuating and/or reversing the decline in
skeletal muscle mass should be the main goal for inter-
ventional strategies to promote healthy ageing.

Ageing and protein turnover in skeletal muscle

The loss of skeletal muscle mass in the elderly is charac-
terised by atrophy of type-II (fast) muscle fibres (Fig. 1(A)),
fibre necrosis, fibre-type grouping and a reduction in sate-
llite cell content in type-II muscle fibres(6,9–14). The loss of
skeletal muscle mass is accompanied by the loss of muscle
strength (Fig. 1(B)), a decline in functional capacity(15–22)

and a reduction in whole-body and muscle oxidative capac-
ity(4,23,24). Together, these alterations at a muscle level
have substantial health consequences, since they contribute
to the greater risk of developing insulin resistance due to
the reduced capacity for blood glucose disposal and a
greater likelihood of excess lipid deposition in liver and
skeletal muscle tissue leading to hyperlipidaemia, hyper-
tension and cardiovascular co-morbidities.

The progressive muscle wasting with ageing must be
due to a disruption in the regulation of skeletal muscle
protein turnover, leading to a chronic imbalance between
muscle protein synthesis and degradation. Although it was
originally reported that healthy older adults had decreased
rates of basal muscle protein synthesis(5,25–31), more recent
studies have failed to reproduce these findings and gen-
erally show little or no differences in basal muscle protein
synthesis rates between young and old adults(32–39). These
discrepancies may be due to the standardisation of prior
physical activity(24), selection of subjects(30) or the selec-
tion of different precursor pools to calculate muscle protein
synthesis(40). It seems unlikely that basal muscle protein
fractional synthesis rates are diminished by 20–30% as

reported previously(25,26,28,29) and/or that muscle protein
breakdown is elevated by as much as 50% in the elderly
compared to younger adults(41). Such opposing alterations
in the rates of protein synthesis and breakdown would be
accompanied by more rapid muscle wasting than what is
typically observed (3–8% per decade(20,42)), and it there-
fore seems unlikely that basal muscle protein fractional
synthesis rates could be diminished by 20–30% during
ageing as reported previously(25,26,28,29). The relatively
slow rate of muscle loss during ageing must mean that the
mismatch between the average diurnal rate of muscle
protein synthesis and breakdown is small. It is currently
accepted that basal fasting protein synthesis and/or break-
down rates are not (substantially) different between young
and elderly human subjects(26,32–39,43). To better under-
stand the skeletal muscle wasting in the elderly, research-
ers have started to focus on the muscle anabolic response
to anabolic stimuli such as physical activity, food intake
and anabolic hormones such as insulin. It was well estab-
lished that the protein turnover in skeletal muscle is highly
responsive to exercise and nutrient intake in healthy young
individuals(44). Interestingly, data from recent studies sug-
gest that the muscle protein synthetic response to resistance
exercise(39) and following the ingestion of a small amount of
amino acids (AA) with(36,45) or without carbohydrate(32,33)

is reduced in the elderly when compared with young con-
trols. The latter is believed to represent a key factor
responsible for the age-related decline in skeletal muscle
mass(46).

Anabolic response to exercise

Exercise is a powerful stimulus to promote net muscle
protein anabolism, resulting in specific metabolic and
morphological adaptations in skeletal muscle. Endurance
training can increase whole-body and muscle oxidative
capacity and endurance(47), whereas resistance exercise
training can increase muscle mass and strength, and thus
improve physical performance and functional capacity(48).
It generally takes weeks to months before training-induced
changes in skeletal muscle mass become apparent(49). The
prolonged time course for hypertrophy is a reflection of the
slow turnover rate of muscle proteins, i.e. about 1% per
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Fig. 1. Muscle fibre cross-sectional area in young (about 20 year) and elderly (about 76 year)

men (A). Note the smaller type-II muscle fibres in the elderly men compared with the young

controls (adapted from (14)). (B) Correlation between age and one-repetition maximum (1RM) leg

press strength (adapted from(146)).
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day for contractile proteins(25,50,51). Although muscle hyper-
trophy occurs at a slow rate, a single bout of resistance
exercise can rapidly (within 2–4 h(52)) stimulate muscle
protein synthesis, and increase protein synthesis rates,
particularly the myofibrillar protein synthesis(28,31,47),
which persist for up to 16 h in trained(53) and 24–48 h in
untrained individuals(52–54). Muscle protein breakdown
is also stimulated following exercise, albeit to a lesser
extent than protein synthesis(52,55), and results in an
improved net muscle protein balance that persists for up to
48 h in untrained individuals(52).

It has been generally accepted that the increase in
protein synthesis following exercise is due to increased
mRNA translation(56). Many laboratories have shown that
the signalling pathway involving a mammalian target of
rapamycin (mTOR) complex I (mTORCI) plays a crucial
role in the control of mRNA translation initiation and
elongation(57–59). The activity of mTORCI determines the
activity of downstream effectors such as the 70-kDa S6
protein kinase (S6K1) and the eukaryotic initiation factor
4E-binding protein(60). Both play key regulatory roles in
modulating translation initiation, and control the binding of
mRNA to the 40S ribosomal subunit(60). Studies have
shown that the mTORCI signalling pathway is activated
after acute resistance exercise in healthy human sub-
jects(47,59,61,62). Moreover, Drummond et al.(63) showed
elegantly that early acute contraction-induced increase in
human protein synthesis in human subjects can be blocked
with rapamycin treatment indicating that mTORCI signal-
ling is crucial during the early post-exercise recovery. In
addition, it was shown that the phosphorylation status of
S6K1 following resistance exercise is a good marker for
the long-term increase in skeletal muscle mass in rats(64)

and human subjects(65). Moreover, significant correlations
were reported between S6K1 phosphorylation/activation
and muscle protein synthesis following exercise in young
healthy human subjects(39), highlighting the importance of
this signalling pathway in the adaptive response to resis-
tance exercise.

Ageing and the anabolic response to exercise

Muscle protein synthesis is responsive to resistance and
endurance exercise in both young and elderly human sub-
jects(29,30,39,61,66,67). Some studies have reported subtle
differences in changes in gene expression and anabolic
signalling(68), with early studies indicating that the protein
synthetic response to resistance-type exercise did not differ
considerably between the young and elderly(26,31). In con-
trast, an elegant study by Kumar et al.(39) showed anabolic
resistance of anabolic signalling (i.e. 4E-binding protein
and S6K1) and muscle protein synthesis after resistance
exercise (performed in the fasted state) in elderly men
compared with young controls, which became apparent
especially at higher exercise intensities. This study
demonstrated that the sigmoidal response of muscle protein
synthesis to resistance exercise of different (increasing)
intensities was shifted downward in older men compared to
younger men(39). Interestingly, this study shows that the
linear relationship between S6K1 phosphorylation and
muscle protein synthesis after resistance exercise, which is

observed in young healthy adults, was not present in the
elderly, indicating that anabolic signalling regulating mRNA
translation is impaired in the older human subjects(39).

Compared to protein synthesis, not many studies have
actually measured muscle protein breakdown using stable
isotope tracers. Most studies rely on measurements of
mRNA or protein expression of proteins involved in pro-
tein degradation such as Atrogin-1, MuRF-1, calpains and
their regulators. It has been suggested that mRNA expres-
sion of proteolytic regulators, such as Atrogin-1, are ele-
vated in muscles from old compared with young adults at
rest and these levels increased even further in the elderly in
response to resistance exercise. These findings from Raue
et al.(69) suggest that the regulation of ubiquitin proteasome-
related genes involved in muscle atrophy might be altered
in the elderly and protein breakdown may be increased in
elderly human subjects. However, whether these changes
in mRNA expression translate to actual changes in protein
expression and altered proteasome activity has yet to be
established. Thus, there is a paucity of data regarding the
measurement of muscle protein breakdown in response to
exercise in the elderly and it is clear that further research is
needed to assess the impact of exercise and specific exer-
cise modalities on post-exercise muscle protein synthesis
and breakdown rates and associated myocellular signalling
in young and elderly human subjects.

Anabolic response to food intake

Protein turnover in skeletal muscle is highly responsive to
nutrient intake(70). Ingestion of AA and/or protein strongly
stimulates muscle protein synthesis(35,37,51,70,71). Besides
serving as a substrate for polypeptide biosynthesis, AA
were shown to directly activate regulatory proteins in
mRNA translation, while non-essential AA do not induce a
substantial increase in muscle protein synthesis. In con-
trast, essential amino acids (EAA) increase muscle protein
synthesis in the absence of increased non-essential AA
availability. The branched-chain amino acid, leucine, is of
particular interest since it has the unique ability to directly
increase signalling through mTOR and its downstream
targets 4E-binding protein and S6K1 and ribosomal S6.
The EAA(72,73), and leucine in particular(74,75), seem to
represent the main anabolic signals responsible for the
post-prandial increase in muscle protein synthesis. The
observations that EAA show a dose-dependent stimulation
of muscle protein synthesis without increasing plasma
insulin(76), and that carbohydrate ingestion does not affect
protein synthesis(77), suggest that insulin is rather permis-
sive instead of modulatory(46,76,78). Greenhaff et al.(78)

showed that insulin in the range of 30–150 mU/ml does
not further stimulate muscle protein synthesis. In contrast
to protein synthesis, muscle protein degradation seems to
be very responsive to relatively small changes in insulin
concentrations. Insulin levels of 15 mU/ml can almost
maximally reduce muscle protein breakdown(79) and there
seems to be no further inhibition above 30 mU/ml(78).
These data suggest that protein breakdown can be already
maximally reduced by slightly increased insulin concen-
trations which can be achieved by the intake of a small
breakfast in healthy young men(46).
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Ageing and the anabolic response to food intake

Data from recent studies suggest that the muscle protein
synthetic response to the ingestion of a small amount of
EAA(32,33) is attenuated in the elderly, and is now believed
to represent one of the key factors responsible for the
age-related decline in skeletal muscle mass. The so-called
‘anabolic resistance’ in elderly human subjects was
demonstrated by a rightward and downward shift of the
dose–response relationship between myofibrillar protein
synthesis and the availability of leucine in the plasma(32).
Cuthbertson et al.(46) showed that even a very large (40 g)
dose of EAA is not able to bring the curve back to values
for young subjects, suggesting that supplementation with
extra protein, EAA or leucine will not be sufficient to
restore the rate of muscle protein synthesis in older adults,
relative to those found in the young.

The mechanisms responsible for the proposed anabolic
resistance to protein and/or AA administration in the
elderly are yet to be elucidated fully. Cuthbertson et al.(32)

reported decrements in amounts of signalling protein in the
protein kinase B/mTORCI pathway in old muscle and
showed an attenuated rise in the activation of key signal-
ling proteins in this pathway after ingesting 10 g EAA in
the elderly v. the young. These findings seem to be con-
sistent with previous observations by Guillet et al.(45) who
showed reduced S6K1 phosphorylation following com-
bined AA and glucose infusions in the elderly. Combined,
these data suggest that anabolic signalling is impaired in
skeletal muscles of older compared to younger adults(32,76),
which may be in part due to insulin resistance in the
elderly. Recent data suggest that muscle protein breakdown
is not strongly inhibited by insulin in the elderly(80),
whereas other reports suggested that muscle protein
synthesis is resistant to the anabolic action of insulin in the
elderly(36,43). It has been proposed that the anabolic resis-
tance can be attributed to a less responsive impact of phy-
siological hyperinsulinemia on the increase in skeletal
muscle blood flow and subsequent AA availability in aged
muscle(43,81), which would agree with the reduced activa-
tion of the phosphatidylinositol-3 kinase–protein kinase
B–mTOR signalling pathway and with the lesser increase
in the muscle protein synthetic rate after AA/protein
ingestion in the elderly(32).

Another mechanism that has been suggested to con-
tribute to the anabolic resistance to food intake in elderly
men is an impairment in dietary protein digestion and/or
absorption(82). Recent data show that the digestion rate of
protein is an independent regulating factor of post-prandial
protein anabolism(83). As such, it seems plausible to as-
sume that any impairment in protein digestion and/or absorp-
tion will reduce the appearance rate of dietary AA in the
bloodstream, thereby reducing AA delivery to the muscle
and subsequently attenuating the muscle protein synthetic
response. To accurately assess the appearance rate of AA
derived from dietary protein, the labelled AA need to be
incorporated in the dietary protein source(84–86). As free
AA and protein-derived AA exhibit a different timing and
efficiency of intestinal absorption(85), simply adding label-
led free AA to a drink containing protein does not provide
an accurate measure of the digestion and absorption

kinetics of the ingested dietary protein(87). These method-
ological restrictions represent the main reasons why only
a few researchers have investigated the differences in
digestion and absorption kinetics of specific dietary protein
sources and the disparity in anabolic response between
young and elderly human subjects. These studies have
suggested that AA utilisation in the splanchnic area is
elevated in the elderly(82), which would imply that less of
the ingested AA are available for muscle protein syn-
thesis(82). We have recently repeated similar experiments,
comparing the appearance rate of dietary L-[1-13C]-
phenylalanine in the circulation following the intake of
35 g intact intrinsically labelled casein protein(88). Our
data clearly show that splanchnic extraction is not altered
significantly in elderly men, and that over a 3 and 6 h
period the same amount of dietary phenylalanine appears
in the circulation(88). Although we did not observe any
impairment in digestion and absorption in the elderly, we
observed substantially (about 12%) lower rates of whole-
body protein synthesis and phenylalanine hydroxylation
following protein ingestion in the elderly men compared to
the young men (Fig. 2), calculated over the first 3 h, sub-
sequent 3 h or total 6 h time period after protein ingestion.
Consistent with these observations, we observed a 14%
difference in muscle protein synthesis rates between young
and elderly men over the 6 h period, although this differ-
ence did not reach statistical significance(88). Not all
researchers have found impaired muscle protein synthetic
response to protein intake in the elderly as similar protein
synthetic rates were observed in young and elderly human
subjects after ingestion of large amounts of carbohydrate
and proteins(89), and following ingestion of large(90) and
small amount of beef (90,91). Discrepancies may arise from
differences in timing of biopsy collection, the precursor
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Fig. 2. Whole-body protein synthesis rates, calculated over 3 h or

6 h periods, following the ingestion of 35 g of casein protein in

young (about 23 year, n 10) and elderly (about 64 year, n 10) men.

Whole-body protein synthesis rates, calculated per kg body weight,

are significantly lower in the elderly compared to the young controls

(*P<0.05). Adapted from Koopman et al.(88).
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pool used to calculate muscle protein synthesis or the age
of the elderly volunteers studied. Clearly, more research is
warranted to determine the extent of an anabolic resistance
to food (i.e. intact protein) intake that exists in elderly
human subjects.

Early work from the laboratory of Yves
Boirie(82–84,86,92) showed that ingestion of a slowly digested
protein (casein) led to a more positive whole-body protein
balance (averaged over a 7 h period) when compared with
the ingestion of a fast digestible protein (whey) or a mixture
of free AA in healthy, young subjects(83). In contrast,
ingestion of a fast protein resulted in greater (whole-body)
net protein retention compared to a slow protein when pro-
vided to healthy, older men(82,84,86,92). The latter response
might be attributed to the reported anabolic resistance of the
muscle protein synthetic machinery to become activated in
the elderly. In accordance with the fast v. slow protein
concept, we tested the hypothesis that the ingestion of a
casein protein hydrolysate, i.e. enzymatically pre-digested
casein, would enhance protein digestion and the absorption
rate in elderly men(93). We expected that this enhanced AA
uptake in the gut would result in a greater increase in plasma
AA availability and might improve the post-prandial muscle
protein synthetic response. Elderly men ingested 35 g
intrinsically L-[1-13C]phenylalanine labelled casein or
casein hydrolysate and we assessed the appearance rate of
dietary phenylalanine in the circulation and the subsequent
muscle protein synthetic response. The ingestion of casein
hydrolysate accelerated the appearance rate of dietary
phenylalanine in the circulation, lowered splanchnic phe-
nylalanine extraction, increased post-prandial plasma AA
availability and tended to augment the subsequent muscle
protein synthetic response in vivo in human subjects, com-
pared to the ingestion of intact casein(93). The difference in
the appearance rate of dietary protein between intact
and hydrolysed casein was particularly evident in the first
3 h after the protein ingestion, with about 50% more dietary
phenylalanine appearing in the circulation after ingestion of
the casein hydrolysate(93). Consistent with these findings, it
was reported that protein pulse feeding (providing up to
80% of daily protein intake in one meal) leads to greater
protein retention than ingesting the same amount of protein
provided over four meals throughout the day (spread-feed-
ing) in elderly women(94,95). These findings may indicate
that part of the proposed anabolic resistance in the elderly
might be compensated for, in part, by enhancing AA avail-
ability during the post-prandial period.

Ageing and the anabolic response to combined
exercise and nutrition

We have shown previously that muscle protein synthesis
rates are lower in the elderly (about 75 year) compared to
young controls under conditions in which resistance-type
exercise is followed by food intake(96). However, combined
ingestion of carbohydrate and protein during recovery from
physical activity resulted in similar increases in mixed
muscle protein synthesis rates, measured over a 6-h period,
in young and elderly men(96). Consistent with our findings,
Drummond et al.(61) reported similar post-exercise muscle
protein synthesis rates over a 5-h recovery period in

young v. elderly subjects following the ingestion of carbo-
hydrate with an EAA mixture. However, their data indicated
that the anabolic response to exercise and food intake was
delayed in the elderly. During the first 3 h of post-exercise
recovery, the young subjects showed a substantial increase
in the muscle protein synthesis rate, which was not observed
in the elderly. The delayed activation of muscle protein
synthesis in the elderly may be attributed to a more pro-
nounced activation of AMP-activated protein kinase and/or
reduced extracellular-signal-regulated kinases1/2 activation
during exercise, which seems to be consistent with an
attenuated rise in 4E-binding protein phosphorylation fol-
lowing resistance-type exercise in older adults(39). These
data highlight the importance of measuring muscle protein
synthesis over different time periods (0–3 h and 3–6 h)
following exercise and/or food intake to gain more infor-
mation about impairments in activation of protein synthesis
in the elderly. The mechanisms responsible for the delayed
intracellular activation of the mTOR pathway in skeletal
muscle remain unclear, but might include differences in
muscle recruitment, muscle fibre-type composition, the
capacity and/or sensitivity of the muscle protein synthetic
machinery, the presence of an inflammatory state and/or the
impact of stress on the cellular energy status of the cell
between young and older adults.

Long-term interventions

The clinical relevance of nutritional and/or exercise inter-
vention in the elderly stems from the long-term impact on
skeletal muscle mass and strength, and the implications for
functional capacity. In accordance with the previously
discussed findings, the muscle protein synthetic machinery
is able to respond to anabolic stimuli, albeit maybe to a
lesser extent(46), until very old age(97,98). Although it was
suggested previously that elderly human subjects need
more protein(99), more recent studies by Campbell
et al.(100), who performed very comprehensive nitrogen
balance experiments, clearly showed that dietary protein
requirements did not increase with age, and that a dietary
protein allowance of 0.85 g/kg per day is adequate. Some
researchers believe that the attenuated muscle protein
synthetic response to food intake in the elderly can, at least
partly, be compensated for by increasing the leucine con-
tent of a meal(34,101). However, we have shown previously
that additional leucine intake does not further increase
muscle protein synthesis after resistance exercise when
ample protein is ingested by elderly men(102). In addition,
we investigated the effect of 3 months of leucine supple-
mentation with each main meal (7.5 g/d) on skeletal mus-
cle mass and strength and on glycemic control in healthy
elderly men(103). Consistent with our observations from our
acute post-exercise study, we did not observe any effect of
leucine supplementation on skeletal muscle mass and
strength. In addition, no improvements in indices of whole-
body insulin sensitivity blood-glycated Hb content, or the
plasma lipid profile were observed. We concluded that
long-term leucine supplementation (7.5 g/d) does not aug-
ment skeletal muscle mass or strength and does not
improve glycaemic control or the blood lipid profile in
healthy elderly men.
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Resistance exercise training interventions were shown
effective in augmenting skeletal muscle mass, increasing
muscle strength and/or improving functional capacity in
the elderly(97,98,104–119). In addition, endurance(97,98,104–110)

exercise was shown to enhance the skeletal muscle oxida-
tive capacity, resulting in greater endurance capacity(5,120).
Although the muscle regenerative capacity seems to de-
cline at a more advanced age, the reduced satellite cell
pool size(119) does not compromise the capacity for muscle
hypertrophy to occur even at an advanced age(121–123) and
resistance exercise training was shown to increase muscle
fibre size(124–127). Recently, Verdijk et al.(119) assessed the
effects of 12 weeks of leg resistance exercise training on
fibre-type specific hypertrophy and satellite cell content in
healthy, elderly men. Prolonged training resulted in a 28%
increase in the size of type-II muscle fibres and a con-
comitant 76% increase in type-II muscle fibre satellite cell
content in elderly males(119). The apparent differences in
fibre size and/or satellite cell content between type-I and
type-II muscle fibres prior to intervention were no longer
evident after 12 weeks of training. Overall, these findings
suggest that satellite cells are instrumental in the genera-
tion of new myonuclei to facilitate muscle fibre hyper-
trophy(128).

Protein/AA ingestion before, during and/or after exercise
acutely stimulates muscle protein synthesis and reduces
muscle protein breakdown to facilitate muscle fibre hyper-
trophy. Remarkably, little evidence exists that dietary
interventions can further augment the adaptive response to
prolonged exercise training in the elderly. The proposed
importance of ample dietary protein intake in the long-term
adaptive response to resistance training in the elderly has
been a topic of intense debate(129–131). Some researchers
suggest that the current RDA for habitual protein intake of
0.8 g/kg per day(132,133) is marginal to allow lean mass
accretion following resistance exercise training(99) or even
insufficient for long-term maintenance of skeletal muscle
mass in sedentary elderly human subjects(134). However,
others have shown that when habitual dietary protein
intake is standardised at 0.9 g/kg per day, exercise-induced
increases in muscle mass become apparent and further
increases in protein intake does not provide any additional
effect(114). In addition, data from Walrand et al.(135) indi-
cated that although increased protein intake in the elderly
further improved nitrogen balance (by increasing AA oxi-
dation), no beneficial effects on muscle protein synthesis and
muscle function were observed. These observations might
explain why most studies fail to observe any additional
benefit of nutritional co-intervention on the skeletal muscle
adaptive response to prolonged resistance exercise training
in the elderly(97,98,106,113,114,117,118,136–139). However, it has
been suggested that it is not the total protein amount per se,
but the timing of protein intake that is crucial for its stimu-
latory effect on muscle protein synthesis and muscle fibre
hypertrophy. Esmarck et al.(140) concluded that the intake of
a protein supplement immediately after each bout of resis-
tance-type exercise was required for skeletal muscle hyper-
trophy to occur with a 12-week intervention in the elderly.
Although the absence of any hypertrophy in the control
group seems to conflict with previous studies that show
muscle hypertrophy following resistance training without

any dietary intervention, the proposed importance of nutrient
timing is supported by more recent studies investigating the
impact of AA or protein co-ingestion prior to, during and/or
after exercise on the acute muscle protein synthetic
response(141,142). Verdijk et al.(117) compared increases in
skeletal muscle mass and strength following 3 months of
resistance exercise training with or without protein ingestion
prior to and immediately after each exercise session in
elderly males. Timed protein supplementation prior to and
after each exercise bout did not further increase skeletal
muscle hypertrophy in healthy, elderly men who habitually
consumed about 1.0 g protein/kg per day. Taken together,
the available data suggest that sufficient habitual protein
intake (about 0.9 g/kg per day) combined with a normal meal
pattern (i.e. providing ample protein three times daily)
will allow for substantial gains in muscle mass and strength
with resistance exercise training in the elderly. Additional
protein supplementation does not seem to provide large
surplus benefits to the exercise intervention in healthy,
elderly males. Additional protein intake may reduce sub-
sequent voluntary food consumption in the elderly(143) and
consequently some have suggested that supplementation
with EAA would be more efficient(144). Clearly, acute
studies have shown benefits of timed supplementation
with small (7–15 g) amounts of EAA on muscle protein
synthesis(33,35,71). However, well-designed, double-blind,
placebo-controlled long-term studies to investigate ben-
eficial and adverse effects of long-term EAA supplemen-
tation in the elderly are yet to be performed(145).

Conclusions

The loss of skeletal muscle mass with ageing is associated
with reduced muscle strength, the loss of functional capac-
ity and an increased risk for developing chronic metabolic
disease. The progressive loss of skeletal muscle mass does
not appear to be attributed to age-related changes in basal
muscle protein synthesis and/or rates of protein breakdown.
Recent studies suggest that the muscle protein synthetic
response to the main anabolic stimuli, i.e. food intake and/or
physical activity, is blunted in the elderly. Despite this
potential anabolic resistance to food intake and/or physical
activity, resistance exercise training can stimulate net muscle
protein accretion significantly. Prolonged resistance exercise
training has proved to be an effective intervention for
attenuating and/or treating the loss of muscle mass and
strength in the elderly. Further research is warranted to pro-
vide insight into the interactions between nutrition, exercise
and skeletal muscle adaptations in order to define more
effective nutritional, exercise and/or pharmaceutical inter-
ventional strategies to prevent and/or treat sarcopenia.
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